Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Background

The green synthesis of gold nanoparticles (AuNPs) using natural materials has gained significant attention in recent years due to their eco-friendliness and potential applications in various fields.

Methods

The present study aimed at the green synthesis and anti-hyperpigmentation potential of gold nanoparticles (AuNPs) using a methanolic extract of . Furthermore, the green synthesis of the AuNPs was confirmed by UV-visible, FT-IR, XRD, and EMDEX analysis. The size and surface topological significance of green synthesized AuNPs were evaluated through Scanning Electron Microscope and Field Emission Scanning Electron Microscopy.

Results

The size of the synthesized AuNPs was found to be in the range of 100-1000 nm. The tyrosinase inhibitory activity of AuNPs was evaluated through the mushroom tyrosinase inhibitory assay method. The tyrosinase inhibitory activities of crude extract, AuNPs, and Kojic acid were found to be 98.7 ± 0.7, 75 ± 1.3 and 41 ± 1.1 μg/ml, respectively.

Conclusion

Hence, green synthesized AuNPs of leaf extract may be used as a potent anti-hyperpigmentation agent in the market of nano cosmeceuticals.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080352343241008161517
2024-10-21
2025-06-11
Loading full text...

Full text loading...

References

  1. NamiotE.D. SokolovA.V. ChubarevV.N. TarasovV.V. SchiöthH.B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for COVID-19 vaccines.Int. J. Mol. Sci.202324178710.3390/ijms24010787 36614230
    [Google Scholar]
  2. KarB. RoutS.R. HalderJ. The recent development of luteolin-loaded nanocarrier in targeting cancer.Curr. Pharm. Des.202430272129214110.2174/0113816128313713240628063301 38963114
    [Google Scholar]
  3. MishraA. PradhanD. HalderJ. Metal nanoparticles against multi-drug-resistance bacteria.J. Inorg. Biochem.202223711193810.1016/j.jinorgbio.2022.111938 36122430
    [Google Scholar]
  4. KarB. PradhanD. MishraP. BhuyanS.K. GhoshG. RathG. Exploring the potential of metal nanoparticles as a possible therapeutic adjunct for Covid-19 infection.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202292351152110.1007/s40011‑022‑01371‑1 35601009
    [Google Scholar]
  5. HalderJ. PradhanD. BiswasroyP. Trends in iron oxide nanoparticles: A nano-platform for theranostic application in breast cancer.J. Drug Target.2022301012110.1080/1061186X.2022.2095389 35786242
    [Google Scholar]
  6. SongY. ChenJ. LiuH. Conformation, bioactivity and electrochemical performance of glucose oxidase immobilized on surface of gold nanoparticles.Electrochim. Acta2015158566310.1016/j.electacta.2015.01.114
    [Google Scholar]
  7. EmamiT. MadaniR. GolchinfarF. ShoushtaryA. AminiS.M. Comparison of gold nanoparticle conjugated secondary antibody with non-gold secondary antibody in an ELISA kit model.Monoclon. Antib. Immunodiagn. Immunother.201534536637010.1089/mab.2015.0021 26492626
    [Google Scholar]
  8. KooshaF. FarsangiZ.J. SamadianH. AminiS.M. Mesoporous silica coated gold nanorods: A multifunctional theranostic platform for radiotherapy and X-ray imaging.J. Porous Mater.20212861961196810.1007/s10934‑021‑01137‑6
    [Google Scholar]
  9. Davatgaran TaghipourY. KharraziS. AminiS.M. Antibody conjugated gold nanoparticles for detection of small amounts of antigen based on Surface Plasmon Resonance (SPR) spectra.Nanomed Res J201832102108
    [Google Scholar]
  10. DubeyD. MeherR.K. PradhanB. Green synthesis of silver nanoparticles using leaf extract of Woodfordia fruticosa (L.) for potential therapeutic application.J. Chem. Technol. Biotechnol.20249981743175310.1002/jctb.7681
    [Google Scholar]
  11. TabakovaT. IlievaL. IvanovI. Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria.J. Rare Earths201937438339210.1016/j.jre.2018.07.008
    [Google Scholar]
  12. OsmanA.I. ZhangY. FarghaliM. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review.Environ. Chem. Lett.202422284188710.1007/s10311‑023‑01682‑3
    [Google Scholar]
  13. NadafS.J. JadhavN.R. NaikwadiH.S. Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects.OpenNano2022810007610.1016/j.onano.2022.100076
    [Google Scholar]
  14. SowndhararajanK. KangS.C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn.Saudi J. Biol. Sci.201320431932510.1016/j.sjbs.2012.12.005 24235867
    [Google Scholar]
  15. PandaP. DasD. DashP. GhoshG. Therapeutic potential of Bauhinia racemosa - A mini review.Int. J. Pharm. Sci. Rev. Res.2015322169179
    [Google Scholar]
  16. MukundanD. MohankumarR. VasanthakumariR. Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy.Bull. Mater. Sci.201740233534410.1007/s12034‑017‑1376‑2
    [Google Scholar]
  17. PandaP. DashP. GhoshG. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel’s foot creeper leaves (Bauhinia vahlii).Nat. Prod. Res.201832559659910.1080/14786419.2017.1326487 28508671
    [Google Scholar]
  18. Kus-LiśkiewiczM. FickersP. Ben TaharI. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations.Int. J. Mol. Sci.202122201095210.3390/ijms222010952 34681612
    [Google Scholar]
  19. PatraN. TavitiA.C. SahooA. Green synthesis of multi-metallic nanocubes.RSC Advances2017756351113511810.1039/C7RA05493A
    [Google Scholar]
  20. AkbariA. Shokati EshkikiZ. MayahiS. AminiS.M. In-vitro investigation of curcumin coated gold nanoparticles effect on human colorectal adenocarcinoma cell line.Nanomed Res J2022716672
    [Google Scholar]
  21. MohammadiE. AminiS.M. Green synthesis of stable and biocompatible silver nanoparticles with natural flavonoid apigenin.Nano-Struct Nano-Objects20243810117510.1016/j.nanoso.2024.101175
    [Google Scholar]
  22. AminiS.M. ShahroodianS. Antibacterial activity of silver and gold nanoparticles that have been synthesized by curcumin.Inorg Nano-Met Chem20241710.1080/24701556.2024.2352352
    [Google Scholar]
  23. Ahmadi KamalabadiM. NeshastehrizA. GhaznaviH. AminiS.M. Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer.Med. Oncol.2022391219610.1007/s12032‑022‑01780‑2 36071293
    [Google Scholar]
  24. DzimitrowiczA. JamrózP. diCenzoG.C. SergielI. KozleckiT. PohlP. Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge.Arab. J. Chem.20191284118413010.1016/j.arabjc.2016.04.004
    [Google Scholar]
  25. LiL. CaiY. SunX. Tyrosinase inhibition by p ‐coumaric acid ethyl ester identified from camellia pollen.Food Sci. Nutr.20219138940010.1002/fsn3.2004 33473301
    [Google Scholar]
  26. HuangQ. LuoA. JiangL. Disinfection efficacy of green synthesized gold nanoparticles for medical disinfection applications.Afr. Health Sci.20191911441144810.4314/ahs.v19i1.17 31148971
    [Google Scholar]
  27. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  28. HammamiI. AlabdallahN.M. jomaa AA, kamoun M. Gold nanoparticles: Synthesis properties and applications.J. King Saud Univ. Sci.202133710156010.1016/j.jksus.2021.101560
    [Google Scholar]
  29. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  30. GhahremanzadehR. Yazdi SamadiF. YousefiM. Green synthesis of gold nanoparticles using three medicinal plant extracts as efficient reducing agents.Iran J Chem Chem Eng2019381110
    [Google Scholar]
  31. CastroL. BlázquezM.L. MuñozJ.A. GonzálezF. García-BalboaC. BallesterA. Biosynthesis of gold nanowires using sugar beet pulp.Process Biochem.20114651076108210.1016/j.procbio.2011.01.025
    [Google Scholar]
  32. OliveiraA.E.F. PereiraA.C. ResendeM.A.C. FerreiraL.F. Gold nanoparticles: A didactic step-by-step of the synthesis using the turkevich method, mechanisms, and characterizations.Analytica20234225026310.3390/analytica4020020
    [Google Scholar]
  33. García-BetancourtM. Magaña-ZavalaC. Crespo-SosaA. Structural and optical properties correlated with the morphology of gold nanoparticles embedded in synthetic sapphire: A microscopy study.J. Microsc. Ultrastruct.201862728210.4103/JMAU.JMAU_19_18 30221131
    [Google Scholar]
  34. NayemS.M.A. SultanaN. HaqueM.A. Green synthesis of gold and silver nanoparticles by using Amorphophallus paeoniifolius tuber extract and evaluation of their antibacterial activity.Molecules20202520477310.3390/molecules25204773 33080946
    [Google Scholar]
  35. Ganesh KumarV. Dinesh GokavarapuS. RajeswariA. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata.Colloids Surf. B Biointerfaces201187115916310.1016/j.colsurfb.2011.05.016 21640563
    [Google Scholar]
  36. AljabaliA. AkkamY. Al ZoubiM. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity.Nanomaterials (Basel)20188317410.3390/nano8030174 29562669
    [Google Scholar]
  37. ChenY.M. LiC. ZhangW.J. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents.J. Enzyme Inhib. Med. Chem.201934199099810.1080/14756366.2019.1609467 31072148
    [Google Scholar]
  38. ThawabtehA.M. JibreenA. KaramanD. ThawabtehA. KaramanR. Skin pigmentation types, causes and treatment—A review.Molecules20232812483910.3390/molecules28124839 37375394
    [Google Scholar]
  39. ZolghadriS. BahramiA. Hassan KhanM.T. A comprehensive review on tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201934127930910.1080/14756366.2018.1545767 30734608
    [Google Scholar]
  40. FabianI.M. SinnathambyE.S. FlanaganC.J. Topical hydroquinone for hyperpigmentation: A narrative review.Cureus20231511e4884010.7759/cureus.48840 38106810
    [Google Scholar]
  41. Wawrzyk-BochenekI. RahnamaM. StachuraM. WilczyńskiS. WawrzykA. Evaluation of the reduction of skin hyperpigmentation changes under the influence of a preparation containing kojic acid using hyperspectral imaging—preliminary study.J. Clin. Med.2023127271010.3390/jcm12072710 37048793
    [Google Scholar]
  42. BonesiM. XiaoJ. TundisR. AielloF. SicariV. LoizzoM.R. Advances in the tyrosinase inhibitors from plant source.Curr. Med. Chem.201926183279329910.2174/0929867325666180522091311 29788869
    [Google Scholar]
  43. GalúcioJ.M.P. de SouzaS.G.B. VasconcelosA.A. Synthesis, characterization, applications, and toxicity of green synthesized nanoparticles.Curr. Pharm. Biotechnol.202223342044310.2174/1389201022666210521102307 34355680
    [Google Scholar]
/content/journals/cei/10.2174/0115734080352343241008161517
Loading
/content/journals/cei/10.2174/0115734080352343241008161517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test