Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Rho kinase (ROCK) enzymes are increasingly recognized for their central role in the pathogenesis of metabolic syndrome (MetS), a cluster of conditions that includes insulin resistance, hypertension, obesity, and dyslipidemia. ROCKs are serine/threonine kinases involved in the regulation of various cellular functions, including smooth muscle contraction, actin cytoskeleton organization, and gene expression. These enzymes are critically implicated in the cardiovascular and metabolic abnormalities that characterize MetS. Elevated ROCK activity has been observed in individuals with MetS, contributing to several pathogenic processes such as endothelial dysfunction, vascular inflammation, oxidative stress, and increased vascular smooth muscle contraction. These mechanisms are key drivers of hypertension and atherosclerosis, which are common complications associated with MetS. Moreover, ROCKs influence adipocyte differentiation and lipid metabolism, linking them directly to obesity and insulin resistance, two core components of the syndrome. The inhibition of ROCKs has emerged as a promising therapeutic strategy for managing MetS. Pharmacological ROCK inhibitors have shown the potential to improve insulin sensitivity, lower blood pressure, and reduce vascular inflammation and remodelling. In addition, by targeting the multiple pathways involved in the development and progression of MetS, ROCK inhibitors offer a comprehensive approach to treatment that addresses the syndrome's multifactorial nature. This therapeutic strategy not only mitigates the metabolic and cardiovascular components of the syndrome but also lowers the risk of associated complications, such as cardiovascular disease and stroke. This review concluded that interrupted Rho kinase activity contributes to the development of MetS in all its manifestations. Overall, these side effects diminish the Rho-kinase method's promise as a novel and significant treatment component.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080332355241007060211
2024-11-07
2025-06-03
Loading full text...

Full text loading...

References

  1. VahabzadehM. AmiriN. KarimiG. Effects of silymarin on metabolic syndrome: A review.J. Sci. Food Agric.201898134816482310.1002/jsfa.9115 29736939
    [Google Scholar]
  2. TabeshpourJ. RazaviB.M. HosseinzadehH. Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review.Phytother. Res.201731681983710.1002/ptr.5805 28393409
    [Google Scholar]
  3. HassaniF.V. ShiraniK. HosseinzadehH. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review.Naunyn Schmiedebergs Arch. Pharmacol.2016389993194910.1007/s00210‑016‑1256‑0 27178264
    [Google Scholar]
  4. ManserE. LeungT. SalihuddinH. ZhaoZ. LimL. A brain serine/threonine protein kinase activated by Cdc42 and Rac1.Nature19943676458404610.1038/367040a0 8107774
    [Google Scholar]
  5. LeungT. ChenX.Q. ManserE. LimL. The p160 RhoA-binding kinase ROK α is a member of a kinase family and is involved in the reorganization of the cytoskeleton.Mol. Cell. Biol.199616105313532710.1128/MCB.16.10.5313 8816443
    [Google Scholar]
  6. LoirandG. GuérinP. PacaudP. Rho kinases in cardiovascular physiology and pathophysiology.Circ. Res.200698332233410.1161/01.RES.0000201960.04223.3c 16484628
    [Google Scholar]
  7. ThumkeoD. WatanabeS. NarumiyaS. Physiological roles of Rho and Rho effectors in mammals.Eur. J. Cell Biol.20139210-1130331510.1016/j.ejcb.2013.09.002 24183240
    [Google Scholar]
  8. KnipeR.S. TagerA.M. LiaoJ.K. The Rho kinases: Critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis.Pharmacol. Rev.201567110311710.1124/pr.114.009381 25395505
    [Google Scholar]
  9. JahaniV. KavousiA. MehriS. KarimiG. Rho kinase, a potential target in the treatment of metabolic syndrome.Biomed. Pharmacother.2018106May1024103010.1016/j.biopha.2018.07.060 30119167
    [Google Scholar]
  10. RientoK. RidleyA.J. ROCKs: Multifunctional kinases in cell behaviour.Nat. Rev. Mol. Cell Biol.20034644645610.1038/nrm1128 12778124
    [Google Scholar]
  11. AmanoM. NakayamaM. KaibuchiK. Rho‐kinase/ROCK: A key regulator of the cytoskeleton and cell polarity.Cytoskeleton201067954555410.1002/cm.20472 20803696
    [Google Scholar]
  12. TuD. LiY. SongH.K. Crystal structure of a coiled-coil domain from human ROCK I.PLoS One201163e1808010.1371/journal.pone.0018080 21445309
    [Google Scholar]
  13. WenW. LiuW. YanJ. ZhangM. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases.J. Biol. Chem.200828338262632627310.1074/jbc.M803417200 18640982
    [Google Scholar]
  14. IshizakiT. MaekawaM. FujisawaK. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.EMBO J.19961581885189310.1002/j.1460‑2075.1996.tb00539.x 8617235
    [Google Scholar]
  15. BlumensteinL. AhmadianM.R. Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation.J. Biol. Chem.200427951534195342610.1074/jbc.M409551200 15475352
    [Google Scholar]
  16. DvorskyR. BlumensteinL. VetterI.R. AhmadianM.R. Structural insights into the interaction of ROCKI with the switch regions of RhoA.J. Biol. Chem.200427987098710410.1074/jbc.M311911200 14660612
    [Google Scholar]
  17. WardY. YapS.F. RavichandranV. The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway.J. Cell Biol.2002157229130210.1083/jcb.200111026 11956230
    [Google Scholar]
  18. KomanderD. GargR. WanP.T.C. RidleyA.J. BarfordD. Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure.EMBO J.200827233175318510.1038/emboj.2008.226 18946488
    [Google Scholar]
  19. SebbaghM. HamelinJ. BertoglioJ. SolaryE. BréardJ. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner.J. Exp. Med.2005201346547110.1084/jem.20031877 15699075
    [Google Scholar]
  20. ColemanM.L. SahaiE.A. YeoM. BoschM. DewarA. OlsonM.F. cBioPortal cancer genomic AHR CMM1.Melanoma20013339346
    [Google Scholar]
  21. ShimokawaH. SunamuraS. SatohK. RhoA/Rho-kinase in the cardiovascular system.Circ. Res.2016118235236610.1161/CIRCRESAHA.115.306532 26838319
    [Google Scholar]
  22. PinnerS. SahaiE. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE.Nat. Cell Biol.200810212713710.1038/ncb1675 18204440
    [Google Scholar]
  23. LoweryD.M. ClauserK.R. HjerrildM. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate.EMBO J.20072692262227310.1038/sj.emboj.7601683 17446864
    [Google Scholar]
  24. LeeH.J. ParkJ. YoonO.J. KimH.W. LeeD.Y. KimD.H. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model.Nano Lett.20116212112510.1038/nnano.2010.281
    [Google Scholar]
  25. JacobsM. HayakawaK. SwensonL. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity.J. Biol. Chem.2006281126026810.1074/jbc.M508847200 16249185
    [Google Scholar]
  26. HeikkilaT. WheatleyE. CrightonD. Co-crystal structures of inhibitors with MRCKβ, a key regulator of tumor cell invasion.PLoS One201169e2482510.1371/journal.pone.0024825 21949762
    [Google Scholar]
  27. PearceL.R. KomanderD. AlessiD.R. The nuts and bolts of AGC protein kinases.Nat. Rev. Mol. Cell Biol.201011192210.1038/nrm2822 20027184
    [Google Scholar]
  28. ChuangH.H. YangC.H. TsayY.G. ROCKII Ser1366 phosphorylation reflects the activation status.Biochem. J.2012443114515110.1042/BJ20111839 22273145
    [Google Scholar]
  29. SumiT. MatsumotoK. NakamuraT. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase.J. Biol. Chem.2001276167067610.1074/jbc.M007074200 11018042
    [Google Scholar]
  30. KawanoY. FukataY. OshiroN. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.J. Cell Biol.199914751023103810.1083/jcb.147.5.1023 10579722
    [Google Scholar]
  31. LeungT. ManserE. TanL. LimL. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes.J. Biol. Chem.199527049290512905410.1074/jbc.270.49.29051 7493923
    [Google Scholar]
  32. AmanoM. ItoM. KimuraK. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).J. Biol. Chem.199627134202462024910.1074/jbc.271.34.20246 8702756
    [Google Scholar]
  33. JainS. SharmaS. PaliwalA. DwivediJ. PaliwalS. PaliwalV. Discovery of novel fatty acid amide hydrolase (FAAH) inhibitors as anti-Alzheimer’s agents through pharmacophore-based virtual screening, molecular docking and experimental validation.Med. Chem. Res.2023115
    [Google Scholar]
  34. FengJ. ItoM. IchikawaK. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase.J. Biol. Chem.199927452373853739010.1074/jbc.274.52.37385 10601309
    [Google Scholar]
  35. VelascoG. ArmstrongC. MorriceN. FrameS. CohenP. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin.FEBS Lett.20025271-310110410.1016/S0014‑5793(02)03175‑7 12220642
    [Google Scholar]
  36. MatsuiT. MaedaM. DoiY. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association.J. Cell Biol.1998140364765710.1083/jcb.140.3.647 9456324
    [Google Scholar]
  37. OhashiK. NagataK. MaekawaM. IshizakiT. NarumiyaS. MizunoK. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop.J. Biol. Chem.200027553577358210.1074/jbc.275.5.3577 10652353
    [Google Scholar]
  38. MaekawaM. IshizakiT. BokuS. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.Science1999285542989589810.1126/science.285.5429.895 10436159
    [Google Scholar]
  39. CavaleraM. WangJ. FrangogiannisN.G. Obesity, metabolic dysfunction, and cardiac fibrosis: Pathophysiological pathways, molecular mechanisms, and therapeutic opportunities.Transl. Res.2014164432333510.1016/j.trsl.2014.05.001 24880146
    [Google Scholar]
  40. ChoiK. KimY.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes.Korean J. Intern. Med.201025211912910.3904/kjim.2010.25.2.119 20526383
    [Google Scholar]
  41. JainS. SinghR. PaliwalS. SharmaS. Targeting neuroinflammation as disease modifying approach to alzheimer’s disease: Potential and challenges.Mini Rev. Med. Chem.202323222097211610.2174/1389557523666230511122435 37170998
    [Google Scholar]
  42. TaburS. OztuzcuS. OguzE. Association of Rho/Rho-kinase gene polymorphisms and expressions with obesity-related metabolic syndrome.Eur. Rev. Med. Pharmacol. Sci.201519916801688 26004609
    [Google Scholar]
  43. SowersJ.R. Insulin resistance and hypertension.Am. J. Physiol. Heart Circ. Physiol.20042865H1597H160210.1152/ajpheart.00026.2004 15072967
    [Google Scholar]
  44. van DamE.M. GoversR. JamesD.E. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane.Mol. Endocrinol.20051941067107710.1210/me.2004‑0413 15650020
    [Google Scholar]
  45. FurukawaN. OngusahaP. JahngW.J. Role of Rho-kinase in regulation of insulin action and glucose homeostasis.Cell Metab.20052211912910.1016/j.cmet.2005.06.011 16098829
    [Google Scholar]
  46. ChadtA. Al-HasaniH. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease.Pflugers Arch.202047291273129810.1007/s00424‑020‑02417‑x 32591906
    [Google Scholar]
  47. SevillanoJ. Sánchez-AlonsoM.G. Pizarro-DelgadoJ. Ramos-ÁlvarezM.P. Role of receptor protein tyrosine phosphatases (RPTPs) in insulin signaling and secretion.Int. J. Mol. Sci.20212211581210.3390/ijms22115812 34071721
    [Google Scholar]
  48. HiroseA. TanikawaT. MoriH. OkadaY. TanakaY. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway.FEBS Lett.20105841616610.1016/j.febslet.2009.11.082 19944695
    [Google Scholar]
  49. KomersR. R ho kinase inhibition in diabetic kidney disease.Br. J. Clin. Pharmacol.201376455155910.1111/bcp.12196 23802580
    [Google Scholar]
  50. Strieder-BarbozaC. BakerN.A. FlesherC.G. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes.Sci. Rep.2019911974810.1038/s41598‑019‑56242‑z 31875018
    [Google Scholar]
  51. TangS Tao ZhangQ Tang HQin Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.Endocrine2016531107116
    [Google Scholar]
  52. KarbasforooshanH. KarimiG. The role of SIRT1 in diabetic retinopathy.Biomed. Pharmacother.2018979719019410.1016/j.biopha.2017.10.075 29091865
    [Google Scholar]
  53. KarbasforooshanH. KarimiG. The role of SIRT1 in diabetic cardiomyopathy.Biomed. Pharmacother.20179038639210.1016/j.biopha.2017.03.056 28380414
    [Google Scholar]
  54. BegumN. SanduO.A. ItoM. LohmannS.M. SmolenskiA. Active Rho kinase (ROK-α) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells.J. Biol. Chem.200227786214622210.1074/jbc.M110508200 11739394
    [Google Scholar]
  55. Espino De la Fuente-MuñozC. AriasC. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders.Rev. Neurosci.202132220321710.1515/revneuro‑2020‑0068 33550783
    [Google Scholar]
  56. KhalidM. AlkaabiJ. KhanM.A.B. AdemA. Insulin signal transduction perturbations in insulin resistance.Int. J. Mol. Sci.20212216859010.3390/ijms22168590 34445300
    [Google Scholar]
  57. KandaT. WakinoS. HommaK. Rho‐kinase as a molecular target for insulin resistance and hypertension.FASEB J.200620116917110.1096/fj.05‑4197fje 16267124
    [Google Scholar]
  58. KikuchiY. YamadaM. ImakiireT. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats.J. Endocrinol.2007192359560310.1677/JOE‑06‑0045 17332527
    [Google Scholar]
  59. LiuL. TanL. LaiJ. LiS. WangD.W. Enhanced Rho-kinase activity: Pathophysiological relevance in type 2 diabetes.Clin. Chim. Acta201646210711010.1016/j.cca.2016.09.003 27616626
    [Google Scholar]
  60. HofniA. Shehata MessihaB.A. MangouraS.A. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: A possible role of Rho kinase.Naunyn Schmiedebergs Arch. Pharmacol.2017390880181110.1007/s00210‑017‑1379‑y 28493050
    [Google Scholar]
  61. JainS. BishtA. VermaK. NegiS. PaliwalS. SharmaS. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer’s disease.Cell Biochem. Funct.2021402106117
    [Google Scholar]
  62. WeissM. BouchouchaS. AiadF. Imidazoline-like drugs improve insulin sensitivity through peripheral stimulation of adiponectin and AMPK pathways in a rat model of glucose intolerance.Am. J. Physiol. Endocrinol. Metab.20153092E95E10410.1152/ajpendo.00021.2015 26015433
    [Google Scholar]
  63. DiepD.T.V. HongK. KhunT. Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells.Sci. Rep.201881247710.1038/s41598‑018‑20821‑3 29410516
    [Google Scholar]
  64. ShiuchiT. IwaiM. LiH.S. Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice.Hypertension20044351003101010.1161/01.HYP.0000125142.41703.64 15037562
    [Google Scholar]
  65. ChuK. LeungP. Angiotensin II in type 2 diabetes mellitus.Curr. Protein Pept. Sci.2009101758410.2174/138920309787315176 19275674
    [Google Scholar]
  66. IslamM.Z. Van DaoC. MiyamotoA. ShiraishiM. Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice.Naunyn Schmiedebergs Arch. Pharmacol.2017390992993810.1007/s00210‑017‑1396‑x 28656320
    [Google Scholar]
  67. WakinoS. HayashiK. KandaT. Peroxisome proliferator-activated receptor gamma ligands inhibit Rho/Rho kinase pathway by inducing protein tyrosine phosphatase SHP-2.Circ. Res.2004955e45e5510.1161/01.RES.0000142313.68389.92 15308580
    [Google Scholar]
  68. TakaguriA. Elucidation of a new mechanism of onset of insulin resistance: Effects of statins and tumor necrosis factor-α on insulin signal transduction.Yakugaku Zasshi2018138111329133410.1248/yakushi.18‑00116 30381640
    [Google Scholar]
  69. Alves-LopesR. NevesK.B. MontezanoA.C. Internal pudental artery dysfunction in diabetes mellitus is mediated by NOX1-derived ROS-, Nrf2-, and Rho kinase–dependent mechanisms.Hypertension20166841056106410.1161/HYPERTENSIONAHA.116.07518 27528061
    [Google Scholar]
  70. ForresterS.J. BoozG.W. SigmundC.D. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology.Physiol. Rev.20189831627173810.1152/physrev.00038.2017 29873596
    [Google Scholar]
  71. HeL. HeT. FarrarS. JiL. LiuT. MaX. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species.Cell. Physiol. Biochem.201744253255310.1159/000485089 29145191
    [Google Scholar]
  72. LiH. PengW. JianW. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion.Cardiovasc. Diabetol.20121116510.1186/1475‑2840‑11‑65 22694757
    [Google Scholar]
  73. ManeaS.A. AntonescuM.L. FenyoI.M. RaicuM. SimionescuM. ManeaA. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes.Redox Biol.201816January33234310.1016/j.redox.2018.03.011 29587244
    [Google Scholar]
  74. SobreviaL. MannG.E. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia.Exp. Physiol.199782342345210.1113/expphysiol.1997.sp004038 9179565
    [Google Scholar]
  75. ZhuangR. WuJ. LinF. Fasudil preserves lung endothelial function and reduces pulmonary vascular remodeling in a rat model of end stage pulmonary hypertension with left heart disease.Int. J. Mol. Med.20184231341135210.3892/ijmm.2018.3728 29901088
    [Google Scholar]
  76. SansburyB.E. HillB.G. Regulation of obesity and insulin resistance by nitric oxide.Free Radic. Biol. Med.20147338339910.1016/j.freeradbiomed.2014.05.016 24878261
    [Google Scholar]
  77. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.27173 30263000
    [Google Scholar]
  78. JanusA. Szahidewicz-KrupskaE. MazurG. DoroszkoA. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders.Mediators Inflamm.2016201611010.1155/2016/3634948 27413253
    [Google Scholar]
  79. HigakiY. HirshmanM.F. FujiiN. GoodyearL.J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle.Diabetes200150224124710.2337/diabetes.50.2.241 11272132
    [Google Scholar]
  80. JeonS.M. Regulation and function of AMPK in physiology and diseases.Exp. Mol. Med.2016487e245e1310.1038/emm.2016.81 27416781
    [Google Scholar]
  81. RogackaD. AudzeyenkaI. RachubikP. Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1–AMPK crosstalk in podocytes: Impact on glucose uptake.Arch. Biochem. Biophys.2021709April10898510.1016/j.abb.2021.108985 34252390
    [Google Scholar]
  82. KangY.M. KimF. LeeW.J. Role of NO/VASP signaling pathway against obesity-related inflammation and insulin resistance.Diabetes Metab. J.2017412899510.4093/dmj.2017.41.2.89 28447436
    [Google Scholar]
  83. GheibiS. GhasemiA. Insulin secretion: The nitric oxide controversy.EXCLI J.20201912271245 33088259
    [Google Scholar]
  84. BrondaniL.A. AssmannT.S. DuarteG.C.K. GrossJ.L. CananiL.H. CrispimD. The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus.Arq. Bras. Endocrinol. Metabol201256421522510.1590/S0004‑27302012000400001 22790465
    [Google Scholar]
  85. JastrochM. Uncoupling protein 1 controls reactive oxygen species in brown adipose tissue.Proc. Natl. Acad. Sci. USA2017114307744774610.1073/pnas.1709064114 28710335
    [Google Scholar]
  86. MichurinaS. StafeevI. PodkuychenkoN. Decreased UCP-1 expression in beige adipocytes from adipose-derived stem cells of type 2 diabetes patients associates with mitochondrial ROS accumulation during obesity.Diabetes Res. Clin. Pract.202016910841010.1016/j.diabres.2020.108410 32882342
    [Google Scholar]
  87. MahgoubM.O. D’SouzaC. Al DarmakiR.S.M.H. BaniyasM.M.Y.H. AdeghateE. An update on the role of irisin in the regulation of endocrine and metabolic functions.Peptides2018104152310.1016/j.peptides.2018.03.018 29608940
    [Google Scholar]
  88. ZhouB. LuY. HajifathalianK. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants.Lancet2016387100271513153010.1016/S0140‑6736(16)00618‑8 27061677
    [Google Scholar]
  89. HaraY. WakinoS. TanabeY. Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch.Sci. Signal.20114157ra310.1126/scisignal.2001227 21266714
    [Google Scholar]
  90. HuangC. ZhouY. HuangH. Islet transplantation reverses podocyte injury in diabetic nephropathy or induced by high glucose via inhibiting RhoA/ROCK/NF-κB signaling pathway.J. Diabetes Res.2021202111110.1155/2021/9570405
    [Google Scholar]
  91. MatobaK. TakedaY. NagaiY. Rock inhibition may stop diabetic kidney disease.Japan Med. Assoc. J.20203315416310.31662/jmaj.2020‑0014 33150249
    [Google Scholar]
  92. PackardC.J. BorenJ. TaskinenM.R. Causes and consequences of hypertriglyceridemia.Front. Endocrinol.202011May25210.3389/fendo.2020.00252 32477261
    [Google Scholar]
  93. ZhouQ. LiaoJ. Rho kinase: An important mediator of atherosclerosis and vascular disease.Curr. Pharm. Des.200915273108311510.2174/138161209789057986 19754385
    [Google Scholar]
  94. XuS. Rock the rock of atherosclerosis.J. Vasc. Med. Surg.20131113
    [Google Scholar]
  95. MaZ. ZhangJ. DuR. JiE. ChuL. Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats.Biol. Pharm. Bull.201134111684168910.1248/bpb.34.1684 22040880
    [Google Scholar]
  96. GuoR. LiuB. ZhouS. ZhangB. XuY. The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress.BioMed Res. Int.201320131910.1155/2013/430791 23762845
    [Google Scholar]
  97. NodaK. NakajimaS. GodoS. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.PLoS One2014911e11044610.1371/journal.pone.0110446 25365359
    [Google Scholar]
  98. HuangH. LeeS.H. Sousa-LimaI. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition.J. Clin. Invest.2018128125335535010.1172/JCI63562 30226474
    [Google Scholar]
  99. LoirandG. PacaudP. The role of Rho protein signaling in hypertension.Nat. Rev. Cardiol.201071163764710.1038/nrcardio.2010.136 20808285
    [Google Scholar]
  100. SatohK. FukumotoY. ShimokawaH. Rho-kinase: Important new therapeutic target in cardiovascular diseases.Am. J. Physiol. Heart Circ. Physiol.20113012H287H29610.1152/ajpheart.00327.2011 21622831
    [Google Scholar]
  101. SladojevicN. OhG.T. KimH.H. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets.Cardiovasc. Res.2017113111307131710.1093/cvr/cvx071 28430966
    [Google Scholar]
  102. TakedaY. MatobaK. KawanamiD. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells.Int. J. Mol. Sci.2019206133110.3390/ijms20061331 30884801
    [Google Scholar]
  103. KajikawaM. NomaK. MaruhashiT. Rho-associated kinase activity is a predictor of cardiovascular outcomes.Hypertension201463485686410.1161/HYPERTENSIONAHA.113.02296 24379190
    [Google Scholar]
  104. CaiA. ZhouY. LiL. Rho‐GTPase and atherosclerosis: Pleiotropic effects of statins.J. Am. Heart Assoc.201547e00211310.1161/JAHA.115.002113 26124206
    [Google Scholar]
  105. LiuY. HuangC. CengC. ZhanH. ZhengD. HanW. Metformin enhances nitric oxide production and diminishes Rho kinase activity in rats with hyperlipidemia.Lipids Health Dis.201413111510.1186/1476‑511X‑13‑115 25028180
    [Google Scholar]
  106. RikitakeY. LiaoJ.K. Rho GTPases, statins, and nitric oxide.Circ. Res.200597121232123510.1161/01.RES.0000196564.18314.23 16339495
    [Google Scholar]
  107. HenningerC. FritzG. Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers.Cell Death Dis.201781e256410.1038/cddis.2016.418 28102848
    [Google Scholar]
  108. LiJ. ChenH. RenJ. Effects of statin on circulating microRNAome and predicted function regulatory network in patients with unstable angina.BMC Med. Genomics2015811210.1186/s12920‑015‑0082‑4
    [Google Scholar]
  109. AimanU. NajmiA. KhanR.A. Statin induced diabetes and its clinical implications.J. Pharmacol. Pharmacother.20145318118510.4103/0976‑500X.136097 25210397
    [Google Scholar]
  110. GandaO.P. Statin-induced diabetes: Incidence, mechanisms, and implications.F1000 Res.2016517 27408693
    [Google Scholar]
  111. CrandallJ.P. MatherK. RajpathakS.N. Statin use and risk of developing diabetes: Results from the diabetes prevention program.BMJ Open Diabetes Res. Care201751e00043810.1136/bmjdrc‑2017‑000438 29081977
    [Google Scholar]
  112. RayK. Statin diabetogenicity: Guidance for clinicians.Cardiovasc. Diabetol.201312Suppl. 1S310.1186/1475‑2840‑12‑S1‑S3 23819776
    [Google Scholar]
  113. SattarN.A. GinsbergH. RayK. The use of statins in people at risk of developing diabetes mellitus: Evidence and guidance for clinical practice.Atheroscler. Suppl.201415111510.1016/j.atherosclerosissup.2014.04.001 24840509
    [Google Scholar]
  114. KhalilS. KhayyatS. Al-KhadraY. AlraiesM.C. Should all diabetic patients take statin therapy regardless of serum cholesterol level?Expert Rev. Cardiovasc. Ther.201917423723910.1080/14779072.2019.1590198 30856356
    [Google Scholar]
  115. WardN.C. WattsG.F. EckelR.H. Statin toxicity.Circ. Res.2019124232835010.1161/CIRCRESAHA.118.312782 30653440
    [Google Scholar]
  116. MingX.F. ViswambharanH. BarandierC. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.Mol. Cell. Biol.200222248467847710.1128/MCB.22.24.8467‑8477.2002 12446767
    [Google Scholar]
  117. GuilluyC. BrégeonJ. ToumaniantzG. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure.Nat. Med.201016218319010.1038/nm.2079 20098430
    [Google Scholar]
  118. LiQ. YounJ.Y. CaiH. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension.J. Hypertens.20153361128113610.1097/HJH.0000000000000587 25882860
    [Google Scholar]
  119. ChenW.H. ChenC.H. HsuM.C. ChangR.W. WangC.H. LeeT.S. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: Interlocking biology between eNOS activity and L-arginine metabolism.Biomed. Pharmacother.202417111619210.1016/j.biopha.2024.116192 38262153
    [Google Scholar]
  120. NunesK.P. RigsbyC.S. WebbR.C. RhoA/Rho-kinase and vascular diseases: What is the link?Cell. Mol. Life Sci.201067223823383610.1007/s00018‑010‑0460‑1 20668910
    [Google Scholar]
  121. HeW.Q. QiaoY.N. ZhangC.H. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension.Am. J. Physiol. Heart Circ. Physiol.20113012H584H59110.1152/ajpheart.01212.2010 21572007
    [Google Scholar]
  122. CantoniS. CavalliS. PastoreF. Pharmacological characterization of a highly selective Rho kinase (ROCK) inhibitor and its therapeutic effects in experimental pulmonary hypertension.Eur. J. Pharmacol.2019850February12613410.1016/j.ejphar.2019.02.009 30753868
    [Google Scholar]
  123. FazakasC. NagarajC. ZabiniD. Rho-kinase inhibition ameliorates dasatinib-induced endothelial dysfunction and pulmonary hypertension.Front. Physiol.20189MAY53710.3389/fphys.2018.00537 29867576
    [Google Scholar]
  124. KlinkeA. BerghausenE. FriedrichsK. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase.JCI Insight2018311e9753010.1172/jci.insight.97530 29875311
    [Google Scholar]
  125. KolluruG.K. MajumderS. ChatterjeeS. Rho-kinase as a therapeutic target in vascular diseases: Striking nitric oxide signaling.Nitric Oxide201443455410.1016/j.niox.2014.09.002 25196952
    [Google Scholar]
  126. ZhouN. LeeJ.J. StollS. MaB. CostaK.D. QiuH. Rho kinase regulates aortic vascular smooth muscle cell stiffness via Actin/SRF/Myocardin in hypertension.Cell. Physiol. Biochem.201744270171510.1159/000485284 29169155
    [Google Scholar]
  127. YanY. XiangC. YangZ. MiaoD. ZhangD. Rho kinase inhibition by fasudil attenuates adriamycin-induced chronic heart injury.Cardiovasc. Toxicol.202020435136010.1007/s12012‑019‑09561‑6 31894538
    [Google Scholar]
  128. SogaJ. NomaK. HataT. Rho-associated kinase activity, endothelial function, and cardiovascular risk factors.Arterioscler. Thromb. Vasc. Biol.201131102353235910.1161/ATVBAHA.111.227892 21737782
    [Google Scholar]
  129. SenaC.M. LeandroA. AzulL. SeiçaR. PerryG. Vascular oxidative stress: Impact and therapeutic approaches.Front. Physiol.20189December166810.3389/fphys.2018.01668 30564132
    [Google Scholar]
  130. RanQ. LiA. TanY. ZhangY. ZhangY. ChenH. Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism.Pharmacol. Res.202420610727610.1016/j.phrs.2024.107276 38944220
    [Google Scholar]
  131. EtsH.K. SeowC.Y. MorelandR.S. Sustained contraction in vascular smooth muscle by activation of l-type Ca2+ channels does not involve Ca2+ sensitization or caldesmon.Front. Pharmacol.20167DEC51610.3389/fphar.2016.00516 28082901
    [Google Scholar]
  132. Álvarez-SantosM.D. Álvarez-GonzálezM. Estrada-SotoS. Bazán-PerkinsB. Regulation of myosin light-chain phosphatase activity to generate airway smooth muscle hypercontractility.Front. Physiol.202011June70110.3389/fphys.2020.00701 32676037
    [Google Scholar]
  133. TakemotoM. SunJ. HirokiJ. ShimokawaH. LiaoJ.K. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase.Circulation20021061576210.1161/01.CIR.0000020682.73694.AB 12093770
    [Google Scholar]
  134. ShamardlH.A.A. NageebS. SadikS.A. HelalA. ShabanaM.F. Fasudil, a Rho kinase inhibitor, attenuates cardiovascular changes in an experimental rat model of metabolic syndrome via modulation of PCSK9 and BNP.Fayoum Univ Med J20241329911010.21608/fumj.2024.259818.1309
    [Google Scholar]
  135. WolfrumS. DendorferA. RikitakeY. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection.Arterioscler. Thromb. Vasc. Biol.200424101842184710.1161/01.ATV.0000142813.33538.82 15319269
    [Google Scholar]
  136. MingX.F. BarandierC. ViswambharanH. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunction.Circulation2004110243708371410.1161/01.CIR.0000142867.26182.32 15569838
    [Google Scholar]
  137. SawadaN. SalomoneS. KimH.H. KwiatkowskiD.J. LiaoJ.K. Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1.Circ. Res.2008103436036810.1161/CIRCRESAHA.108.178897 18599867
    [Google Scholar]
  138. BrozovichF.V. NicholsonC.J. DegenC.V. GaoY.Z. AggarwalM. MorganK.G. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders.Pharmacol. Rev.201668247653210.1124/pr.115.010652 27037223
    [Google Scholar]
  139. LyleM.A. DavisJ.P. BrozovichF.V. Regulation of pulmonary vascular smooth muscle contractility in pulmonary arterial hypertension: Implications for therapy.Front. Physiol.20178AUG61410.3389/fphys.2017.00614 28878690
    [Google Scholar]
  140. ChenK. HeH. XieY. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis.Sci. Rep.2015511190910.1038/srep11909 26148871
    [Google Scholar]
  141. LöhnM. PlettenburgO. KanntA. End-organ protection in hypertension by the novel and selective Rho-kinase inhibitor, SAR407899.World J. Cardiol.201571314210.4330/wjc.v7.i1.31 25632317
    [Google Scholar]
  142. CaoY. FangY. MuJ. LiuX. High salt medium activates RhoA/ROCK and downregulates eNOS expression via the upregulation of ADMA.Mol. Med. Rep.201614160661210.3892/mmr.2016.5241 27175806
    [Google Scholar]
  143. LeeM-Y. TsaiK-B. HsuJ-H. ShinS-J. WuJ-R. YehJ-L. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways.Sci. Rep.2016613178810.1038/srep31788
    [Google Scholar]
  144. SauzeauV. Le JeuneH. Cario-ToumaniantzC. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle.J. Biol. Chem.200027528217222172910.1074/jbc.M000753200 10783386
    [Google Scholar]
  145. PrysyazhnaO. EatonP. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system.Front. Pharmacol.20156JUN13910.3389/fphar.2015.00139 26236235
    [Google Scholar]
  146. TamásP. SoltiZ. BudayL. Membrane-targeting is critical for the phosphorylation of Vav2 by activated EGF receptor.Cell. Signal.200113747548110.1016/S0898‑6568(01)00172‑3 11516622
    [Google Scholar]
  147. SawadaN. ItohH. MiyashitaK. Cyclic GMP kinase and RhoA Ser188 phosphorylation integrate pro- and antifibrotic signals in blood vessels.Mol. Cell. Biol.200929226018603210.1128/MCB.00225‑09 19737918
    [Google Scholar]
  148. FabbianoS. Menacho-MárquezM. SevillaM.A. Genetic dissection of the vav2-rac1 signaling axis in vascular smooth muscle cells.Mol. Cell. Biol.201434244404441910.1128/MCB.01066‑14 25288640
    [Google Scholar]
  149. NguyenH. ChiassonV.L. ChatterjeeP. KoprivaS.E. YoungK.J. MitchellB.M. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension.Cardiovasc. Res.201397469670410.1093/cvr/cvs422 23263331
    [Google Scholar]
  150. SawmaT. ShaitoA. NajmN. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function.Atherosclerosis2022358122810.1016/j.atherosclerosis.2022.08.012 36049290
    [Google Scholar]
  151. YanS. RestaT.C. JerniganN.L. Vasoconstrictor mechanisms in chronic hypoxia‐ induced pulmonary hypertension: Role of oxidant signaling.Antioxidants202091099910.3390/antiox9100999 33076504
    [Google Scholar]
  152. ShiJ. WeiL. Rho kinases in cardiovascular physiology and pathophysiology: The effect of fasudil.J. Cardiovasc. Pharmacol.201362434135410.1097/FJC.0b013e3182a3718f 23921309
    [Google Scholar]
  153. HartmannS. RidleyA.J. LutzS. The function of rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease.Front. Pharmacol.20156NOV27610.3389/fphar.2015.00276 26635606
    [Google Scholar]
  154. BehuliakM. BenczeM. VaněčkováI. KunešJ. ZichaJ. Basal and activated calcium sensitization mediated by rhoa/rho kinase pathway in rats with genetic and salt hypertension.BioMed Res. Int.2017201711310.1155/2017/8029728 28197417
    [Google Scholar]
  155. BarbosaG.S. CostaR.M. AwataW.M.C. Suppressed vascular Rho-kinase activation is a protective cardiovascular mechanism in obese female mice.Biosci. Rep.2023437BSR2023067210.1042/BSR20230672 37342890
    [Google Scholar]
  156. BudzynK. MarleyP.D. SobeyC.G. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease.Trends Pharmacol. Sci.20062729710410.1016/j.tips.2005.12.002 16376997
    [Google Scholar]
  157. LeeS.H. HuangH. ChoiK. ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance.Am. J. Physiol. Endocrinol. Metab.20143063E332E34310.1152/ajpendo.00619.2013 24326423
    [Google Scholar]
  158. MasumotoA. HirookaY. ShimokawaH. HironagaK. SetoguchiS. TakeshitaA. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans.Hypertension20013861307131010.1161/hy1201.096541 11751708
    [Google Scholar]
  159. LiuB. ChangR. DuanZ. The level of ROCK1 and ROCK2 in patients with pulmonary hypertension in plateau area.Sci. Rep.201881935610.1038/s41598‑018‑27321‑4 29921927
    [Google Scholar]
  160. ZhangX ZhangX WangS LuoJ ZhaoZ ZhengC Effects of fasudil on patients with pulmonary hypertension associated with left ventricular heart failure with preserved ejection fraction: A prospective intervention study.Can Respir J2018201810.1155/2018/3148259
    [Google Scholar]
  161. RikitakeY. LiaoJ.K. ROCKs as therapeutic targets in cardiovascular diseases.Expert Rev. Cardiovasc. Ther.20053344145110.1586/14779072.3.3.441 15889972
    [Google Scholar]
  162. ShimizuT. LiaoJ.K. Rho kinases and cardiac remodeling.Circ. J.20168071491149810.1253/circj.CJ‑16‑0433 27251065
    [Google Scholar]
  163. PhillipsH.M. PapoutsiT. SoenenH. Ybot-GonzalezP. HendersonD.J. ChaudhryB. Neural crest cell survival is dependent on Rho kinase and is required for development of the mid face in mouse embryos.PLoS One201275e3768510.1371/journal.pone.0037685 22629443
    [Google Scholar]
  164. ZhangY.M. BoJ. TaffetG.E. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis.FASEB J.200620791692510.1096/fj.05‑5129com 16675849
    [Google Scholar]
  165. LeeD.H. ShiJ. JeoungN.H. Targeted disruption of ROCK1 causes insulin resistance in vivo.J. Biol. Chem.200928418117761178010.1074/jbc.C900014200 19276091
    [Google Scholar]
  166. PengH. LiY. WangC. ZhangJ. ChenY. ChenW. ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy.Sci. Rep.20152016611010.1038/srep20304 26842599
    [Google Scholar]
  167. ThumkeoD. KeelJ. IshizakiT. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death.Mol. Cell. Biol.200323145043505510.1128/MCB.23.14.5043‑5055.2003 12832488
    [Google Scholar]
  168. WirthA. BenyóZ. LukasovaM. G12-G13–LARG–mediated signaling in vascular smooth muscle is required for salt-induced hypertension.Nat. Med.2008141646810.1038/nm1666 18084302
    [Google Scholar]
  169. NodaK. GodoS. SaitoH. TsutsuiM. ShimokawaH. Opposing roles of nitric oxide and rho-kinase in lipid metabolism in mice.Tohoku J. Exp. Med.2015235317118310.1620/tjem.235.171 25757506
    [Google Scholar]
  170. OkinD. MedzhitovR. The effect of sustained inflammation on hepatic mevalonate pathway results in hyperglycemia.Cell2016165234335610.1016/j.cell.2016.02.023 26997483
    [Google Scholar]
  171. ZhangQ. HuC. HuangJ. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease.Exp. Mol. Med.2019511011310.1038/s12276‑019‑0318‑z 31578315
    [Google Scholar]
  172. MaZ. LiuH. WangW. GuanS. YiJ. ChuL. Paeoniflorin suppresses lipid accumulation and alleviates insulin resistance by regulating the Rho kinase/IRS-1 pathway in palmitate-induced HepG2Cells.Biomed. Pharmacother.20179036136710.1016/j.biopha.2017.03.087 28380411
    [Google Scholar]
  173. SongP. ZhangM. WangS. XuJ. ChoiH.C. ZouM.H. Thromboxane A2 receptor activates a Rho-associated kinase/LKB1/PTEN pathway to attenuate endothelium insulin signaling.J. Biol. Chem.200928425171201712810.1074/jbc.M109.012583 19403525
    [Google Scholar]
  174. SordellaR. ClassonM. HuK.Q. Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development.Dev. Cell20022555356510.1016/S1534‑5807(02)00162‑4 12015964
    [Google Scholar]
  175. LinG. CraigG. ZhangL. Acute inhibition of Rho-kinase improves cardiac contractile function in streptozotocin-diabetic rats.Cardiovasc. Res.2007751515810.1016/j.cardiores.2007.03.009 17428455
    [Google Scholar]
  176. WingardC. FultonD. HusainS. TraishA. Altered penile vascular reactivity and erection in the Zucker obese-diabetic rat.J. Sex. Med.20074234836310.1111/j.1743‑6109.2007.00439.x 17367430
    [Google Scholar]
  177. StandaertM. BandyopadhyayG. GallowayL. OnoY. MukaiH. FareseR. Comparative effects of GTPgammaS and insulin on the activation of Rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. Relationship to glucose transport.J. Biol. Chem.1998273137470747710.1074/jbc.273.13.7470 9516446
    [Google Scholar]
  178. ChunK.H. ArakiK. JeeY. Regulation of glucose transport by ROCK1 differs from that of ROCK2 and is controlled by actin polymerization.Endocrinology201215341649166210.1210/en.2011‑1036 22355071
    [Google Scholar]
  179. EnginA.B. EnginA. Obesity and Lipotoxicity.Springer2017960
    [Google Scholar]
  180. HouT. GuoZ. GongM.C. Circadian variations of vasoconstriction and blood pressure in physiology and diabetes.Curr. Opin. Pharmacol.20215712513110.1016/j.coph.2021.02.001 33721615
    [Google Scholar]
  181. SilvaniA. Sleep disorders, nocturnal blood pressure, and cardiovascular risk: A translational perspective.Auton. Neurosci.2019218February314210.1016/j.autneu.2019.02.006 30890346
    [Google Scholar]
  182. SuW. XieZ. GuoZ. DuncanM.J. LutshumbaJ. GongM.C. Altered clock gene expression and vascular smooth muscle diurnal contractile variations in type 2 diabetic db/db mice.Am. J. Physiol. Heart Circ. Physiol.20123023H621H63310.1152/ajpheart.00825.2011 22140039
    [Google Scholar]
  183. SaitoT. The vascular clock system generates the intrinsic circadian rhythm of vascular contractility.J. Smooth Muscle Res.20155109510610.1540/jsmr.51.95 26935878
    [Google Scholar]
  184. NiheiT. TakahashiJ. TsuburayaR. Circadian variation of Rho-kinase activity in circulating leukocytes of patients with vasospastic angina.Circ. J.20147851183119010.1253/circj.CJ‑13‑1458 24670923
    [Google Scholar]
  185. XieZ. SuW. LiuS. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.J. Clin. Invest.2015125132433610.1172/JCI76881 25485682
    [Google Scholar]
  186. TangH. ZhuM. ZhaoG. Loss of CLOCK under high glucose upregulates ROCK1-mediated endothelial to mesenchymal transition and aggravates plaque vulnerability.Atherosclerosis2018275586710.1016/j.atherosclerosis.2018.05.046 29860109
    [Google Scholar]
  187. YangN. WilliamsJ. Pekovic-VaughanV. WangP. OlabiS. McConnellJ. Cellular mechano-environment regulates the mammary circadian clock.Nat. Commun.201620178 28134247
    [Google Scholar]
  188. LefrancC. Friederich-PerssonM. BraudL. MR (Mineralocorticoid Receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity.Hypertension201973245846810.1161/HYPERTENSIONAHA.118.11873 30624990
    [Google Scholar]
  189. Dunham-SnaryK.J. WuD. SykesE.A. Hypoxic pulmonary vasoconstriction.Chest2017151118119210.1016/j.chest.2016.09.001 27645688
    [Google Scholar]
  190. ChenX. TanX.R. LiS.J. ZhangX.X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease.Life Sci.201923513911682910.1016/j.lfs.2019.116829 31484042
    [Google Scholar]
  191. WangW. WangY. LongJ. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells.Cell Metab.201215218620010.1016/j.cmet.2012.01.009 22326220
    [Google Scholar]
  192. LiuM.Y. JinJ. LiS.L. Mitochondrial fission of smooth muscle cells is involved in artery constriction.Hypertension20166851245125410.1161/HYPERTENSIONAHA.116.07974 27572148
    [Google Scholar]
  193. ShenY.L. ShiY.Z. ChenG.G. TNF-α induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury.Int. J. Mol. Med.20184142317232710.3892/ijmm.2018.3385 29336470
    [Google Scholar]
  194. MoskalN. RiccioV. BashkurovM. ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway.Nat. Commun.20201118810.1038/s41467‑019‑13781‑3 31900402
    [Google Scholar]
  195. MahavadiS. SriwaiW. ManionO. GriderJ.R. MurthyK.S. Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle.PLoS One2017127e0178574
    [Google Scholar]
  196. ZhangY. JiaL. JiW. LiH. MicroRNA-141 inhibits the proliferation of penile cavernous smooth muscle cells associated with down-regulation of the Rhoa/Rho kinase signaling pathway.Cell. Physiol. Biochem.201848134836010.1159/000491741 30016773
    [Google Scholar]
  197. ChenH.Y. TienW. ChambersS.D. DabiriD. KassabG.S. Search for an optimal design of a bioprosthetic venous valve: In silico and in vitro studies.Eur. J. Vasc. Endovasc. Surg.201958111211910.1016/j.ejvs.2018.12.008 31133446
    [Google Scholar]
  198. GuoJ. YangC. LinY. Enhanced peripheral blood miR-324-5p is associated with the risk of metabolic syndrome by suppressing ROCK1.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865815872710.1016/j.bbalip.2020.158727 32353552
    [Google Scholar]
  199. GasteboisC. ChanonS. RomeS. Transition from physical activity to inactivity increases skeletal muscle miR-148b content and triggers insulin resistance.Physiol. Rep.2016417e1290210.14814/phy2.12902 27597765
    [Google Scholar]
  200. WuJ. LiuJ. DingY. MiR-455-3p suppresses renal fibrosis through repression of ROCK2 expression in diabetic nephropathy.Biochem. Biophys. Res. Commun.2018503297798310.1016/j.bbrc.2018.06.105 29932921
    [Google Scholar]
  201. WuN. LiW. ShuW. LvY. JiaD. Inhibition of Rho-kinase by fasudil restores the cardioprotection of ischemic postconditioninng in hypercholesterolemic rat heart.Mol. Med. Rep.20141052517252410.3892/mmr.2014.2566 25231456
    [Google Scholar]
  202. LiuF. ZhangS. XuR. GaoS. YinJ. Melatonin attenuates endothelial-to-mesenchymal transition of glomerular endothelial cells via regulating miR-497/ROCK in diabetic nephropathy.Kidney Blood Press. Res.20184351425143610.1159/000493380 30212830
    [Google Scholar]
  203. PujarM.K. VastradB. VastradC. Integrative analyses of genes associated with subcutaneous insulin resistance.Biomolecules2019923710.3390/biom9020037 30678306
    [Google Scholar]
/content/journals/cei/10.2174/0115734080332355241007060211
Loading
/content/journals/cei/10.2174/0115734080332355241007060211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test