Skip to content
2000
image of LncRNA HAGLROS: A Vital Oncogenic Propellant in Various Human Cancers

Abstract

HAGLR Opposite Strand lncRNA (HAGLROS) is a long non-coding RNA (lncRNA) located on the long arm of human chromosome 2 at locus 2q31.1. Emerging evidence highlights HAGLROS as a pivotal player in human cancers, characterized by its significant upregulation across multiple malignancies where it functions as an oncogenic driver. Its aberrant expression is closely linked to the initiation and progression of 13 distinct cancer types, notably correlating with adverse clinical outcomes and reduced overall survival rates in 9 of these cancer types. Mechanistically, HAGLROS is under the regulatory influence of the transcription factor STAT3, exerts competitive binding to 9 miRNAs, activates 5 signaling pathways pivotal for cancer cell proliferation and metastasis, as well as intricately modulates gene expression profiles. Given its multifaceted roles, HAGLROS emerges as a promising candidate for cancer diagnostics and prognostics. Moreover, its potential as a therapeutic target holds considerable promise for novel treatment strategies in oncology. This review synthesizes current research on HAGLROS, covering its expression patterns, biological roles, and clinical significance in cancer. By shedding light on these aspects, this review aims to contribute new perspectives that advance our understanding of cancer biology, enhance diagnostic accuracy, refine prognostic assessments, and pave the way for targeted therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501345632241022055444
2024-10-31
2025-01-29
Loading full text...

Full text loading...

References

  1. Schwartz S.M. Epidemiology of Cancer. Clin. Chem. 2024 70 1 140 149 10.1093/clinchem/hvad202 38175589
    [Google Scholar]
  2. Pérez-Herrero E. Lanier O.L. Krishnan N. D’Andrea A. Peppas N.A. Drug delivery methods for cancer immunotherapy. Drug Deliv. Transl. Res. 2024 14 1 30 61 10.1007/s13346‑023‑01405‑9 37587290
    [Google Scholar]
  3. Asgary R. Cancer care and treatment during homelessness. Lancet Oncol. 2024 25 2 e84 e90 10.1016/S1470‑2045(23)00567‑3 38301706
    [Google Scholar]
  4. Yan H. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  5. Nemeth K. Bayraktar R. Ferracin M. Calin G.A. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 2024 25 3 211 232 10.1038/s41576‑023‑00662‑1 37968332
    [Google Scholar]
  6. Wang K.C. Chang H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011 43 6 904 914 10.1016/j.molcel.2011.08.018 21925379
    [Google Scholar]
  7. Zhang M. Zhao K. Xu X. Yang Y. Yan S. Wei P. Liu H. Xu J. Xiao F. Zhou H. Yang X. Huang N. Liu J. He K. Xie K. Zhang G. Huang S. Zhang N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 2018 9 1 4475 10.1038/s41467‑018‑06862‑2 30367041
    [Google Scholar]
  8. Huang J.Z. Chen M. Chen D. Gao X.C. Zhu S. Huang H. Hu M. Zhu H. Yan G.R. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol. Cell 2017 68 1 171 184.e6 10.1016/j.molcel.2017.09.015 28985503
    [Google Scholar]
  9. D’Lima N.G. Ma J. Winkler L. Chu Q. Loh K.H. Corpuz E.O. Budnik B.A. Lykke-Andersen J. Saghatelian A. Slavoff S.A. A human microprotein that interacts with the mRNA decapping complex. Nat. Chem. Biol. 2017 13 2 174 180 10.1038/nchembio.2249 27918561
    [Google Scholar]
  10. Matsumoto A. Pasut A. Matsumoto M. Yamashita R. Fung J. Monteleone E. Saghatelian A. Nakayama K.I. Clohessy J.G. Pandolfi P.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 2017 541 7636 228 232 10.1038/nature21034 28024296
    [Google Scholar]
  11. Jin Y. Fan Z. New insights into the interaction between m6A modification and lncRNA in cancer drug resistance. Cell Prolif. 2024 57 4 e13578 10.1111/cpr.13578 37961996
    [Google Scholar]
  12. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  13. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  14. Piperdi B. Merla A. Perez-Soler R. Targeting angiogenesis in squamous non-small cell lung cancer. Drugs 2014 74 4 403 413 10.1007/s40265‑014‑0182‑z 24578213
    [Google Scholar]
  15. Wang W.L. Yu D.J. Zhong M. LncRNA HAGLROS accelerates the progression of lung carcinoma via sponging microRNA-152. Eur. Rev. Med. Pharmacol. Sci. 2019 23 15 6531 6538 31378893
    [Google Scholar]
  16. Chen Y. Shen T. Ding X. Cheng L. Sheng L. Du X. HAGLROS is overexpressed and promotes non-small cell lung cancer migration and invasion. Jpn. J. Clin. Oncol. 2020 50 9 1058 1067 10.1093/jjco/hyaa075 32484214
    [Google Scholar]
  17. Li L. Zhu H. Li X. Ke Y. Yang S. Cheng Q. Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5. Biomed. J. 2021 44 6 Suppl. 2 S305 S315 10.1016/j.bj.2020.12.008 35307327
    [Google Scholar]
  18. Thakur S. Cahais V. Turkova T. Zikmund T. Renard C. Stopka T. Korenjak M. Zavadil J. Chromatin Remodeler Smarca5 Is Required for Cancer-Related Processes of Primary Cell Fitness and Immortalization. Cells 2022 11 5 808 10.3390/cells11050808 35269430
    [Google Scholar]
  19. Norero B. Dufour J.F. Should we undertake surveillance for HCC in patients with MAFLD? Ther. Adv. Endocrinol. Metab. 2023 14 20420188231160389 10.1177/20420188231160389 37006779
    [Google Scholar]
  20. Wei H. Hu J. Pu J. Tang Q. Li W. Ma R. Xu Z. Tan C. Yao T. Wu X. Long X. Wang J. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells. Int. Immunopharmacol. 2019 73 72 80 10.1016/j.intimp.2019.04.049 31082725
    [Google Scholar]
  21. Hamaoui D. Subtil A. ATG16L1 functions in cell homeostasis beyond autophagy. FEBS J. 2022 289 7 1779 1800 10.1111/febs.15833 33752267
    [Google Scholar]
  22. Manfioletti G. Fedele M. Epithelial–Mesenchymal Transition (EMT). Int. J. Mol. Sci. 2023 24 14 11386 10.3390/ijms241411386 37511145
    [Google Scholar]
  23. Tang G. Zhao H. Xie Z. Wei S. Chen G. Long non-coding RNA HAGLROS facilitates tumorigenesis and progression in hepatocellular carcinoma by sponging miR-26b-5p to up-regulate karyopherin α2 (KPNA2) and inactivate p53 signaling. Bioengineered 2022 13 3 7829 7846 10.1080/21655979.2022.2049472 35291921
    [Google Scholar]
  24. Sia D. Tovar V. Moeini A. Llovet J.M. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene 2013 32 41 4861 4870 10.1038/onc.2012.617 23318457
    [Google Scholar]
  25. Ma J. Feng J. Zhou X. Long non-coding RNA HAGLROS regulates lipid metabolism reprogramming in intrahepatic cholangiocarcinoma via the mTOR signaling pathway. Exp. Mol. Pathol. 2020 115 104466 10.1016/j.yexmp.2020.104466 32446859
    [Google Scholar]
  26. He Y. Qi S. Chen L. Zhu J. Liang L. Chen X. Zhang H. Zhuo L. Zhao S. Liu S. Xie T. The roles and mechanisms of SREBP1 in cancer development and drug response. Genes Dis. 2024 11 4 100987 10.1016/j.gendis.2023.04.022 38560498
    [Google Scholar]
  27. Yang W.J. Zhao H.P. Yu Y. Wang J.H. Guo L. Liu J.Y. Pu J. Lv J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J. Gastroenterol. 2023 29 16 2452 2468 10.3748/wjg.v29.i16.2452 37179585
    [Google Scholar]
  28. Chen J.F. Wu P. Xia R. Yang J. Huo X.Y. Gu D.Y. Tang C.J. De W. Yang F. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol. Cancer 2018 17 1 6 10.1186/s12943‑017‑0756‑y 29329543
    [Google Scholar]
  29. Igissin N. Zatonskikh V. Telmanova Z. Tulebaev R. Moore M. Laryngeal Cancer: Epidemiology, Etiology, and Prevention: A Narrative Review. Iran. J. Public Health 2023 52 11 2248 2259 10.18502/ijph.v52i11.14025 38106821
    [Google Scholar]
  30. Ma Y. Zhang H. Li X. Liu Y. HAGLROS promotes cell proliferation and angiogenesis and inhibits apoptosis by activating multiple signaling pathways in LSCC cells. J. Oral Pathol. Med. 2022 51 6 510 519 10.1111/jop.13249 34634160
    [Google Scholar]
  31. Fu D. Huang Y. Wang S. Liu J. Li C. HAGLROS knockdown restrained cell proliferation, migration and invasion and facilitated apoptosis in laryngeal cancer via miR -138-5p/ CLN5 axis. J. Clin. Lab. Anal. 2022 36 12 e24712 10.1002/jcla.24712 36347825
    [Google Scholar]
  32. Basak I. Wicky H.E. McDonald K.O. Xu J.B. Palmer J.E. Best H.L. Lefrancois S. Lee S.Y. Schoderboeck L. Hughes S.M. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. Cell. Mol. Life Sci. 2021 78 10 4735 4763 10.1007/s00018‑021‑03813‑x 33792748
    [Google Scholar]
  33. Yang T. Hui R. Nouws J. Sauler M. Zeng T. Wu Q. Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J. Transl. Med. 2022 20 1 127 10.1186/s12967‑022‑03311‑z 35287685
    [Google Scholar]
  34. Gai L. Huang Y. Zhao L. Li F. Zhuang Z. Long non-coding RNA HAGLROS regulates the proliferation, migration, and apoptosis of esophageal cancer cells via the HAGLROS-miR-206-NOTCH3 axis. J. Gastrointest. Oncol. 2021 12 5 2093 2108 10.21037/jgo‑21‑586 34790377
    [Google Scholar]
  35. Aburjania Z. Jang S. Whitt J. Jaskula-Stzul R. Chen H. Rose J.B. The Role of Notch3 in Cancer. Oncologist 2018 23 8 900 911 10.1634/theoncologist.2017‑0677 29622701
    [Google Scholar]
  36. Xu X. Jing J. Advances on circRNAs Contribute to Carcinogenesis and Progression in Papillary Thyroid Carcinoma. Front. Endocrinol. (Lausanne) 2021 11 555243 10.3389/fendo.2020.555243 33551989
    [Google Scholar]
  37. Guo K. Chen L. Wang Y. Qian K. Zheng X. Sun W. Sun T. Wu Y. Wang Z. Long noncoding RNA RP11-547D24.1 regulates proliferation and migration in papillary thyroid carcinoma: Identification and validation of a novel long noncoding RNA through integrated analysis of TCGA database. Cancer Med. 2019 8 6 3105 3119 10.1002/cam4.2150 31044550
    [Google Scholar]
  38. Zeng Z. Tang S. Chen L. Hou H. Liu Y. Li J. LncRNA HAGLROS contribute to papillary thyroid cancer progression by modulating miR-206/HMGA2 expression. Aging (Albany NY) 2023 15 24 14930 14944 10.18632/aging.205321 38112616
    [Google Scholar]
  39. Hashemi M. Rashidi M. Hushmandi K. ten Hagen T.L.M. Salimimoghadam S. Taheriazam A. Entezari M. Falahati M. HMGA2 regulation by miRNAs in cancer: Affecting cancer hallmarks and therapy response. Pharmacol. Res. 2023 190 106732 10.1016/j.phrs.2023.106732 36931542
    [Google Scholar]
  40. Mutlu Icduygu F. Akgun E. Ozgoz A. Hekimler Ozturk K. Sengul D. Alp E. Upregulation and the clinical significance of KCNQ1OT1 and HAGLROS lncRNAs in papillary thyroid cancer: An observational study. Medicine (Baltimore) 2023 102 29 e34379 10.1097/MD.0000000000034379 37478216
    [Google Scholar]
  41. Dobruch J. Oszczudłowski M. Bladder Cancer: Current Challenges and Future Directions. Medicina (Kaunas) 2021 57 8 749 10.3390/medicina57080749 34440955
    [Google Scholar]
  42. Xiao S. Zuo Y. Li Y. Huang Y. Fu S. Yuan D. Qiao X. Wang H. Wang J. Long Noncoding RNA HAGLROS Promotes the Malignant Progression of Bladder Cancer by Regulating the miR-330-5p/SPRR1B Axis. Front. Oncol. 2022 12 876090 10.3389/fonc.2022.876090 35664787
    [Google Scholar]
  43. Jalali P. Yaghoobi A. Rezaee M. Zabihi M.R. Piroozkhah M. Aliyari S. Salehi Z. Decoding common genetic alterations between Barrett’s esophagus and esophageal adenocarcinoma: A bioinformatics analysis. Heliyon 2024 10 10 e31194 10.1016/j.heliyon.2024.e31194 38803922
    [Google Scholar]
  44. Wang J. Lu A. Chen L. LncRNAs in ovarian cancer. Clin. Chim. Acta 2019 490 17 27 10.1016/j.cca.2018.12.013 30553863
    [Google Scholar]
  45. Yang M. Zhai Z. Zhang Y. Wang Y. Clinical significance and oncogene function of long noncoding RNA HAGLROS overexpression in ovarian cancer. Arch. Gynecol. Obstet. 2019 300 3 703 710 10.1007/s00404‑019‑05218‑5 31197441
    [Google Scholar]
  46. Zhu L. Mei M. Interference of long non‑coding RNA HAGLROS inhibits the proliferation and promotes the apoptosis of ovarian cancer cells by targeting miR‑26b‑5p. Exp. Ther. Med. 2021 22 2 879 10.3892/etm.2021.10311 34194557
    [Google Scholar]
  47. Giaquinto A.N. Sung H. Miller K.D. Kramer J.L. Newman L.A. Minihan A. Jemal A. Siegel R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  48. Will M. Liang J. Metcalfe C. Chandarlapaty S. Therapeutic resistance to anti-oestrogen therapy in breast cancer. Nat. Rev. Cancer 2023 23 10 673 685 10.1038/s41568‑023‑00604‑3 37500767
    [Google Scholar]
  49. Meng Z. Zhang R. Wu X. Piao Z. Zhang M. Jin T. LncRNA HAGLROS promotes breast cancer evolution through miR-135b-3p/COL10A1 axis and exosome-mediated macrophage M2 polarization. Cell Death Dis. 2024 15 8 633 10.1038/s41419‑024‑07020‑x 39198393
    [Google Scholar]
  50. Zhang W. Yan Y. Peng J. Thakur A. Bai N. Yang K. Xu Z. Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers (Basel) 2022 15 1 286 10.3390/cancers15010286 36612282
    [Google Scholar]
  51. Zagami P. Carey L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022 8 1 95 10.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  52. Zheng L. He J. Li M. Yuan H. Li H. Hu F. Chen L. Tang W. Sheng M. Clinical significance and mechanism of long noncoding RNA HAGLROS in triple negative breast cancer. Pathol. Res. Pract. 2022 231 153810 10.1016/j.prp.2022.153810 35182891
    [Google Scholar]
  53. Karim A. Shaikhyzada K. Abulkhanova N. Altyn A. Ibraimov B. Nurgaliyev D. Poddighe D. Pediatric Extra-Renal Nephroblastoma (Wilms’ Tumor): A Systematic Case-Based Review. Cancers (Basel) 2023 15 9 2563 10.3390/cancers15092563 37174029
    [Google Scholar]
  54. Li P. Zhang K. Tang S. Tang W. Knockdown of lncRNA HAGLROS inhibits metastasis and promotes apoptosis in nephroblastoma cells by inhibition of autophagy. Bioengineered 2022 13 3 7552 7562 10.1080/21655979.2021.2023984 35358010
    [Google Scholar]
  55. Chen C. Xie L. Ren T. Huang Y. Xu J. Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021 500 1 10 10.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  56. Wu P.F. Dai Z.T. Liu W.D. Zhao Z.X. Kong Y.H. Elevated long noncoding RNA HAGLROS expression correlates with clinical progression and prognosis in osteosarcoma. Eur. Rev. Med. Pharmacol. Sci. 2019 23 4 1428 1433 30840263
    [Google Scholar]
  57. Danilov A.V. Magagnoli M. Matasar M.J. Translating the Biology of Diffuse Large B-cell Lymphoma Into Treatment. Oncologist 2022 27 1 57 66 10.1093/oncolo/oyab004 35305092
    [Google Scholar]
  58. Shu L. Guo K. Lin Z.H. Liu H. Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100. J. Clin. Lab. Anal. 2022 36 1 e24168 10.1002/jcla.24168 34888946
    [Google Scholar]
  59. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  60. Sun Q. Hao Q. Prasanth K.V. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet. 2018 34 2 142 157 10.1016/j.tig.2017.11.005 29249332
    [Google Scholar]
  61. Yao R.W. Wang Y. Chen L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 2019 21 5 542 551 10.1038/s41556‑019‑0311‑8 31048766
    [Google Scholar]
  62. Bian S. Wang Y. Zhou Y. Wang W. Guo L. Wen L. Fu W. Zhou X. Tang F. Integrative single-cell multiomics analyses dissect molecular signatures of intratumoral heterogeneities and differentiation states of human gastric cancer. Natl. Sci. Rev. 2023 10 6 nwad094 10.1093/nsr/nwad094 37347037
    [Google Scholar]
  63. Pang B. Hao Y. Integrated Analysis of the Transcriptome Profile Reveals the Potential Roles Played by Long Noncoding RNAs in Immunotherapy for Sarcoma. Front. Oncol. 2021 11 690486 10.3389/fonc.2021.690486 34178688
    [Google Scholar]
  64. Dolgin E. Cancer’s new normal. Nat. Cancer 2021 2 12 1248 1250 10.1038/s43018‑021‑00304‑7 35121920
    [Google Scholar]
  65. Park e.g. Pyo S.J. Cui Y. Yoon S.H. Nam J.W. Tumor immune microenvironment lncRNAs. Brief. Bioinform. 2022 23 1 bbab504 10.1093/bib/bbab504 34891154
    [Google Scholar]
  66. Yuan L. Xu Z.Y. Ruan S.M. Mo S. Qin J.J. Cheng X.D. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol. Cancer 2020 19 1 96 10.1186/s12943‑020‑01219‑0 32460771
    [Google Scholar]
  67. Day J.R. Jost M. Reynolds M.A. Groskopf J. Rittenhouse H. PCA3: From basic molecular science to the clinical lab. Cancer Lett. 2011 301 1 1 6 10.1016/j.canlet.2010.10.019 21093148
    [Google Scholar]
  68. Nappi F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int. J. Mol. Sci. 2024 25 7 3630 10.3390/ijms25073630 38612441
    [Google Scholar]
  69. Peng Y. Tang D. Zhao M. Kajiyama H. Kikkawa F. Kondo Y. Long non-coding RNA: A recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev. 2020 39 3 825 835 10.1007/s10555‑020‑09910‑w 32594276
    [Google Scholar]
  70. Vaidya A.M. Sun Z. Ayat N. Schilb A. Liu X. Jiang H. Sun D. Scheidt J. Qian V. He S. Gilmore H. Schiemann W.P. Lu Z.R. Systemic Delivery of Tumor-Targeting siRNA Nanoparticles against an Oncogenic LncRNA Facilitates Effective Triple-Negative Breast Cancer Therapy. Bioconjug. Chem. 2019 30 3 907 919 10.1021/acs.bioconjchem.9b00028 30739442
    [Google Scholar]
  71. Taiana E. Favasuli V. Ronchetti D. Todoerti K. Pelizzoni F. Manzoni M. Barbieri M. Fabris S. Silvestris I. Gallo Cantafio M.E. Platonova N. Zuccalà V. Maltese L. Soncini D. Ruberti S. Cea M. Chiaramonte R. Amodio N. Tassone P. Agnelli L. Neri A. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia 2020 34 1 234 244 10.1038/s41375‑019‑0542‑5 31427718
    [Google Scholar]
  72. Xiao G. Yao J. Kong D. Ye C. Chen R. Li L. Zeng T. Wang L. Zhang W. Shi X. Zhou T. Li J. Wang Y. Xu C.L. Jiang J. Sun Y. The Long Noncoding RNA TTTY15, Which Is Located on the Y Chromosome, Promotes Prostate Cancer Progression by Sponging let-7. Eur. Urol. 2019 76 3 315 326 10.1016/j.eururo.2018.11.012 30527798
    [Google Scholar]
  73. Chen Y. Li Z. Chen X. Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B 2021 11 2 340 354 10.1016/j.apsb.2020.10.001 33643816
    [Google Scholar]
  74. Islam M.R. Rauf A. Alash S. Fakir M.N.H. Thufa G.K. Sowa M.S. Mukherjee D. Kumar H. Hussain M.S. Aljohani A.S.M. Imran M. Al Abdulmonem W. Thiruvengadam R. Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med. Oncol. 2024 41 6 134 10.1007/s12032‑024‑02333‑5 38703282
    [Google Scholar]
  75. Li Z. Gao Y. Li L. Xie S. Curcumin Inhibits Papillary Thyroid Cancer Cell Proliferation by Regulating lncRNA LINC00691. Anal. Cell. Pathol. (Amst.) 2022 2022 1 10 10.1155/2022/5946670 35256924
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501345632241022055444
Loading
/content/journals/cdt/10.2174/0113894501345632241022055444
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; HAGLROS ; targeted therapy ; prognosis ; LncRNA ; HAGLR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test