Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

HAGLR Opposite Strand lncRNA (HAGLROS) is a long non-coding RNA (lncRNA) located on the long arm of human chromosome 2 at locus 2q31.1. Emerging evidence highlights HAGLROS as a pivotal player in human cancers, characterized by its significant upregulation across multiple malignancies where it functions as an oncogenic driver. Its aberrant expression is closely linked to the initiation and progression of 13 distinct cancer types, notably correlating with adverse clinical outcomes and reduced overall survival rates in 9 of these cancer types. Mechanistically, HAGLROS is under the regulatory influence of the transcription factor STAT3, exerts competitive binding to 9 miRNAs, activates 5 signaling pathways pivotal for cancer cell proliferation and metastasis, as well as intricately modulates gene expression profiles. Given its multifaceted roles, HAGLROS emerges as a promising candidate for cancer diagnostics and prognostics. Moreover, its potential as a therapeutic target holds considerable promise for novel treatment strategies in oncology. This review synthesizes current research on HAGLROS, covering its expression patterns, biological roles, and clinical significance in cancer. By shedding light on these aspects, this review aims to contribute new perspectives that advance our understanding of cancer biology, enhance diagnostic accuracy, refine prognostic assessments, and pave the way for targeted therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501345632241022055444
2024-10-31
2025-05-03
Loading full text...

Full text loading...

References

  1. SchwartzS.M. Epidemiology of cancer.Clin. Chem.202470114014910.1093/clinchem/hvad20238175589
    [Google Scholar]
  2. Pérez-HerreroE. LanierO.L. KrishnanN. D’AndreaA. PeppasN.A. Drug delivery methods for cancer immunotherapy.Drug Deliv. Transl. Res.2024141306110.1007/s13346‑023‑01405‑937587290
    [Google Scholar]
  3. AsgaryR. Cancer care and treatment during homelessness.Lancet Oncol.2024252e84e9010.1016/S1470‑2045(23)00567‑338301706
    [Google Scholar]
  4. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  5. NemethK. BayraktarR. FerracinM. CalinG.A. Non-coding RNAs in disease: From mechanisms to therapeutics.Nat. Rev. Genet.202425321123210.1038/s41576‑023‑00662‑137968332
    [Google Scholar]
  6. WangK.C. ChangH.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell201143690491410.1016/j.molcel.2011.08.01821925379
    [Google Scholar]
  7. ZhangM. ZhaoK. XuX. YangY. YanS. WeiP. LiuH. XuJ. XiaoF. ZhouH. YangX. HuangN. LiuJ. HeK. XieK. ZhangG. HuangS. ZhangN. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma.Nat. Commun.201891447510.1038/s41467‑018‑06862‑230367041
    [Google Scholar]
  8. HuangJ.Z. ChenM. ChenD. GaoX.C. ZhuS. HuangH. HuM. ZhuH. YanG.R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth.Mol. Cell2017681171184.e610.1016/j.molcel.2017.09.01528985503
    [Google Scholar]
  9. D’LimaN.G. MaJ. WinklerL. ChuQ. LohK.H. CorpuzE.O. BudnikB.A. Lykke-AndersenJ. SaghatelianA. SlavoffS.A. A human microprotein that interacts with the mRNA decapping complex.Nat. Chem. Biol.201713217418010.1038/nchembio.224927918561
    [Google Scholar]
  10. MatsumotoA. PasutA. MatsumotoM. YamashitaR. FungJ. MonteleoneE. SaghatelianA. NakayamaK.I. ClohessyJ.G. PandolfiP.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide.Nature2017541763622823210.1038/nature2103428024296
    [Google Scholar]
  11. JinY. FanZ. New insights into the interaction between m6A modification and lncRNA in cancer drug resistance.Cell Prolif.2024574e1357810.1111/cpr.1357837961996
    [Google Scholar]
  12. Lonsdale J, Thomas J, Salvatore M. The Genotype-Tissue Expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  13. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  14. PiperdiB. MerlaA. Perez-SolerR. Targeting angiogenesis in squamous non-small cell lung cancer.Drugs201474440341310.1007/s40265‑014‑0182‑z24578213
    [Google Scholar]
  15. WangW.L. YuD.J. ZhongM. LncRNA HAGLROS accelerates the progression of lung carcinoma via sponging microRNA-152.Eur. Rev. Med. Pharmacol. Sci.201923156531653831378893
    [Google Scholar]
  16. ChenY. ShenT. DingX. ChengL. ShengL. DuX. HAGLROS is overexpressed and promotes non-small cell lung cancer migration and invasion.Jpn. J. Clin. Oncol.20205091058106710.1093/jjco/hyaa07532484214
    [Google Scholar]
  17. LiL. ZhuH. LiX. KeY. YangS. ChengQ. Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5.Biomed. J.2021446Suppl. 2S305S31510.1016/j.bj.2020.12.00835307327
    [Google Scholar]
  18. ThakurS. CahaisV. TurkovaT. ZikmundT. RenardC. StopkaT. KorenjakM. ZavadilJ. Chromatin remodeler smarca5 is required for cancer-related processes of primary cell fitness and immortalization.Cells202211580810.3390/cells1105080835269430
    [Google Scholar]
  19. NoreroB. DufourJ.F. Should we undertake surveillance for HCC in patients with MAFLD?Ther. Adv. Endocrinol. Metab.2023142042018823116038910.1177/2042018823116038937006779
    [Google Scholar]
  20. WeiH. HuJ. PuJ. TangQ. LiW. MaR. XuZ. TanC. YaoT. WuX. LongX. WangJ. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells.Int. Immunopharmacol.201973728010.1016/j.intimp.2019.04.04931082725
    [Google Scholar]
  21. HamaouiD. SubtilA. ATG16L1 functions in cell homeostasis beyond autophagy.FEBS J.202228971779180010.1111/febs.1583333752267
    [Google Scholar]
  22. ManfiolettiG. FedeleM. Epithelial–Mesenchymal Transition (EMT).Int. J. Mol. Sci.202324141138610.3390/ijms24141138637511145
    [Google Scholar]
  23. TangG. ZhaoH. XieZ. WeiS. ChenG. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling.Bioengineered20221337829784610.1080/21655979.2022.204947235291921
    [Google Scholar]
  24. SiaD. TovarV. MoeiniA. LlovetJ.M. Intrahepatic cholangiocarcinoma: Pathogenesis and rationale for molecular therapies.Oncogene201332414861487010.1038/onc.2012.61723318457
    [Google Scholar]
  25. MaJ. FengJ. ZhouX. Long non-coding RNA HAGLROS regulates lipid metabolism reprogramming in intrahepatic cholangiocarcinoma via the mTOR signaling pathway.Exp. Mol. Pathol.202011510446610.1016/j.yexmp.2020.10446632446859
    [Google Scholar]
  26. HeY. QiS. ChenL. ZhuJ. LiangL. ChenX. ZhangH. ZhuoL. ZhaoS. LiuS. XieT. The roles and mechanisms of SREBP1 in cancer development and drug response.Genes Dis.202411410098710.1016/j.gendis.2023.04.02238560498
    [Google Scholar]
  27. YangW.J. ZhaoH.P. YuY. WangJ.H. GuoL. LiuJ.Y. PuJ. LvJ. Updates on global epidemiology, risk and prognostic factors of gastric cancer.World J. Gastroenterol.202329162452246810.3748/wjg.v29.i16.245237179585
    [Google Scholar]
  28. ChenJ.F. WuP. XiaR. YangJ. HuoX.Y. GuD.Y. TangC.J. DeW. YangF. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy.Mol. Cancer2018171610.1186/s12943‑017‑0756‑y29329543
    [Google Scholar]
  29. IgissinN. ZatonskikhV. TelmanovaZ. TulebaevR. MooreM. Laryngeal cancer: Epidemiology, etiology, and prevention: A narrative review.Iran. J. Public Health202352112248225910.18502/ijph.v52i11.1402538106821
    [Google Scholar]
  30. MaY. ZhangH. LiX. LiuY. HAGLROS promotes cell proliferation and angiogenesis and inhibits apoptosis by activating multiple signaling pathways in LSCC cells.J. Oral Pathol. Med.202251651051910.1111/jop.1324934634160
    [Google Scholar]
  31. FuD. HuangY. WangS. LiuJ. LiC. HAGLROS knockdown restrained cell proliferation, migration and invasion and facilitated apoptosis in laryngeal cancer via miR -138-5p/ CLN5 axis.J. Clin. Lab. Anal.20223612e2471210.1002/jcla.2471236347825
    [Google Scholar]
  32. BasakI. WickyH.E. McDonaldK.O. XuJ.B. PalmerJ.E. BestH.L. LefrancoisS. LeeS.Y. SchoderboeckL. HughesS.M. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis.Cell. Mol. Life Sci.202178104735476310.1007/s00018‑021‑03813‑x33792748
    [Google Scholar]
  33. YangT. HuiR. NouwsJ. SaulerM. ZengT. WuQ. Untargeted metabolomics analysis of esophageal squamous cell cancer progression.J. Transl. Med.202220112710.1186/s12967‑022‑03311‑z35287685
    [Google Scholar]
  34. GaiL. HuangY. ZhaoL. LiF. ZhuangZ. Long non-coding RNA HAGLROS regulates the proliferation, migration, and apoptosis of esophageal cancer cells via the HAGLROS-miR-206-NOTCH3 axis.J. Gastrointest. Oncol.20211252093210810.21037/jgo‑21‑58634790377
    [Google Scholar]
  35. AburjaniaZ. JangS. WhittJ. Jaskula-StzulR. ChenH. RoseJ.B. The Role of Notch3 in Cancer.Oncologist201823890091110.1634/theoncologist.2017‑067729622701
    [Google Scholar]
  36. XuX. JingJ. Advances on circRNAs contribute to carcinogenesis and progression in papillary thyroid carcinoma.Front. Endocrinol. (Lausanne)20211155524310.3389/fendo.2020.55524333551989
    [Google Scholar]
  37. GuoK. ChenL. WangY. QianK. ZhengX. SunW. SunT. WuY. WangZ. Long noncoding RNA RP11-547D24.1 regulates proliferation and migration in papillary thyroid carcinoma: Identification and validation of a novel long noncoding RNA through integrated analysis of TCGA database.Cancer Med.2019863105311910.1002/cam4.215031044550
    [Google Scholar]
  38. ZengZ. TangS. ChenL. HouH. LiuY. LiJ. LncRNA HAGLROS contribute to papillary thyroid cancer progression by modulating miR-206/HMGA2 expression.Aging (Albany NY)20231524149301494410.18632/aging.20532138112616
    [Google Scholar]
  39. HashemiM. RashidiM. HushmandiK. ten HagenT.L.M. SalimimoghadamS. TaheriazamA. EntezariM. FalahatiM. HMGA2 regulation by miRNAs in cancer: Affecting cancer hallmarks and therapy response.Pharmacol. Res.202319010673210.1016/j.phrs.2023.10673236931542
    [Google Scholar]
  40. Mutlu IcduyguF. AkgunE. OzgozA. Hekimler OzturkK. SengulD. AlpE. Upregulation and the clinical significance of KCNQ1OT1 and HAGLROS lncRNAs in papillary thyroid cancer: An observational study.Medicine (Baltimore)202310229e3437910.1097/MD.000000000003437937478216
    [Google Scholar]
  41. DobruchJ. OszczudłowskiM. Bladder cancer: Current challenges and future directions.Medicina (Kaunas)202157874910.3390/medicina5708074934440955
    [Google Scholar]
  42. XiaoS. ZuoY. LiY. HuangY. FuS. YuanD. QiaoX. WangH. WangJ. Long noncoding RNA HAGLROS promotes the malignant progression of bladder cancer by regulating the miR-330-5p/SPRR1B axis.Front. Oncol.20221287609010.3389/fonc.2022.87609035664787
    [Google Scholar]
  43. JalaliP. YaghoobiA. RezaeeM. ZabihiM.R. PiroozkhahM. AliyariS. SalehiZ. Decoding common genetic alterations between Barrett’s esophagus and esophageal adenocarcinoma: A bioinformatics analysis.Heliyon20241010e3119410.1016/j.heliyon.2024.e3119438803922
    [Google Scholar]
  44. WangJ. LuA. ChenL. LncRNAs in ovarian cancer.Clin. Chim. Acta2019490172710.1016/j.cca.2018.12.01330553863
    [Google Scholar]
  45. YangM. ZhaiZ. ZhangY. WangY. Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer.Arch. Gynecol. Obstet.2019300370371010.1007/s00404‑019‑05218‑531197441
    [Google Scholar]
  46. ZhuL. MeiM. Interference of long non-coding RNA HAGLROS inhibits the proliferation and promotes the apoptosis of ovarian cancer cells by targeting miR-26b-5p.Exp. Ther. Med.202122287910.3892/etm.2021.1031134194557
    [Google Scholar]
  47. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast Cancer Statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  48. WillM. LiangJ. MetcalfeC. ChandarlapatyS. Therapeutic resistance to anti-oestrogen therapy in breast cancer.Nat. Rev. Cancer2023231067368510.1038/s41568‑023‑00604‑337500767
    [Google Scholar]
  49. MengZ. ZhangR. WuX. PiaoZ. ZhangM. JinT. LncRNA HAGLROS promotes breast cancer evolution through miR-135b-3p/COL10A1 axis and exosome-mediated macrophage M2 polarization.Cell Death Dis.202415863310.1038/s41419‑024‑07020‑x39198393
    [Google Scholar]
  50. ZhangW. YanY. PengJ. ThakurA. BaiN. YangK. XuZ. Decoding roles of exosomal lncRNAs in tumor-immune regulation and therapeutic potential.Cancers (Basel)202215128610.3390/cancers1501028636612282
    [Google Scholar]
  51. ZagamiP. CareyL.A. Triple negative breast cancer: Pitfalls and progress.NPJ Breast Cancer2022819510.1038/s41523‑022‑00468‑035987766
    [Google Scholar]
  52. ZhengL. HeJ. LiM. YuanH. LiH. HuF. ChenL. TangW. ShengM. Clinical significance and mechanism of long noncoding RNA HAGLROS in triple negative breast cancer.Pathol. Res. Pract.202223115381010.1016/j.prp.2022.15381035182891
    [Google Scholar]
  53. KarimA. ShaikhyzadaK. AbulkhanovaN. AltynA. IbraimovB. NurgaliyevD. PoddigheD. Pediatric extra-renal nephroblastoma (Wilms’ tumor): A systematic case-based review.Cancers (Basel)2023159256310.3390/cancers1509256337174029
    [Google Scholar]
  54. LiP. ZhangK. TangS. TangW. Knockdown of lncRNA HAGLROS inhibits metastasis and promotes apoptosis in nephroblastoma cells by inhibition of autophagy.Bioengineered20221337552756210.1080/21655979.2021.202398435358010
    [Google Scholar]
  55. ChenC. XieL. RenT. HuangY. XuJ. GuoW. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs.Cancer Lett.202150011010.1016/j.canlet.2020.12.02433359211
    [Google Scholar]
  56. WuP.F. DaiZ.T. LiuW.D. ZhaoZ.X. KongY.H. Elevated long noncoding RNA HAGLROS expression correlates with clinical progression and prognosis in osteosarcoma.Eur. Rev. Med. Pharmacol. Sci.20192341428143330840263
    [Google Scholar]
  57. DanilovA.V. MagagnoliM. MatasarM.J. Translating the biology of diffuse large b-cell lymphoma into treatment.Oncologist2022271576610.1093/oncolo/oyab00435305092
    [Google Scholar]
  58. ShuL. GuoK. LinZ.H. LiuH. Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100.J. Clin. Lab. Anal.2022361e2416810.1002/jcla.2416834888946
    [Google Scholar]
  59. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  60. SunQ. HaoQ. PrasanthK.V. Nuclear long noncoding RNAs: Key regulators of gene expression.Trends Genet.201834214215710.1016/j.tig.2017.11.00529249332
    [Google Scholar]
  61. YaoR.W. WangY. ChenL.L. Cellular functions of long noncoding RNAs.Nat. Cell Biol.201921554255110.1038/s41556‑019‑0311‑831048766
    [Google Scholar]
  62. BianS. WangY. ZhouY. WangW. GuoL. WenL. FuW. ZhouX. TangF. Integrative single-cell multiomics analyses dissect molecular signatures of intratumoral heterogeneities and differentiation states of human gastric cancer.Natl. Sci. Rev.2023106nwad09410.1093/nsr/nwad09437347037
    [Google Scholar]
  63. PangB. HaoY. Integrated analysis of the transcriptome profile reveals the potential roles played by long noncoding rnas in immunotherapy for sarcoma.Front. Oncol.20211169048610.3389/fonc.2021.69048634178688
    [Google Scholar]
  64. DolginE. Cancer’s new normal.Nat. Cancer20212121248125010.1038/s43018‑021‑00304‑735121920
    [Google Scholar]
  65. Parke.g. PyoS.J. CuiY. YoonS.H. NamJ.W. Tumor immune microenvironment lncRNAs.Brief. Bioinform.2022231bbab50410.1093/bib/bbab50434891154
    [Google Scholar]
  66. YuanL. XuZ.Y. RuanS.M. MoS. QinJ.J. ChengX.D. Long non- coding RNAs towards precision medicine in gastric cancer: Early diagnosis, treatment, and drug resistance.Mol. Cancer20201919610.1186/s12943‑020‑01219‑032460771
    [Google Scholar]
  67. DayJ.R. JostM. ReynoldsM.A. GroskopfJ. RittenhouseH. PCA3: From basic molecular science to the clinical lab.Cancer Lett.201130111610.1016/j.canlet.2010.10.01921093148
    [Google Scholar]
  68. NappiF. Non-coding RNA-targeted therapy: A state-of-the-art review.Int. J. Mol. Sci.2024257363010.3390/ijms2507363038612441
    [Google Scholar]
  69. PengY. TangD. ZhaoM. KajiyamaH. KikkawaF. KondoY. Long non-coding RNA: A recently accentuated molecule in chemoresistance in cancer.Cancer Metastasis Rev.202039382583510.1007/s10555‑020‑09910‑w32594276
    [Google Scholar]
  70. VaidyaA.M. SunZ. AyatN. SchilbA. LiuX. JiangH. SunD. ScheidtJ. QianV. HeS. GilmoreH. SchiemannW.P. LuZ.R. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy.Bioconjug. Chem.201930390791910.1021/acs.bioconjchem.9b0002830739442
    [Google Scholar]
  71. TaianaE. FavasuliV. RonchettiD. TodoertiK. PelizzoniF. ManzoniM. BarbieriM. FabrisS. SilvestrisI. Gallo CantafioM.E. PlatonovaN. ZuccalàV. MalteseL. SonciniD. RubertiS. CeaM. ChiaramonteR. AmodioN. TassoneP. AgnelliL. NeriA. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma.Leukemia202034123424410.1038/s41375‑019‑0542‑531427718
    [Google Scholar]
  72. XiaoG. YaoJ. KongD. YeC. ChenR. LiL. ZengT. WangL. ZhangW. ShiX. ZhouT. LiJ. WangY. XuC.L. JiangJ. SunY. The long noncoding RNA TTTY15, which is located on the Y chromosome, promotes prostate cancer progression by sponging let-7.Eur. Urol.201976331532610.1016/j.eururo.2018.11.01230527798
    [Google Scholar]
  73. ChenY. LiZ. ChenX. ZhangS. Long non-coding RNAs: From disease code to drug role.Acta Pharm. Sin. B202111234035410.1016/j.apsb.2020.10.00133643816
    [Google Scholar]
  74. IslamM.R. RaufA. AlashS. FakirM.N.H. ThufaG.K. SowaM.S. MukherjeeD. KumarH. HussainM.S. AljohaniA.S.M. ImranM. Al AbdulmonemW. ThiruvengadamR. ThiruvengadamM. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways.Med. Oncol.202441613410.1007/s12032‑024‑02333‑538703282
    [Google Scholar]
  75. LiZ. GaoY. LiL. XieS. Curcumin inhibits papillary thyroid cancer cell proliferation by regulating lncRNA LINC00691.Anal. Cell. Pathol. (Amst.)2022202211010.1155/2022/594667035256924
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501345632241022055444
Loading
/content/journals/cdt/10.2174/0113894501345632241022055444
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; HAGLR; HAGLROS; long non-coding RNA; prognosis; targeted therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test