Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855324006240817122507
2024-08-21
2024-12-28
Loading full text...

Full text loading...

/deliver/fulltext/cdth/20/2/CDTH-20-2-01.html?itemId=/content/journals/cdth/10.2174/0115748855324006240817122507&mimeType=html&fmt=ahah

References

  1. SalariN. KanjooriA.H. Hosseinian-FarA. HasheminezhadR. MansouriK. MohammadiM. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis.Infect. Dis. Poverty20231215710.1186/s40249‑023‑01107‑x37231463
    [Google Scholar]
  2. VaninoE. GranozziB. AkkermanO.W. Update of drug-resistant tuberculosis treatment guidelines: A turning point.Int. J. Infect. Dis.2023130Suppl. 1S12S1510.1016/j.ijid.2023.03.01336918080
    [Google Scholar]
  3. FarhatM. CoxH. GhanemM. Drug-resistant tuberculosis: a persistent global health concern.Nat. Rev. Microbiol.20241910.1038/s41579‑024‑01025‑138519618
    [Google Scholar]
  4. PedersenO.S. HolmgaardF.B. MikkelsenM.K.D. Global treatment outcomes of extensively drug-resistant tuberculosis in adults: A systematic review and meta-analysis.J. Infect.202387317718910.1016/j.jinf.2023.06.01437356629
    [Google Scholar]
  5. SuT. LiuX. LinS. ChengF. ZhuG. Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy.Bioact. Mater.20232616918010.1016/j.bioactmat.2023.02.01636883121
    [Google Scholar]
  6. ListekM. HönowA. GossenM. HanackK. Comment on “Monoclonal Antibody Discovery Based on Precise Selection of Single Transgenic Hybridomas with an On-Cell-Surface and Antigen-Specific Anchor”.ACS Appl. Mater. Interfaces20231537432194322210.1021/acsami.3c0531737676755
    [Google Scholar]
  7. JangidA.K. KimS. KimK. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics.Biomater. Res.20232715910.1186/s40824‑023‑00404‑837344853
    [Google Scholar]
  8. NguyenT.N.H. GouxD. Follet-GueyeM.L. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans.Carbohydr. Polym.202432712168210.1016/j.carbpol.2023.12168238171691
    [Google Scholar]
  9. PalR. PandeyP. NogaiL. The Advanced Approach in The Development of Targeted Drug Delivery (TDD) With Their Bio-Medical Applications: A Descriptive Review.Int. Neurourol. J.20232744058
    [Google Scholar]
  10. SarkarS. MishraA. PeriasamyS. Prospective subunit nanovaccine against mycobacterium tuberculosis infection— cubosome lipid nanocarriers of cord factor, trehalose 6, 6′ dimycolate.ACS Appl. Mater. Interfaces20231523276702768610.1021/acsami.3c0406337262346
    [Google Scholar]
  11. BalducciE. PapiF. CapialbiD.E. Del BinoL. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens.Int. J. Mol. Sci.2023244403010.3390/ijms2404403036835442
    [Google Scholar]
  12. JosephN. ShapiroA. GillisE. Biodistribution and function of coupled polymer-DNA origami nanostructures.Sci. Rep.20231311956710.1038/s41598‑023‑46351‑137949918
    [Google Scholar]
  13. SanjanwalaD. PatravaleV. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer.Drug Discov. Today202328510355010.1016/j.drudis.2023.10355036906220
    [Google Scholar]
  14. PandaP. DeM. BasakS. Nanocochleates: A novel lipid-based nanocarrier system for drug delivery. In: Design and Applications of Theranostic Nanomedicines.Woodhead Publishing2023
    [Google Scholar]
  15. GuptaU. GoyalA.K. Molecular Pharmaceutics and Nano Drug Delivery: Fundamentals and Challenges.Academic Press2023
    [Google Scholar]
  16. DasS.K. ChakrabortyS. BhowmikS. RoyS. PathakY. Polymeric Nanoparticles in Tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases.Springer International Publishing202310.1007/978‑3‑031‑14100‑3_5
    [Google Scholar]
  17. GopinathanA. NaikS.S. LeelaK.V. RaviS. Nano‐Based Drug Delivery in Eliminating Tuberculosis. In: Advances in Novel Formulations for Drug Delivery.Wiley Online Library202310.1002/9781394167708.ch11
    [Google Scholar]
  18. ShaoZ. ChowM.Y.T. ChowS.F. LamJ.K.W. Co-delivery of D-LAK antimicrobial peptide and capreomycin as inhaled powder formulation to combat drug-resistant tuberculosis.Pharm. Res.20234051073108610.1007/s11095‑023‑03488‑y36869245
    [Google Scholar]
  19. PushkarS. VarshneyV. PushkarP. SagarH.K. Novel approaches for the treatment of drug-resistant tuberculosis.Pharmacognosy Res.202315223524110.5530/pres.15.2.025
    [Google Scholar]
  20. Zorba YildizA.P. Yildirim KokenG. AbamorE.S. Polymeric approach to adjuvant system in antibody production against Leishmaniasis based on Hybridoma technology.Iran. J. Parasitol.202217450651610.18502/ijpa.v17i4.1127836660415
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855324006240817122507
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test