Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4080
  • E-ISSN:

Abstract

Background

Alzheimer’s disease (AD), a progressive neurodegenerative disease for which there is no effective cure is among the leading causes of death worldwide.

Objectives

To investigate the potential anti-AD activity of berberine (BBR).

Methods

assessment included molecular docking and ADMET prediction. BBR’s inhibitory activity of the target selected from docking results was assessed colorimetric inhibitor screening assay. BBR’s LC in adult zebrafish was determined an Acute Toxicity Study. ZnCl concentration for AD induction was determined toxicity study and T-maze test. Finally, zebrafish were treated with ZnCl alone or simultaneously with either BBR or donepezil and assessed the inhibitory avoidance task, followed by ELISA of AD-related biomarker levels in brain tissue.

Results

The assessment showed BBR’s desirable drug properties and binding affinity on selected AD-related targets, which was the greatest docking score with AChE. The IC on AChE was 3.45 μM. The LC in adult zebrafish was calculated at 366 ppm. In the T-maze test, ZnCl at 2.5 ppm caused the greatest cognitive impairment accompanied by moderate freezing. In the inhibitory avoidance test, fish treated with either 100 ppm BBR or 2.5 ppm donepezil had significantly better performance than ZnCl-treated fish. ZnCl-treated zebrafish brain tissue had the highest Aβ levels and AChE activity of all groups, but these were significantly lower in donepezil- and BBR-treated fish. ZnCl- and donepezil-treated fish had similar TNF-α levels, whereas BBR treatment significantly lowered them close to those of untreated fish.

Conclusion

BBR showed anti-amyloidogenic, anti-AChE, and anti-inflammatory effects, which support its potential use in AD therapy.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080306283240719110244
2024-10-01
2024-11-16
Loading full text...

Full text loading...

References

  1. WHOThe top 10 causes of death.2020Available From: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. WHODementia.2023Available From: https://www.who.int/news-room/fact-sheets/detail/dementia
  3. Alzheimer’s Disease InternationalWorld Alzheimer Report 2015.2015Available From: https://www.alz.co.uk/research/world-report-2015
  4. NIAHow Is Alzheimer’s Disease Treated?2023Available From: https://www.nia.nih.gov/health/how-alzheimers-disease-treated
  5. Sanabria-CastroA. Alvarado-EcheverríaI. Monge-BonillaC. Molecular pathogenesis of Alzheimer’s disease: An update.Ann. Neurosci.2017241465410.1159/000464422 28588356
    [Google Scholar]
  6. PariharM.S. HemnaniT. Alzheimer’s disease pathogenesis and therapeutic interventions.J. Clin. Neurosci.200411545646710.1016/j.jocn.2003.12.007 15177383
    [Google Scholar]
  7. WollenK.A. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners.Altern. Med. Rev.2010153223244 21155625
    [Google Scholar]
  8. CiceroA.F.G. BaggioniA. Berberine and its role in chronic disease.Advances in Experimental Medicine and Biology.ChamSpringer International Publishing2016274510.1007/978‑3‑319‑41334‑1_2
    [Google Scholar]
  9. NeagM.A. MocanA. EcheverríaJ. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955755710.3389/fphar.2018.00557 30186157
    [Google Scholar]
  10. VuddandaP.R. ChakrabortyS. SinghS. Berberine: A potential phytochemical with multispectrum therapeutic activities.Expert Opin. Investig. Drugs201019101297130710.1517/13543784.2010.517745 20836620
    [Google Scholar]
  11. TillhonM. Guamán OrtizL.M. LombardiP. ScovassiA.I. Berberine: New perspectives for old remedies.Biochem. Pharmacol.201284101260126710.1016/j.bcp.2012.07.018 22842630
    [Google Scholar]
  12. DurairajanS.S.K. LiuL.F. LuJ.H. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model.Neurobiol. Aging201233122903291910.1016/j.neurobiolaging.2012.02.016 22459600
    [Google Scholar]
  13. ChenY. ChenY. LiangY. ChenH. JiX. HuangM. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance.Biomed. Pharmacother.202012110967010.1016/j.biopha.2019.109670 31810131
    [Google Scholar]
  14. National Center for Biotechnology InformationBerberine.2016Availalbe From: https://pubchem.ncbi.nlm.nih.gov/compound/Berberine
  15. DallakyanS OlsonA Small-molecule library screening by docking with PyRx.Methods Mol Biol201512632435010.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  16. TrottO OlsonAJ AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J Comput Chem20103124556110.1002/jcc.21334
    [Google Scholar]
  17. WangR. LuY. WangS. Comparative evaluation of 11 scoring functions for molecular docking.J. Med. Chem.200346122287230310.1021/jm0203783 12773034
    [Google Scholar]
  18. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  19. OECDTest No 203: Fish, acute toxicity test.2019Available From: https://read.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en#page1
  20. AvdeshA. ChenM. Martin-IversonM.T. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction.J. Vis. Exp.201269e419610.3791/4196 23183629
    [Google Scholar]
  21. Ngoc HieuB.T. Ngoc AnhN.T. AudiraG. Development of a modified three-day T-maze protocol for evaluating learning and memory capacity of adult zebrafish.Int. J. Mol. Sci.2020214146410.3390/ijms21041464 32098080
    [Google Scholar]
  22. AudiraG. LeeJ.S. SiregarP. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches.Environ. Pollut.202127811690711690710.1016/j.envpol.2021.116907 33744786
    [Google Scholar]
  23. BlankM. GuerimL.D. CordeiroR.F. ViannaM.R.M. A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory.Neurobiol. Learn. Mem.200992452953410.1016/j.nlm.2009.07.001 19591953
    [Google Scholar]
  24. WangK. FengX. ChaiL. CaoS. QiuF. The metabolism of berberine and its contribution to the pharmacological effects.Drug Metab. Rev.201749213915710.1080/03602532.2017.1306544 28290706
    [Google Scholar]
  25. FengR. ShouJ.W. ZhaoZ.X. Transforming berberine into its intestine-absorbable form by the gut microbiota.Sci. Rep.2015511215510.1038/srep12155 26174047
    [Google Scholar]
  26. WiesnerJ. KřížZ. KučaK. JunD. KočaJ. Acetylcholinesterases – the structural similarities and differences.J. Enzyme Inhib. Med. Chem.200722441742410.1080/14756360701421294 17847707
    [Google Scholar]
  27. BranduardiD. GervasioF.L. CavalliA. RecanatiniM. ParrinelloM. The role of the peripheral anionic site and cation-π interactions in the ligand penetration of the human AChE gorge.J. Am. Chem. Soc.2005127259147915510.1021/ja0512780 15969593
    [Google Scholar]
  28. ZhouY. WangS. ZhangY. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.J. Phys. Chem. B2010114268817882510.1021/jp104258d 20550161
    [Google Scholar]
  29. TaylorP. RadicZ. HoseaN.A. CampS. MarchotP. BermanH.A. Structural bases for the specificity of cholinesterase catalysis and inhibition.Toxicol. Lett.199582-8345345810.1016/0378‑4274(95)03575‑3 8597093
    [Google Scholar]
  30. HeM.M. SmithA.S. OslobJ.D. Small-molecule inhibition of TNF-α.Science200531057501022102510.1126/science.1116304 16284179
    [Google Scholar]
  31. DuX. LiY. XiaY.L. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.201617214410.3390/ijms17020144 26821017
    [Google Scholar]
  32. ColangeloC. ShichkovaP. KellerD. MarkramH. RamaswamyS. Cellular, synaptic and network effects of acetylcholine in the neocortex.Front. Neural Circuits2019132410.3389/fncir.2019.00024 31031601
    [Google Scholar]
  33. KandimallaR. ReddyP.H. Therapeutics of neurotransmitters in Alzheimer’s disease.J. Alzheimers Dis.20175741049106910.3233/JAD‑161118 28211810
    [Google Scholar]
  34. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  35. CarvajalF.J. InestrosaN.C. Interactions of AChE with A? Aggregates in Alzheimer?s Brain: Therapeutic relevance of IDN 5706.Front. Mol. Neurosci.201141910.3389/fnmol.2011.00019 21949501
    [Google Scholar]
  36. CavalliA. BottegoniG. RacoC. De VivoM. RecanatiniM. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase.J. Med. Chem.200447163991399910.1021/jm040787u 15267237
    [Google Scholar]
  37. HonorioP. SainimnuanS. HannongbuaS. SaparpakornP. Binding interaction of protoberberine alkaloids against acetylcholinesterase (AChE) using molecular dynamics simulations and QM/MM calculations.Chem. Biol. Interact.202134410952310952310.1016/j.cbi.2021.109523 34033838
    [Google Scholar]
  38. BuiJ.M. HenchmanR.H. McCammonJ.A. The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge.Biophys. J.20038542267227210.1016/S0006‑3495(03)74651‑7 14507691
    [Google Scholar]
  39. Campos-PeaV AntonioM. Alzheimer disease: The role of Aβ in the glutamatergic system.Neurochemistry.London: InTechOpen201410.5772/57367
    [Google Scholar]
  40. LiuJ. ChangL. SongY. LiH. WuY. The role of NMDA receptors in Alzheimer’s disease.Front. Neurosci.2019134310.3389/fnins.2019.00043 30800052
    [Google Scholar]
  41. GeY. WangY.T. GluN2B-containing NMDARs in the mammalian brain: Pharmacology, physiology, and pathology.Front. Mol. Neurosci.202316119032410.3389/fnmol.2023.1190324 37324591
    [Google Scholar]
  42. GallagherM.J. HuangH. PritchettD.B. LynchD.R. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor.J. Biol. Chem.1996271169603961110.1074/jbc.271.16.9603 8621635
    [Google Scholar]
  43. StroebelD. BuhlD.L. KnafelsJ.D. A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists.Mol. Pharmacol.201689554155110.1124/mol.115.103036 26912815
    [Google Scholar]
  44. WaqarM. BatoolS. In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer’s disease.J. Venom. Anim. Toxins Incl. Trop. Dis.20172314210.1186/s40409‑017‑0132‑9 28943883
    [Google Scholar]
  45. MonaghanD.T. JaneD.E. Pharmacology of NMDA Receptors. Biology of the NMDA Receptor.Boca Raton, FLCRC Press/Taylor & Francis2009
    [Google Scholar]
  46. KarakasE. SimorowskiN. FurukawaH. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors.Nature2011475735524925310.1038/nature10180 21677647
    [Google Scholar]
  47. NgF.M. GeballeM.T. SnyderJ.P. TraynelisS.F. LowC.M. Structural insights into phenylethanolamines high-affinity binding site in NR2B from binding and molecular modeling studies.Mol. Brain2008111610.1186/1756‑6606‑1‑16 19017396
    [Google Scholar]
  48. SanacoraG. SmithM.A. PathakS. Lanicemine: A low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects.Mol. Psychiatry201419997898510.1038/mp.2013.130 24126931
    [Google Scholar]
  49. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  50. ChangR. YeeK.L. SumbriaR.K. Tumor necrosis factor α Inhibition for Alzheimer’s Disease.J. Cent. Nerv. Syst. Dis.2017910.1177/1179573517709278 28579870
    [Google Scholar]
  51. DecourtB. LahiriD.K. SabbaghM.N. Targeting tumor necrosis factor alpha for Alzheimer’s disease.Curr. Alzheimer Res.201714441242510.2174/1567205013666160930110551 27697064
    [Google Scholar]
  52. SaddalaM.S. HuangH. Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches.J. Transl. Med.201917121510.1186/s12967‑019‑1965‑5 31266509
    [Google Scholar]
  53. GerrietsV. GoyalA. KhaddourK. Tumor necrosis factor inhibitors.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  54. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm0492002 15857122
    [Google Scholar]
  55. SchneiderG. Prediction of drug-like properties.Madame Curie Bioscience Database.200013
    [Google Scholar]
  56. PollastriM.P. Overview on the rule of five.Curr. Protocols Pharmacol.20104911210.1002/0471141755.ph0912s49 22294375
    [Google Scholar]
  57. AiX. YuP. PengL. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases.Front. Pharmacol.20211276265410.3389/fphar.2021.762654 35370628
    [Google Scholar]
  58. TanX.S. MaJ.Y. FengR. Tissue distribution of berberine and its metabolites after oral administration in rats.PLoS One2013810e7796910.1371/journal.pone.0077969 24205048
    [Google Scholar]
  59. PanG. WangG.J. LiuX.D. FawcettJ.P. XieY.Y. The involvement of P-glycoprotein in berberine absorption.Pharmacol. Toxicol.200291419319710.1034/j.1600‑0773.2002.t01‑1‑910403.x 12530470
    [Google Scholar]
  60. KwonM. LimD.Y. LeeC.H. JeonJ.H. ChoiM.K. SongI.S. Enhanced intestinal absorption and pharmacokinetic modulation of berberine and its metabolites through the inhibition of P-Glycoprotein and intestinal metabolism in rats using a berberine mixed micelle formulation.Pharmaceutics202012988210.3390/pharmaceutics12090882 32957491
    [Google Scholar]
  61. WangL. ShengW. TanZ. Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124910915110915110.1016/j.cbpc.2021.109151 34343700
    [Google Scholar]
  62. WangX. WangR. XingD. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract.Life Sci.200577243058306710.1016/j.lfs.2005.02.033 15996686
    [Google Scholar]
  63. KelderJ. GrootenhuisP.D.J. BayadaD.M. DelbressineL.P.C. PloemenJ.P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs.Pharm. Res.199916101514151910.1023/A:1015040217741 10554091
    [Google Scholar]
  64. NorinderU. HaeberleinM. Computational approaches to the prediction of the blood–brain distribution.Adv. Drug Deliv. Rev.200254329131310.1016/S0169‑409X(02)00005‑4 11922949
    [Google Scholar]
  65. McDonaldM.G. TianD.D. ThummelK.E. PaineM.F. RettieA.E. Modulation of major human liver microsomal cytochromes P450 by component alkaloids of goldenseal: Time-dependent inhibition and allosteric effects.Drug Metab. Dispos.202048101018102710.1124/dmd.120.091041 32591416
    [Google Scholar]
  66. GuoY. ChenY. TanZ. KlaassenC.D. ZhouH. Repeated administration of berberine inhibits cytochromes P450 in humans.Eur. J. Clin. Pharmacol.201268221321710.1007/s00228‑011‑1108‑2 21870106
    [Google Scholar]
  67. SakyaS. KarkiK. Donepezil, rivastigmine and galantamine: Cholinesterase inhibitors for alzheimer’s disease.Modern Drug Synthesis.Hoboken, New JerseyJohn Wiley & Sons, Inc.201024927410.1002/9780470768594.ch17
    [Google Scholar]
  68. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑6 24944370
    [Google Scholar]
  69. BrenkR. SchipaniA. JamesD. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases.ChemMedChem20083343544410.1002/cmdc.200700139 18064617
    [Google Scholar]
  70. ErtlP. SchuffenhauerA. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.J. Cheminform.200911810.1186/1758‑2946‑1‑8 20298526
    [Google Scholar]
  71. IngkaninanK. PhengpaP. YuenyongsawadS. KhoranaN. Acetylcholinesterase inhibitors from Stephania venosa tuber.J. Pharm. Pharmacol.201058569570010.1211/jpp.58.5.0015 16640839
    [Google Scholar]
  72. JungH.A. MinB.S. YokozawaT. LeeJ.H. KimY.S. ChoiJ.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids.Biol. Pharm. Bull.20093281433143810.1248/bpb.32.1433 19652386
    [Google Scholar]
  73. XiangJ. YuC. YangF. YangL. DingH. Conformation-activity studies on the interaction of berberine with acetylcholinesterase: Physical chemistry approach.Prog. Nat. Sci.200919121721172510.1016/j.pnsc.2009.07.010
    [Google Scholar]
  74. KimD.K. LeeK.T. BaekN.I. Acetylcholinesterase inhibitors from the aerial parts ofCorydalis speciosa.Arch. Pharm. Res.200427111127113110.1007/BF02975117 15595415
    [Google Scholar]
  75. ChoK.M. YooI.D. KimW.G. 8-hydroxydihydrochelerythrine and 8-hydroxydihydrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L.Biol. Pharm. Bull.200629112317232010.1248/bpb.29.2317 17077538
    [Google Scholar]
  76. SağlıkB.N. OsmaniyeD. Acar ÇevikU. Design, Synthesis, and Structure–Activity Relationships of Thiazole Analogs as Anticholinesterase Agents for Alzheimer’s Disease.Molecules20202518431210.3390/molecules25184312 32962239
    [Google Scholar]
  77. OguraH. KosasaT. KuriyaY. YamanishiY. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro.Methods Find. Exp. Clin. Pharmacol.200022860961310.1358/mf.2000.22.8.701373 11256231
    [Google Scholar]
  78. HussienH.M. Abd-ElmegiedA. GhareebD.A. HafezH.S. AhmedH.E.A. El-moneamN.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats.Food Chem. Toxicol.201811143244410.1016/j.fct.2017.11.025 29170048
    [Google Scholar]
  79. SarasammaS. AudiraG. JuniardiS. Zinc chloride exposure inhibits brain acetylcholine levels, produces neurotoxic signatures, and diminishes memory and motor activities in adult zebrafish.Int. J. Mol. Sci.20181910319510.3390/ijms19103195 30332818
    [Google Scholar]
  80. Takada-TakatoriY. NakagawaS. KimataR. Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons.Sci. Rep.2019911192210.1038/s41598‑019‑47462‑4 31417133
    [Google Scholar]
  81. DongH. YuedeC.M. CoughlanC.A. MurphyK.M. CsernanskyJ.G. Effects of donepezil on amyloid-β and synapse density in the Tg2576 mouse model of Alzheimer’s disease.Brain Res.2009130316917810.1016/j.brainres.2009.09.097 19799879
    [Google Scholar]
  82. MaY. JiJ. LiG. YangS. PanS. Effects of donepezil on cognitive functions and the expression level of β-amyloid in peripheral blood of patients with Alzheimer’s disease.Exp. Ther. Med.20171521875187810.3892/etm.2017.5613 29434777
    [Google Scholar]
  83. GiacominiA.C.V.V. BuenoB.W. MarconL. An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish.J. Psychopharmacol.202034121449145610.1177/0269881120944155 32854587
    [Google Scholar]
  84. AudiraG. Ngoc AnhN.T. Ngoc HieuB.T. Evaluation of the adverse effects of chronic exposure to donepezil (an acetylcholinesterase inhibitor) in adult zebrafish by behavioral and biochemical assessments.Biomolecules2020109134010.3390/biom10091340 32962160
    [Google Scholar]
  85. KimJ. LeeH. ParkS.K. Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling.Int. J. Mol. Sci.202122191063710.3390/ijms221910637 34638977
    [Google Scholar]
  86. HeW. WangC. ChenY. HeY. CaiZ. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation.Pharmacol. Rep.20176961341134810.1016/j.pharep.2017.06.006 29132092
    [Google Scholar]
/content/journals/cei/10.2174/0115734080306283240719110244
Loading
/content/journals/cei/10.2174/0115734080306283240719110244
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test