Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Treating neurological illnesses is challenging because the blood-brain barrier hinders therapeutic medications from reaching the brain. Recent advances in polymeric nanocarriers (PNCs), which improve medication permeability across the blood-brain barrier, may influence therapy strategies for neurological diseases. PNCs have several ways to deliver medications to the nervous system. This review article provides a summary of the parts and manufacturing methods involved in making PNCs. Additionally, it highlights the elements that result in PNCs having enhanced blood-brain barrier penetration. A combination of passive and active targeting strategies is used by PNCs intended to overcome the blood-brain barrier. Among these are micellar structures, nanogels, nanoparticles, cubosomes, and dendrimers. These nanocarriers, which are functionalized with certain ligands that target BBB transporters, enable the direct delivery of drugs to the brain. Mainly, the BBB prevents medications from entering the brain. Understanding the BBB's physiological and anatomical characteristics is necessary to get over this obstacle. Preclinical and clinical research demonstrates the safety and effectiveness of these PNCs, and their potential use in the treatment of neurological illnesses, including brain tumors, Parkinson's disease, and Alzheimer's disease, is discussed. Concerns that PNCs may have about their biocompatibility and possible toxicity are also covered in this review article. This study examines the revolutionary potential of PNCs in CNS drug delivery, potential roadblocks, ongoing research, and future opportunities for PNC design progress. PNCs open the door to more focused and efficient treatment for neurological illnesses by comprehending the subtleties of BBB penetration.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501339455241101065040
2024-11-07
2025-06-27
Loading full text...

Full text loading...

References

  1. HallidayA.J. Polymer-based drug delivery devices for neurological disorders.CNS. Neurol. Disord. Drug Targ.200983205221
    [Google Scholar]
  2. StahlS.M. WetsK.M. Recent advances in drug delivery technology for neurology.Clin. Neuropharmacol.198811111710.1097/00002826‑198802000‑000013280126
    [Google Scholar]
  3. SaeediM. EslamifarM. KhezriK. DizajS.M. Applications of nanotechnology in drug delivery to the central nervous system.Biomed. Pharmacother.201911166667510.1016/j.biopha.2018.12.13330611991
    [Google Scholar]
  4. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  5. UlldemolinsA. Seras-FranzosoJ. AndradeF. RafaelD. AbasoloI. GenerP. SchwartzS.Jr Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics.Cancer Drug Resist.202141446810.20517/cdr.2020.5935582007
    [Google Scholar]
  6. AngolkarM. ParamshettiS. HalagaliP. JainV. PatilA.B. SomannaP. Nanotechnological advancements in the brain tumor therapy: A novel approach.Ther. Deliv.2022131153155710.4155/tde‑2022‑003536802944
    [Google Scholar]
  7. SwetledgeS. JungJ.P. CarterR. SabliovC. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy.J. Nanobiotechnology20211911010.1186/s12951‑020‑00745‑933413421
    [Google Scholar]
  8. AdkiK.M. KulkarniY.A. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol.Life Sci.202025011754410.1016/j.lfs.2020.11754432179072
    [Google Scholar]
  9. HeQ. LiuJ. LiangJ. LiuX. LiW. LiuZ. DingZ. TuoD. Towards improvements for penetrating the blood-brain barrier—Recent progress from a material and pharmaceutical perspective.Cells2018742410.3390/cells704002429570659
    [Google Scholar]
  10. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.315717053
    [Google Scholar]
  11. MalinovskayaY. MelnikovP. BaklaushevV. GabashviliA. OsipovaN. MantrovS. ErmolenkoY. MaksimenkoO. GorshkovaM. BalabanyanV. KreuterJ. GelperinaS. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells.Int. J. Pharm.20175241-2779010.1016/j.ijpharm.2017.03.04928359811
    [Google Scholar]
  12. HalagaliP. SingadiR. Ranganath ArjunH. RakshanaaG.S. NairS.P. HalagaliP. SomannaP. Role of traditional plant compounds in the treatment of neuropsychiatric diseases.Int. J. Pharm. Investig.2023141485410.5530/ijpi.14.1.7
    [Google Scholar]
  13. RabieeN. AhmadiS. AfshariR. KhalajiS. RabieeM. BagherzadehM. FatahiY. DinarvandR. TahririM. TayebiL. HamblinM.R. WebsterT.J. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease.Adv. Ther. (Weinh.)202143200007610.1002/adtp.202000076
    [Google Scholar]
  14. SaundersN. HabgoodM. DziegielewskaK.M. Barrier mechanisms in the brain, I. Adult brain.Clin. Exp. Pharmacol. Physiol.1999261111910.1046/j.1440‑1681.1999.02986.x10027064
    [Google Scholar]
  15. InamdarA. Physicochemical and pharmacokinetic properties’ screening of selected cardiovascular agents: An in-silico approachRes. Square202310.21203/rs.3.rs‑2653667/v1
    [Google Scholar]
  16. Markowicz-PiaseckaM. DarłakP. MarkiewiczA. SikoraJ. Kumar AdlaS. BaginaS. HuttunenK.M. Current approaches to facilitate improved drug delivery to the central nervous system.Eur. J. Pharm. Biopharm.202218124926210.1016/j.ejpb.2022.11.00336372271
    [Google Scholar]
  17. BellottiE. SchillingA.L. LittleS.R.Sr DecuzziP. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review.J. Control. Release2021329163510.1016/j.jconrel.2020.11.04933259851
    [Google Scholar]
  18. SultanaA. ZareM. ThomasV. KumarT.S.S. RamakrishnaS. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Med. Drug Discov.20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  19. OertelW. SchulzJ.B. Current and experimental treatments of Parkinson disease: A guide for neuroscientists.J. Neurochem.2016139S1Suppl. 132533710.1111/jnc.1375027577098
    [Google Scholar]
  20. Gonzalez-CarterD. LiuX. TockaryT.A. DirisalaA. TohK. AnrakuY. KataokaK. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium.Proc. Natl. Acad. Sci. USA202011732191411915010.1073/pnas.200201611732703811
    [Google Scholar]
  21. PercheF. UchidaS. AkibaH. LinC.Y. IkegamiM. DirisalaA. NakashimaT. ItakaK. TsumotoK. KataokaK. Improved brain expression of anti-amyloid β scFv by complexation of mRNA including a secretion sequence with PEG-based block catiomer.Curr. Alzheimer Res.201714329530210.2174/156720501366616110811003127829339
    [Google Scholar]
  22. XieJ. Gonzalez-CarterD. TockaryT.A. NakamuraN. XueY. NakakidoM. AkibaH. DirisalaA. LiuX. TohK. YangT. WangZ. FukushimaS. LiJ. QuaderS. TsumotoK. YokotaT. AnrakuY. KataokaK. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain.ACS Nano20201466729674210.1021/acsnano.9b0999132431145
    [Google Scholar]
  23. AbbasiS. UchidaS. TohK. TockaryT.A. DirisalaA. HayashiK. FukushimaS. KataokaK. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain.J. Control. Release202133226026810.1016/j.jconrel.2021.02.02633647431
    [Google Scholar]
  24. MaghsoudniaN. EftekhariR.B. SohiA.N. ZamzamiA. DorkooshF.A. Application of nano-based systems for drug delivery and targeting: a review.J. Nanopart. Res.202022824510.1007/s11051‑020‑04959‑8
    [Google Scholar]
  25. AnnuS.A. SartajA. QamarZ. MdS. AlhakamyN.A. BabootaS. AliJ. An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor.Front. Bioeng. Biotechnol.20221078812810.3389/fbioe.2022.78812835186901
    [Google Scholar]
  26. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials (Basel)20211412319710.3390/ma1412319734200640
    [Google Scholar]
  27. AmirhosseiniZ.K. MonsefR. EhsanizadehS.A. AlbahadlyW.K.Y. MajdiH.S. AmirA.A. DawoodA.H. Salavati-NiasariM. Tailoring the photocatalytic activity of novel magnetically separable ZnFe12O19-chitosan bionanocomposites: A green preparation, structural characterization and comparative study.Int. J. Hydrogen Energy20234895372863730110.1016/j.ijhydene.2023.06.130
    [Google Scholar]
  28. MonsefR. Salavati-NiasariM. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples.J. Colloid Interface Sci.202261311410.1016/j.jcis.2022.01.03935030412
    [Google Scholar]
  29. Salavati-NiasariM. SalemiP. DavarF. Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina.J. Mol. Catal. Chem.20052381-221522210.1016/j.molcata.2005.05.026
    [Google Scholar]
  30. Salavati-NiasariM. DadkhahM. DavarF. Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex.Inorg. Chim. Acta2009362113969397410.1016/j.ica.2009.05.036
    [Google Scholar]
  31. Salavati-NiasariM. DavarF. In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand 3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane.Inorg. Chem. Commun.20069217517910.1016/j.inoche.2005.10.028
    [Google Scholar]
  32. MahdaviK. Zinatloo-AjabshirS. YousifQ.A. Salavati-NiasariM. Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach.Ultrason. Sonochem.20228210589210.1016/j.ultsonch.2021.10589234959201
    [Google Scholar]
  33. KaramiM. GhanbariM. AmiriO. NiasariM. Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method.Separat. Purif. Technol.2020253253
    [Google Scholar]
  34. KhojastehH. Salavati-NiasariM. SafajouH. Safardoust-HojaghanH. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes.Diamond Related Materials20177913314410.1016/j.diamond.2017.09.011
    [Google Scholar]
  35. Zinatloo-AjabshirS. SalehiZ. AmiriO. Salavati-NiasariM. Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material.J. Alloys Compd.201979179279910.1016/j.jallcom.2019.04.005
    [Google Scholar]
  36. ShaterianM. EnhessariM. RabbaniD. AsghariM. Salavati-NiasariM. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles.Appl. Surf. Sci.201431821321710.1016/j.apsusc.2014.03.087
    [Google Scholar]
  37. AmiriM. PardakhtiA. Ahmadi-ZeidabadiM. AkbariA. Salavati- NiasariM. Magnetic nickel ferrite nanoparticles: Green synthesis by Urtica and therapeutic effect of frequency magnetic field on creating cytotoxic response in neural cell lines.Colloids Surf. B Biointerfaces201817224425310.1016/j.colsurfb.2018.08.04930173091
    [Google Scholar]
  38. DristantU. MukherjeeK. SahaS. MaityD. RETRACTED: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.2023221533033823115208310.1177/1533033823115208336718541
    [Google Scholar]
  39. OsmanN. DevnarainN. OmoloC.A. FasikuV. JaglalY. GovenderT. Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022141e175810.1002/wnan.175834643067
    [Google Scholar]
  40. XiaoX. TengF. ShiC. ChenJ. WuS. WangB. MengX. Essiet ImehA. LiW. Polymeric nanoparticles—Promising carriers for cancer therapy.Front. Bioeng. Biotechnol.202210102414310.3389/fbioe.2022.102414336277396
    [Google Scholar]
  41. MajumderJ. MinkoT. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery.Expert Opin. Drug Deliv.202118220522710.1080/17425247.2021.182833932969740
    [Google Scholar]
  42. LaffleurF. KeckeisV. Advances in drug delivery systems: Work in progress still needed?Int. J. Pharm.202059011991210.1016/j.ijpharm.2020.11991232971178
    [Google Scholar]
  43. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  44. MishraK. RanaR. TripathiS. SiddiquiS. YadavP.K. YadavP.N. ChourasiaM.K. Recent advancements in nanocarrier-assisted brain delivery of phytochemicals against neurological diseases.Neurochem. Res.202348102936296810.1007/s11064‑023‑03955‑337278860
    [Google Scholar]
  45. SciclunaM.C. Vella-ZarbL. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework–drug systems.ACS Appl. Nano Mater.2020343097311510.1021/acsanm.9b02603
    [Google Scholar]
  46. FormicaM.L. RealD.A. PicchioM.L. CatlinE. DonnellyR.F. ParedesA.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles.Appl. Mater. Today20222910163110.1016/j.apmt.2022.101631
    [Google Scholar]
  47. VashistA. ManickamP. RaymondA.D. AriasA.Y. KolishettiN. VashistA. AriasE. NairM. Recent advances in nanotherapeutics for neurological disorders.ACS Appl. Bio Mater.2023672614262110.1021/acsabm.3c0025437368486
    [Google Scholar]
  48. García-CorvilloM.D.P. Polymeric nanoparticles for drug delivery to the central nervous system via nasal route.Ars Pharmaceutica.20165712735
    [Google Scholar]
  49. BrenckmanC. HossainS. RNM. Nanotechnology-based drug delivery systems for treatment of knee injuries and Alzheimer’s disease–a review.Mater. Sci. Eng.202374166179
    [Google Scholar]
  50. LaffleurF. MayerA.H. Oral nanoparticulate drug delivery systems for the treatment of intestinal bowel disease and colorectal cancer.Expert Opin. Drug Deliv.202320111595160710.1080/17425247.2023.228958638044874
    [Google Scholar]
  51. EssaD. KondiahP.P.D. ChoonaraY.E. PillayV. The design of poly(lactide-co-glycolide) nanocarriers for medical applications.Front. Bioeng. Biotechnol.202084810.3389/fbioe.2020.0004832117928
    [Google Scholar]
  52. LiuK. JiangX. HunzikerP. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy.Nanoscale2016836160911615610.1039/C6NR04489A27714108
    [Google Scholar]
  53. Javan NikkhahS. ThompsonD. Molecular Modelling Guided Modulation of Molecular Shape and Charge for Design of Smart Self-Assembled Polymeric Drug Transporters.Pharmaceutics202113214110.3390/pharmaceutics1302014133499130
    [Google Scholar]
  54. MaherR. Moreno-BorralloA. JindalD. MaiB.T. Ruiz-HernandezE. HarkinA. Intranasal polymeric and lipid-based nanocarriers for CNS drug delivery.Pharmaceutics202315374610.3390/pharmaceutics1503074636986607
    [Google Scholar]
  55. GuanZ. Design of Nanoscale Polymeric Materials with Transition Metal Catalysis.Chem. Eng. News200427
    [Google Scholar]
  56. GhitmanJ. BiruE.I. StanR. IovuH. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine.Mater. Des.202019310880510.1016/j.matdes.2020.108805
    [Google Scholar]
  57. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.01016303268
    [Google Scholar]
  58. AraújoR.V. SantosS.S. Igne FerreiraE. GiarollaJ. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules2311284930400134
    [Google Scholar]
  59. GrenhaA. Chitosan nanoparticles: A survey of preparation methods.J. Drug Target.201220429130010.3109/1061186X.2011.65412122296336
    [Google Scholar]
  60. LamprechtA. UbrichN. YamamotoH. SchäferU. TakeuchiH. MaincentP. KawashimaY. LehrC.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease.J. Pharmacol. Exp. Ther.2001299277578111602694
    [Google Scholar]
  61. KreuterJ. ShamenkovD. PetrovV. RamgeP. CychutekK. Koch-BrandtC. AlyautdinR. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier.J. Drug Target.200210431732510.1080/1061186029003187712164380
    [Google Scholar]
  62. GaucherG. SatturwarP. JonesM.C. FurtosA. LerouxJ.C. Polymeric micelles for oral drug delivery.Eur. J. Pharm. Biopharm.201076214715810.1016/j.ejpb.2010.06.00720600891
    [Google Scholar]
  63. ElsadekB. KratzF. Impact of albumin on drug delivery — New applications on the horizon.J. Control. Release2012157142810.1016/j.jconrel.2011.09.06921959118
    [Google Scholar]
  64. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.04427208862
    [Google Scholar]
  65. HanH. LiS. XuM. ZhongY. FanW. XuJ. ZhouT. JiJ. YeJ. YaoK. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives.Adv. Drug Deliv. Rev.202319611477010.1016/j.addr.2023.11477036894134
    [Google Scholar]
  66. TajesM. Ramos-FernándezE. Weng-JiangX. Bosch-MoratóM. GuivernauB. Eraso-PichotA. SalvadorB. Fernàndez-BusquetsX. RoquerJ. MuñozF.J. The blood-brain barrier: Structure, function and therapeutic approaches to cross it.Mol. Membr. Biol.201431515216710.3109/09687688.2014.93746825046533
    [Google Scholar]
  67. MehtaT.A. ShahN. ParekhK. DhasN. Surface-modified PLGA nanoparticles for targeted drug delivery to neurons.Surface modification of nanoparticles for targeted drug delivery.Springer2019
    [Google Scholar]
  68. AbbottN.J. NJ Blood–brain barrier structure and function and the challenges for CNS drug delivery.J. Inherit. Metab. Dis.201336343744910.1007/s10545‑013‑9608‑023609350
    [Google Scholar]
  69. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics1203028832210127
    [Google Scholar]
  70. KadryH. NooraniB. CuculloL. A blood-brain barrier overview on structure, function, impairment and biomarkers of integrity.FBCNS20201716910.1186/s12987‑020‑00230‑3
    [Google Scholar]
  71. TsouY.H. ZhangX.Q. ZhuH. SyedS. XuX. Drug delivery to the brain across the blood–brain barrier using nanomaterials.Small20171343170192110.1002/smll.20170192129045030
    [Google Scholar]
  72. KhalilA. BarrasA. BoukherroubR. TsengC. D. Devos T. Burnouf, W. Neuhaus and S. Szunerits.Nanoscale Horiz.202491410.1039/D3NH00306J37853828
    [Google Scholar]
  73. NelemansL.C. GurevichL. Drug delivery with polymeric nanocarriers—cellular uptake mechanisms.Materials (Basel)202013236610.3390/ma1302036631941006
    [Google Scholar]
  74. VermaK. ChaturvediA. PaliwalS. DwivediJ.S.S. Polymeric nanocarriers for the delivery of phytoconstituents.Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals.SingaporeSpringer Nature Singapore20248912310.1007/978‑981‑99‑5314‑1_4
    [Google Scholar]
  75. VossA.J. LanjewarS.N. SampsonM.M. KingA. HillE.J. SingA. SojkaC. BhatiaT.N. SpangleJ.M. SloanS.A. Identification of ligand–receptor pairs that drive human astrocyte development.Nat. Neurosci.20232681339135110.1038/s41593‑023‑01375‑837460808
    [Google Scholar]
  76. ZhangC. TanG. ZhangY. ZhongX. ZhaoZ. PengY. ChengQ. XueK. XuY. LiX. LiF. ZhangY. Comprehensive analyses of brain cell communications based on multiple scRNA-seq and snRNA-seq datasets for revealing novel mechanism in neurodegenerative diseases.CNS Neurosci. Ther.202329102775278610.1111/cns.1428037269061
    [Google Scholar]
  77. WangzhouA. PaigeC. NeerukondaS.V. NaikD.K. KumeM. DavidE.T. DussorG. RayP.R. PriceT.J. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets.Sci. Signal.202114674eabe164810.1126/scisignal.abe164833727337
    [Google Scholar]
  78. ArmingolE. OfficerA. HarismendyO. LewisN.E. Deciphering cell–cell interactions and communication from gene expression.Nat. Rev. Genet.2021222718810.1038/s41576‑020‑00292‑x33168968
    [Google Scholar]
  79. VilleminJ.P. BassaganyasL. PourquierD. BoissièreF. Cabello-AguilarS. CrapezE. TanosR. CornillotE. TurtoiA. ColingeJ. Inferring ligand-receptor cellular networks from bulk and spatial transcriptomic datasets with BulkSignalR.Nucleic Acids Res.202351104726474410.1093/nar/gkad35237144485
    [Google Scholar]
  80. GochevaG. IvanovaA. A look at receptor–ligand pairs for active- targeting drug delivery from crystallographic and molecular dynamics perspectives.Mol. Pharm.20191683293332110.1021/acs.molpharmaceut.9b0025031274322
    [Google Scholar]
  81. BurgessA. ShahK. HoughO. HynynenK. Focused ultrasound- mediated drug delivery through the blood–brain barrier.Expert Rev. Neurother.201515547749110.1586/14737175.2015.102836925936845
    [Google Scholar]
  82. OseiE. Al-AsadyA. A review of ultrasound-mediated microbubbles technology for cancer therapy: A vehicle for chemotherapeutic drug delivery.J. Radiother. Pract.202019329129810.1017/S1460396919000633
    [Google Scholar]
  83. RapoportS.I. Osmotic opening of the blood-brain barrier: Principles, mechanism, and therapeutic applications.Cell. Mol. Neurobiol.200020221723010.1023/A:100704980666010696511
    [Google Scholar]
  84. ChuC. JablonskaA. LesniakW.G. ThomasA.M. LanX. LinvilleR.M. LiS. SearsonP.C. LiuG. PearlM. PomperM.G. JanowskiM. MagnusT. WalczakP. Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex.J. Control. Release202031731232110.1016/j.jconrel.2019.11.01931751635
    [Google Scholar]
  85. BellavanceM.A. BlanchetteM. FortinD. Recent advances in blood-brain barrier disruption as a CNS delivery strategy.AAPS J.200810116617710.1208/s12248‑008‑9018‑718446517
    [Google Scholar]
  86. PandyaA.K. VoraL.K. UmeyorC. SurveD. PatelA. BiswasS. PatelK. PatravaleV.B. Polymeric in situ forming depots for long-acting drug delivery systems.Adv. Drug Deliv. Rev.202320011500310.1016/j.addr.2023.11500337422267
    [Google Scholar]
  87. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑835672712
    [Google Scholar]
  88. BaghirovH. Receptor–mediated transcytosis of macromolecules across the blood–brain barrier.Expert Opin. Drug Deliv.202320121699171110.1080/17425247.2023.225513837658673
    [Google Scholar]
  89. TerasakiT. OhtsukiS. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: An overview of biology and methodology.NeuroRx200521637210.1602/neurorx.2.1.6315717058
    [Google Scholar]
  90. BöhmováE. MachováD. PecharM. PolaR. VenclíkováK. JanouškováO. EtrychT. Cell-penetrating peptides: A useful tool for the delivery of various cargoes into cells.Physiol. Res.201867Suppl. 2S267S27910.33549/physiolres.93397530379549
    [Google Scholar]
  91. Tavares LuizM. Santos Rosa ViegasJ. Palma AbriataJ. ViegasF. Testa Moura de Carvalho VicentiniF. Lopes Badra BentleyM.V. ChorilliM. Maldonado MarchettiJ. Tapia-BlácidoD.R. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems.Eur. J. Pharm. Biopharm.202116512714810.1016/j.ejpb.2021.05.01133992754
    [Google Scholar]
  92. ZhangJ. YangT. HuangW. YuY. SunT. Applications of gold nanoparticles in brain diseases across the blood-brain barrier.Curr. Med. Chem.202229396063608310.2174/092986732966622052712194335638273
    [Google Scholar]
  93. SergueraC. BemelmansA.P. Gene therapy of the central nervous system: General considerations on viral vectors for gene transfer into the brain.Rev. Neurol. (Paris)20141701272773810.1016/j.neurol.2014.09.00425459120
    [Google Scholar]
  94. Gonzalez-AlegreP. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress.Pharmacol. Ther.20071141345510.1016/j.pharmthera.2007.01.00317316816
    [Google Scholar]
  95. MaheshwariS. AkramH. BulstrodeH. KaliaS.K. MorizaneA. TakahashiJ.N.A. Dopaminergic cell replacement for Parkinson’s Disease: Addressing the intracranial delivery hurdle.J. Parkinson’s disease20241121
    [Google Scholar]
  96. BedoyaL.E. BarbosaJ.C. QuicenoL. ArroyaveF. HalpertK. España PeñaJ.A. Salazar UribeJ.C. The safety profile of mesenchymal stem cell therapy administered through intrathecal injections for treating neurological disorders: A systematic review and meta-analysis of randomised controlled trials.Stem Cell Res. Ther.202415114610.1186/s13287‑024‑03748‑738764070
    [Google Scholar]
  97. JeanneretL. The targeted delivery of cancer drugs across the blood–brain barrier: Chemical modifications of drugs or drug- nanoparticles?Drug Discov. Today20081323-241099110610.1016/j.drudis.2008.09.00518848640
    [Google Scholar]
  98. MasseriniM. Nanoparticles for brain drug delivery.ISRN Biochem.20132013123842825937958
    [Google Scholar]
  99. OhtsukiS. TerasakiT. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development.Pharm. Res.20072491745175810.1007/s11095‑007‑9374‑517619998
    [Google Scholar]
  100. ThuenauerR. MüllerS.K. RömerW. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery.Expert Opin. Drug Deliv.201714334135110.1080/17425247.2016.122036427500785
    [Google Scholar]
  101. WuS.K. TsaiC.L. HuangY. HynynenK. Focused ultrasound and microbubbles-mediated drug delivery to brain tumor.Pharmaceutics20201311510.3390/pharmaceutics1301001533374205
    [Google Scholar]
  102. YangK. LiuY. LiuY. ZhangQ. KongC. YiC. ZhouZ. WangZ. ZhangG. ZhangY. KhashabN.M. ChenX. NieZ. KNM. Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery.J. Am. Chem. Soc.2018140134666467710.1021/jacs.8b0088429543442
    [Google Scholar]
  103. XieY.X. LvW.Q. ChenY.K. HongS. YaoX.P. ChenW.J. ZhaoM. Advances in gene therapy for neurogenetic diseases: a brief review.J. Mol. Med. (Berl.)2022100338539410.1007/s00109‑021‑02167‑y34837498
    [Google Scholar]
  104. AhadianS. FinbloomJ.A. MofidfarM. DiltemizS.E. NasrollahiF. DavoodiE. HosseiniV. MylonakiI. SangabathuniS. MontazerianH. FetahK. NasiriR. DokmeciM.R. StevensM.M. DesaiT.A. KhademhosseiniA. Micro and nanoscale technologies in oral drug delivery.Adv. Drug Deliv. Rev.2020157376210.1016/j.addr.2020.07.01232707147
    [Google Scholar]
  105. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers (Basel)20221421470210.3390/polym1421470236365696
    [Google Scholar]
  106. MaQ. CaoJ. GaoY. HanS. LiangY. ZhangT. WangX. SunY. Microfluidic-mediated nano-drug delivery systems: From fundamentals to fabrication for advanced therapeutic applications.Nanoscale20201229155121552710.1039/D0NR02397C32441718
    [Google Scholar]
  107. BandiS.P. BhatnagarS. VenugantiV.V.K. Advanced materials for drug delivery across mucosal barriers.Acta Biomater.2021119132910.1016/j.actbio.2020.10.03133141051
    [Google Scholar]
  108. XuY. ZhaoM. ZhouD. ZhengT. ZhangH. The application of multifunctional nanomaterials in Alzheimer’s disease: A potential theranostics strategy.Biomed. Pharmacother.202113711136010.1016/j.biopha.2021.11136033582451
    [Google Scholar]
  109. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.104298636466349
    [Google Scholar]
  110. PaulA. YadavK.S. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles.J. Drug Deliv. Sci. Technol.20205810179010.1016/j.jddst.2020.101790
    [Google Scholar]
  111. PulingamT. ForoozandehP. ChuahJ.A. SudeshK. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles.Nanomaterials (Basel)202212357610.3390/nano1203057635159921
    [Google Scholar]
  112. ZhaoY. XiongS. LiuP. LiuW. WangQ. LiuY. TanH. ChenX. ShiX. WangQ. ChenT. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s Disease.Int. J. Nanomedicine202015104531046710.2147/IJN.S27283133380795
    [Google Scholar]
  113. YouL. WangJ. LiuT. ZhangY. HanX. WangT. GuoS. DongT. XuJ. AndersonG.J. LiuQ. ChangY.Z. LouX. NieG. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice.ACS Nano20181254123413910.1021/acsnano.7b0817229617109
    [Google Scholar]
  114. LiX.T. JuR.J. LiX.Y. ZengF. ShiJ.F. LiuL. ZhangC.X. SunM.G. LouJ.N. LuW.L. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells.Oncotarget20145156497651110.18632/oncotarget.226725153726
    [Google Scholar]
  115. SprowlsS.A. ArsiwalaT.A. BumgarnerJ.R. ShahN. LateefS.S. KielkowskiB.N. LockmanP.R. Improving CNS delivery to brain metastases by blood–tumor barrier disruption.Trends Cancer20195849550510.1016/j.trecan.2019.06.00331421906
    [Google Scholar]
  116. BelykhE. ShafferK.V. LinC. ByvaltsevV.A. PreulM.C. ChenL. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical labels to brain tumors.Front. Oncol.20201073982710.3389/fonc.2020.0073932582530
    [Google Scholar]
  117. KarmurB.S. PhilteosJ. AbbasianA. ZachariaB.E. LipsmanN. LevinV. GrossmanS. MansouriA. Blood-brain barrier disruption in neuro-oncology: Strategies, failures, and challenges to overcome.Front. Oncol.20201056384056391010.3389/fonc.2020.56384033072591
    [Google Scholar]
  118. GroverA. HiraniA. PathakY. SutariyaV. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer.AAPS PharmSciTech20141561562156810.1208/s12249‑014‑0165‑025134466
    [Google Scholar]
  119. ZhouQ.H. LuJ.Z. HuiE.K.W. BoadoR.J. PardridgeW.M. Delivery of a peptide radiopharmaceutical to brain with an IgG-avidin fusion protein.Bioconjug. Chem.20112281611161810.1021/bc200174x21707084
    [Google Scholar]
  120. AhlschwedeK.M. CurranG.L. RosenbergJ.T. GrantS.C. SarkarG. JenkinsR.B. RamakrishnanS. PodusloJ.F. KandimallaK.K. Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer’s disease brain.Nanomedicine20191625826610.1016/j.nano.2018.09.01030300748
    [Google Scholar]
  121. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  122. HuoX. ZhangY. JinX. LiY. ZhangL. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease.J. Photochem. Photobiol. B20191903339810210.1016/j.jphotobiol.2018.11.00830504054
    [Google Scholar]
  123. JeonS.G. ChaM.Y. KimJ. HwangT.W. KimK.A. KimT.H. SongK.C. KimJ.J. MoonM. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice.Nanomedicine20191729730710.1016/j.nano.2019.02.00430794963
    [Google Scholar]
  124. CarradoriD. BalducciC. ReF. BrambillaD. Le DroumaguetB. FloresO. GaudinA. MuraS. ForloniG. Ordoñez-GutierrezL. WandosellF. MasseriniM. CouvreurP. NicolasJ. AndrieuxK. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model.Nanomedicine201814260961810.1016/j.nano.2017.12.00629248676
    [Google Scholar]
  125. VilellaA. BellettiD. SauerA.K. HagmeyerS. SarowarT. MasoniM. StasiakN. MulvihillJ.J.E. RuoziB. ForniF. VandelliM.A. TosiG. ZoliM. GrabruckerA.M. Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery.J. Trace Elem. Med. Biol.20184921022110.1016/j.jtemb.2017.12.00629325805
    [Google Scholar]
  126. Sánchez-LópezE. EttchetoM. EgeaM.A. EspinaM. CalpenaA.C. FolchJ. CaminsA. GarcíaM.L. New potential strategies for Alzheimer’s disease prevention: Pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9.Nanomedicine20171331171118210.1016/j.nano.2016.12.00327986603
    [Google Scholar]
  127. ZhengX. ZhangC. GuoQ. WanX. ShaoX. LiuQ. ZhangQ. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety.Int. J. Pharm.2017525123724810.1016/j.ijpharm.2017.04.03328432017
    [Google Scholar]
  128. LiuY. AnS. LiJ. KuangY. HeX. GuoY. MaH. ZhangY. JiB. JiangC. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice.Biomaterials201680334510.1016/j.biomaterials.2015.11.06026706474
    [Google Scholar]
  129. SunD. LiN. ZhangW. ZhaoZ. MouZ. HuangD. LiuJ. WangW. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease.Colloids Surf. B Biointerfaces201614811612910.1016/j.colsurfb.2016.08.05227591943
    [Google Scholar]
  130. ZhangC. ZhengX. WanX. ShaoX. LiuQ. ZhangZ. ZhangQ. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease.J. Control. Release201419231732410.1016/j.jconrel.2014.07.05025102404
    [Google Scholar]
  131. JaruszewskiK.M. RamakrishnanS. PodusloJ.F. KandimallaK.K. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein.Nanomedicine20128225026010.1016/j.nano.2011.06.00821704598
    [Google Scholar]
  132. AnissianD. KasmanM. FomeshiM. AkbariA. HashemianM. KazemiS. MoghadamniaA.A. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy.Int. J. Biol. Macromol.2018107Pt A97398310.1016/j.ijbiomac.2017.09.07328939512
    [Google Scholar]
  133. CanoA. EttchetoM. EspinaM. AuladellC. CalpenaA.C. FolchJ. BarenysM. Sánchez-LópezE. CaminsA. GarcíaM.L. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy.Nanomedicine20181441073108510.1016/j.nano.2018.01.01929454994
    [Google Scholar]
  134. HashemianM. AnissianD. Ghasemi-KasmanM. AkbariA. Khalili-FomeshiM. GhasemiS. AhmadiF. MoghadamniaA.A. EbrahimpourA. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.Prog. Neuropsychopharmacol. Biol. Psychiatry201779Pt B46247110.1016/j.pnpbp.2017.07.02528778407
    [Google Scholar]
  135. KaurS. ManhasP. SwamiA. BhandariR. SharmaK.K. JainR. KumarR. PandeyS.K. KuhadA. SharmaR.K. WangooN. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues.Chem. Eng. J.201834663063910.1016/j.cej.2018.03.176
    [Google Scholar]
  136. MansoorS.R. HashemianM. Khalili-FomeshiM. AshrafpourM. MoghadamniaA.A. Ghasemi-KasmanM. Upregulation of klotho and erythropoietin contributes to the neuroprotection induced by curcumin-loaded nanoparticles in experimental model of chronic epilepsy.Brain Res. Bull.201814228128810.1016/j.brainresbull.2018.08.01030130550
    [Google Scholar]
  137. MusumeciT. SerapideM.F. PellitteriR. DalpiazA. FerraroL. Dal MagroR. BonaccorsoA. CarboneC. VeigaF. SanciniG. PuglisiG. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents.Eur. J. Pharm. Biopharm.201813330932010.1016/j.ejpb.2018.11.00230399400
    [Google Scholar]
  138. ZybinaA. AnshakovaA. MalinovskayaJ. MelnikovP. BaklaushevV. ChekhoninV. MaksimenkoO. TitovS. BalabanyanV. KreuterJ. GelperinaS. AbbasovaK. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy.Int. J. Pharm.20185471-2102310.1016/j.ijpharm.2018.05.02329751140
    [Google Scholar]
  139. FangZ. ChenS. QinJ. ChenB. NiG. ChenZ. ZhouJ. LiZ. NingY. WuC. ZhouL. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy.Biomaterials20169711012110.1016/j.biomaterials.2016.04.02127162079
    [Google Scholar]
  140. BirkS.E. BoisenA. NielsenL.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms.Adv. Drug Deliv. Rev.2021174305210.1016/j.addr.2021.04.00533845040
    [Google Scholar]
  141. SridharV. GaudR. BajajA. WairkarS. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease.Nanomedicine20181482609261810.1016/j.nano.2018.08.00430171904
    [Google Scholar]
  142. RajR. WairkarS. SridharV. GaudR. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity.Int. J. Biol. Macromol.2018109273510.1016/j.ijbiomac.2017.12.05629247729
    [Google Scholar]
  143. HelmschrodtC. HöbelS. SchönigerS. BauerA. BonicelliJ. GringmuthM. FietzS.A. AignerA. RichterA. RichterF. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce a-synuclein expression in a model of Parkinson’s disease.Mol. Ther. Nucleic Acids20179576810.1016/j.omtn.2017.08.01329246324
    [Google Scholar]
  144. SaraivaC. PaivaJ. SantosT. FerreiraL. BernardinoL. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease.J. Control. Release201623529130510.1016/j.jconrel.2016.06.00527269730
    [Google Scholar]
  145. GambaryanP.Y. KondrashevaI.G. SeverinE.S. GusevaA.A. KamenskyA.A. KAA. Increasing the efficiency of Parkinson’s disease treatment using a poly (lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system.Exp. Neurobiol.201423324625210.5607/en.2014.23.3.24625258572
    [Google Scholar]
  146. TiwariM.N. AgarwalS. BhatnagarP. SinghalN.K. TiwariS.K. KumarP. ChauhanL.K.S. PatelD.K. ChaturvediR.K. SinghM.P. GuptaK.C. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism.Free Radic. Biol. Med.20136570471810.1016/j.freeradbiomed.2013.07.04223933227
    [Google Scholar]
  147. DebnathK. PradhanN. SinghB.K. JanaN.R.Jnr JanaN.R. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington’s disease model mouse.ACS Appl. Mater. Interfaces2017928241262413910.1021/acsami.7b0651028632387
    [Google Scholar]
  148. SairamA.B. SanmugamA. PushparajA. Mahesh KumarG. SundarapandianN. BalajiS. NallalM. ParkK.H. Toxicity of polymeric nanodrugs as drug carriers.J. Chem. Health Saf.202330523625010.1021/acs.chas.3c00008
    [Google Scholar]
  149. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  150. PatelP. VyasN.R.M. Safety and Toxicity issues of Polymeric Nanoparticles.Nanotechnology in Medicine: Toxicity and SafetyWiley202110.1002/9781119769897.ch7
    [Google Scholar]
  151. TsoiK.M. MacParlandS.A. MaX.Z. SpetzlerV.N. EcheverriJ. OuyangB. FadelS.M. SykesE.A. GoldaracenaN. KathsJ.M. ConneelyJ.B. AlmanB.A. SelznerM. OstrowskiM.A. AdeyiO.A. ZilmanA. McGilvrayI.D. ChanW.C.W. Mechanism of hard- nanomaterial clearance by the liver.Nat. Mater.201615111212122110.1038/nmat471827525571
    [Google Scholar]
  152. DirisalaA. UchidaS. TohK. LiJ. OsawaS. TockaryT.A. LiuX. AbbasiS. HayashiK. MochidaY. FukushimaS. KinohH. OsadaK. KataokaK. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines.Sci. Adv.2020626eabb813310.1126/sciadv.abb813332637625
    [Google Scholar]
  153. TangY. WangX. LiJ. NieY. LiaoG. YuY. LiC. Overcoming the reticuloendothelial system barrier to drug delivery with a don’t-eat-us strategy.ACS Nano20191311130151302610.1021/acsnano.9b0567931689086
    [Google Scholar]
  154. SharmaH. ChandraP. PathakR. BhandariM. ArushiS.V. Advancements in the therapeutic approaches to treat neurological disorders.Cah Magellanes-NS.20246243284389
    [Google Scholar]
  155. ChandraP. SharmaH. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease.INDIAN DRUGS202461772210.53879/id.61.07.14382
    [Google Scholar]
  156. PathakR. SharmaS. BhandariM. NogaiL. MishraR. SaxenaA. Reena KmS.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions.J. Exp. Zool. India20242122447246110.59467/jez.2024.27.2.2447
    [Google Scholar]
  157. SharmaH. PathakR. BiswasD. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies.Curr. Psychiatry Res. Rev.202420503610.2174/0126660822304321240520075036
    [Google Scholar]
  158. ChandraP. AliZ. FatimaN. SharmaH. SachanN. SharmaK.K. VermaA. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders.Curr. Bioact. Compd.202420560010.2174/0115734072292339240416095600
    [Google Scholar]
  159. SharmaH. ChandraP. Effects of natural remedies on memory loss and Alzheimer’s disease.Afr.J.Bio.Sc.20246718721110.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  160. SharmaH. KaushikM. GoswamiP. SreevaniS. ChakrabortyA. AshiqueS. PalR. Role of miRNAs in brain development.MicroRNA20241329610910.2174/012211536628712724032205451938571343
    [Google Scholar]
  161. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of Extracellular Vesicles (EVs) in traumatic brain injury (TBI).CNS Neurol. Disord. Drug Targets202423111357137010.2174/011871527328815524020106504138351688
    [Google Scholar]
  162. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.Eur. Chem. Bull.202312515751596
    [Google Scholar]
  163. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s Disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  164. SharmaH. PathakR. KumarN. NogaiL. MishraR. BhandariM. KoliM. PandeyP. Endocannabinoid system: Role in depression, recompense, and pain control.J. Surv. Fisheries Sci.2023104S2743275110.17762/sfs.v10i4S.1655
    [Google Scholar]
  165. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.Int. J. Pharm. Sci. Res.202314260762110.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  166. SharmaH. RachamallaH.K. MishraN. ChandraP. PathakR. AshiqueS. Introduction to exosome and its role in brain disorders BTExosomes Based Drug Delivery Strategies for Brain Disorders. MishraN. AshiqueS. GargA. ChithravelV. AnandK. SingaporeSpringer Nature Singapore202413510.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  167. SharmaH. TyagiS.J. ChandraP. VermaA. KumarP. AshiqueS. Role of exosomes in Parkinson’s and Alzheimer’s diseases BTExosomes Based Drug Delivery Strategies for Brain Disorders. MishraN. AshiqueS. GargA. ChithravelV. AnandK. SingaporeSpringer Nature Singapore202414718210.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  168. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation between exosomes and neuro-inflammation in various brain disorders BTExosomes Based Drug Delivery Strategies for Brain Disorders. MishraN. AshiqueS. GargA. ChithravelV. AnandK. SingaporeSpringer Nature Singapore202427330210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501339455241101065040
Loading
/content/journals/cdt/10.2174/0113894501339455241101065040
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test