Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Drug discovery is a complex and expensive procedure involving several timely and costly phases through which new potential pharmaceutical compounds must pass to get approved. One of these critical steps is the identification and optimization of lead compounds, which has been made more accessible by the introduction of computational methods, including deep learning (DL) techniques. Diverse DL model architectures have been put forward to learn the vast landscape of interaction between proteins and ligands and predict their affinity, helping in the identification of lead compounds.

Objective

This survey fills a gap in previous research by comprehensively analyzing the most commonly used datasets and discussing their quality and limitations. It also offers a comprehensive classification of the most recent DL methods in the context of protein-ligand binding affinity prediction (BAP), providing a fresh perspective on this evolving field.

Methods

We thoroughly examine commonly used datasets for BAP and their inherent characteristics. Our exploration extends to various preprocessing steps and DL techniques, including graph neural networks, convolutional neural networks, and transformers, which are found in the literature. We conducted extensive literature research to ensure that the most recent deep learning approaches for BAP were included by the time of writing this manuscript.

Results

The systematic approach used for the present study highlighted inherent challenges to BAP DL, such as data quality, model interpretability, and explainability, and proposed considerations for future research directions. We present valuable insights to accelerate the development of more effective and reliable DL models for BAP within the research community.

Conclusion

The present study can considerably enhance future research on predicting affinity between protein and ligand molecules, hence further improving the overall drug development process.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501330963240905083020
2024-09-24
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cdt/25/15/CDT-25-15-04.html?itemId=/content/journals/cdt/10.2174/0113894501330963240905083020&mimeType=html&fmt=ahah

References

  1. AshburnT.T. ThorK.B. Drug repositioning: identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov.20043867368310.1038/nrd146815286734
    [Google Scholar]
  2. MylonasS.K. AxenopoulosA. DarasP. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins.Bioinformatics202137121681169010.1093/bioinformatics/btab00933471069
    [Google Scholar]
  3. WassM.N. KelleyL.A. SternbergM.J.E. 3DLigandSite: predicting ligand-binding sites using similar structures.Nucleic Acids Res.2010382W469W47310.1093/nar/gkq406
    [Google Scholar]
  4. McNuttA.T. FrancoeurP. AggarwalR. MasudaT. MeliR. RagozaM. SunseriJ. KoesD.R. GNINA 1.0: molecular docking with deep learning.J. Cheminform.20211314310.1186/s13321‑021‑00522‑234108002
    [Google Scholar]
  5. ChenL. TanX. WangD. ZhongF. LiuX. YangT. LuoX. ChenK. JiangH. ZhengM. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments.Bioinformatics202036164406441410.1093/bioinformatics/btaa52432428219
    [Google Scholar]
  6. LeeI. KeumJ. NamH. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.PLOS Comput. Biol.2019156e100712910.1371/journal.pcbi.100712931199797
    [Google Scholar]
  7. ZhangY. HuY. HanN. YangA. LiuX. CaiH. A survey of drug- target interaction and affinity prediction methods via graph neural networks.Comput. Biol. Med.202316310713610.1016/j.compbiomed.2023.10713637329615
    [Google Scholar]
  8. BagherianM. SabetiE. WangK. SartorM.A. Nikolovska-ColeskaZ. NajarianK. Machine learning approaches and databases for prediction of drug–target interaction: a survey paper.Brief. Bioinform.202122124726910.1093/bib/bbz15731950972
    [Google Scholar]
  9. WangD.D. ZhuM. YanH. Computationally predicting binding affinity in protein–ligand complexes: free energy-based simulations and machine learning-based scoring functions.Brief. Bioinform.2021223bbaa10710.1093/bib/bbaa10732591817
    [Google Scholar]
  10. WangY. JiaoQ. WangJ. CaiX. ZhaoW. CuiX. Prediction of protein-ligand binding affinity with deep learning.Comput. Struct. Biotechnol. J.2023215796580610.1016/j.csbj.2023.11.009
    [Google Scholar]
  11. MeliR. MorrisG.M. BigginP.C. Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review.Front. Bioinform.2022288598310.3389/fbinf.2022.88598336187180
    [Google Scholar]
  12. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  13. MullardA. New drugs cost US$2.6 billion to develop.Nat. Rev. Drug Discov.2014131287787710.1038/nrd450725435204
    [Google Scholar]
  14. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.01226928437
    [Google Scholar]
  15. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  16. DudleyJ.T. DeshpandeT. ButteA.J. Exploiting drug-disease relationships for computational drug repositioning.Brief. Bioinform.201112430331110.1093/bib/bbr01321690101
    [Google Scholar]
  17. AcharyaC. CoopA. PolliJ.E. MackerellA.D.Jr Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach.Curr. Computeraided Drug Des.201171102210.2174/15734091179374354720807187
    [Google Scholar]
  18. GoodsellD.S. OlsonA.J. Automated docking of substrates to proteins by simulated annealing.Proteins19908319520210.1002/prot.3400803022281083
    [Google Scholar]
  19. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. CohenJ. Mol. Biol.1997267372774810.1006/jmbi.1996.0897
    [Google Scholar]
  20. ChenB. ButteA.J. Leveraging big data to transform target selection and drug discovery.Clin. Pharmacol. Ther.201699328529710.1002/cpt.31826659699
    [Google Scholar]
  21. HuangH. ShuklaH. WuC. SaxenaS. Challenges and solutions in proteomics.Curr. Genomics200781212810.2174/13892020778007691018645629
    [Google Scholar]
  22. LimS. LuY. ChoC.Y. SungI. KimJ. KimY. ParkS. KimS. A review on compound-protein interaction prediction methods: Data, format, representation and model.Comput. Struct. Biotechnol. J.2021191541155610.1016/j.csbj.2021.03.00433841755
    [Google Scholar]
  23. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt Consortium UniProt: the universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa110033237286
    [Google Scholar]
  24. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  25. WishartD.S. KnoxC. GuoA.C. DrugBank: a comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res.200634D668D67210.1093/nar/gkj067
    [Google Scholar]
  26. GaultonA. HerseyA. NowotkaM. BentoA.P. ChambersJ. MendezD. MutowoP. AtkinsonF. BellisL.J. Cibrián-UhalteE. DaviesM. DedmanN. KarlssonA. MagariñosM.P. OveringtonJ.P. PapadatosG. SmitI. LeachA.R. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw107427899562
    [Google Scholar]
  27. WangR. FangX. LuY. WangS. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures.J. Med. Chem.200447122977298010.1021/jm030580l15163179
    [Google Scholar]
  28. DavisM.I. HuntJ.P. HerrgardS. CiceriP. WodickaL.M. PallaresG. HockerM. TreiberD.K. ZarrinkarP.P. Comprehensive analysis of kinase inhibitor selectivity.Nat. Biotechnol.201129111046105110.1038/nbt.199022037378
    [Google Scholar]
  29. LiuT. LinY. WenX. JorissenR.N. GilsonM.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities.Nucleic Acids Res.2007351D198D20110.1093/nar/gkl999
    [Google Scholar]
  30. TangJ. SzwajdaA. ShakyawarS. XuT. HintsanenP. WennerbergK. AittokallioT. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis.J. Chem. Inf. Model.201454373574310.1021/ci400709d24521231
    [Google Scholar]
  31. LiY. HanL. LiuZ. WangR. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.J. Chem. Inf. Model.20145461717173610.1021/ci500081m24708446
    [Google Scholar]
  32. SuM. YangQ. DuY. FengG. LiuZ. LiY. WangR. Comparative Assessment of Scoring Functions: The CASF-2016 Update.J. Chem. Inf. Model.201959289591310.1021/acs.jcim.8b0054530481020
    [Google Scholar]
  33. LiuH. SuM. LinH.X. WangR. LiY. Public Data Set of Protein–Ligand Dissociation Kinetic Constants for Quantitative Structure–Kinetics Relationship Studies.ACS Omega2022722189851899610.1021/acsomega.2c0215635694511
    [Google Scholar]
  34. LiuZ. LiY. HanL. LiJ. LiuJ. ZhaoZ. NieW. LiuY. WangR. PDB-wide collection of binding data: current status of the PDBbind database.Bioinformatics201531340541210.1093/bioinformatics/btu62625301850
    [Google Scholar]
  35. MetzJ.T. JohnsonE.F. SoniN.B. MertaP.J. KifleL. HajdukP.J. Navigating the kinome.Nat. Chem. Biol.20117420020210.1038/nchembio.53021336281
    [Google Scholar]
  36. AnastassiadisT. DeaconS.W. DevarajanK. MaH. PetersonJ.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity.Nat. Biotechnol.201129111039104510.1038/nbt.201722037377
    [Google Scholar]
  37. WeiB. ZhangY. GongX. DeepLPI: a novel deep learning-based model for protein–ligand interaction prediction for drug repurposing.Sci. Rep.20221211820010.1038/s41598‑022‑23014‑136307509
    [Google Scholar]
  38. KunduI. PaulG. BanerjeeR. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties.RSC Advances2018822121271213710.1039/C8RA00003D35539386
    [Google Scholar]
  39. ÖztürkH. ÖzgürA. OzkirimliE. DeepDTA: deep drug– target binding affinity prediction.Bioinformatics20183417i821i82910.1093/bioinformatics/bty59330423097
    [Google Scholar]
  40. MukherjeeS. GhoshM. BasuchowdhuriP. Deep Graph Convolutional Network and LSTM based approach for predicting drug-target binding affinity202210.1137/1.9781611977172.82
  41. AbbasiK. RazzaghiP. PosoA. AmanlouM. GhasemiJ.B. Masoudi-NejadA. DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks.Bioinformatics202036174633464210.1093/bioinformatics/btaa54432462178
    [Google Scholar]
  42. WangJ. WenN. WangC. ZhaoL. ChengL. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding.J. Cheminform.20221411410.1186/s13321‑022‑00591‑x35292100
    [Google Scholar]
  43. YangZ. ZhongW. ZhaoL. ChenC.Y.C. ML-DTI: Mutual Learning Mechanism for Interpretable Drug–Target Interaction Prediction.J. Phys. Chem. Lett.202112174247426110.1021/acs.jpclett.1c0086733904745
    [Google Scholar]
  44. HuF. JiangJ. WangD. ZhuM. YinP. Multi-PLI: interpretable multi-task deep learning model for unifying protein–ligand interaction datasets.J. Cheminform.20211313010.1186/s13321‑021‑00510‑633858485
    [Google Scholar]
  45. NguyenT. LeH. QuinnT.P. NguyenT. LeT.D. VenkateshS. GraphDTA: predicting drug–target binding affinity with graph neural networks.Bioinformatics20213781140114710.1093/bioinformatics/btaa92133119053
    [Google Scholar]
  46. ÖztürkH. OzkirimliE. ÖzgürA. WideDTA: prediction of drug-target binding affinity201910.48550/ARXIV.1902.04166
  47. Aly AbdelkaderG. Ngnamsie NjimbouomS. OhT.J. KimJ.D. ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction.Comput. Biol. Chem.202310710796910.1016/j.compbiolchem.2023.10796937866117
    [Google Scholar]
  48. ZhuZ. YaoZ. ZhengX. QiG. LiY. MazurN. GaoX. GongY. CongB. Drug–target affinity prediction method based on multi-scale information interaction and graph optimization.Comput. Biol. Med.202316710762110.1016/j.compbiomed.2023.10762137907030
    [Google Scholar]
  49. FangK. ZhangY. DuS. HeJ. ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction.Comput. Biol. Med.202316410737210.1016/j.compbiomed.2023.10737237597410
    [Google Scholar]
  50. ChenY. ZhuY. ZhangZ. WangJ. WangC. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network.Methods2023211424710.1016/j.ymeth.2023.02.00736804213
    [Google Scholar]
  51. JinZ. WuT. ChenT. PanD. WangX. XieJ. QuanL. LyuQ. CAPLA: improved prediction of protein–ligand binding affinity by a deep learning approach based on a cross-attention mechanism.Bioinformatics2023392btad04910.1093/bioinformatics/btad04936688724
    [Google Scholar]
  52. ZhangL. OuyangC. LiuY. LiaoY. GaoZ. Multimodal contrastive representation learning for drug-target binding affinity prediction.Methods202322012613310.1016/j.ymeth.2023.11.00537952703
    [Google Scholar]
  53. MokayaM. ImrieF. Van HoornW.P. KaliszA. BradleyA.R. DeaneC.M. “Testing the Limits of SMILES-based De Novo Molecular Generation with Curriculum and Deep Reinforcement Learning,” Bioinformatics202210.1101/2022.07.15.500218
  54. WangL. YouZ.H. ChenX. YanX. LiuG. ZhangW. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.Curr. Protein Pept. Sci.201819544545410.2174/138920371866616111411165627842479
    [Google Scholar]
  55. Fernández-de GortariE. García-JacasC.R. Martinez-MayorgaK. Medina-FrancoJ.L. Database fingerprint (DFP): an approach to represent molecular databases.J. Cheminform.201791910.1186/s13321‑017‑0195‑128224019
    [Google Scholar]
  56. WangK. ZhouR. TangJ. LiM. GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction.Bioinformatics2023396btad34010.1093/bioinformatics/btad34037225408
    [Google Scholar]
  57. JiangM. LiZ. ZhangS. WangS. WangX. YuanQ. WeiZ. Drug–target affinity prediction using graph neural network and contact maps.RSC Advances20201035207012071210.1039/D0RA02297G35517730
    [Google Scholar]
  58. Stepniewska-DziubinskaM.M. ZielenkiewiczP. SiedleckiP. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction.Bioinformatics201834213666367410.1093/bioinformatics/bty37429757353
    [Google Scholar]
  59. KabschW. SanderC. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features.Biopolymers198322122577263710.1002/bip.3602212116667333
    [Google Scholar]
  60. LimJ. RyuS. ParkK. ChoeY.J. HamJ. KimW.Y. Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation.J. Chem. Inf. Model.20195993981398810.1021/acs.jcim.9b0038731443612
    [Google Scholar]
  61. LiaoJ. ChenH. WeiL. WeiL. GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information.Comput. Biol. Med.202215010614510.1016/j.compbiomed.2022.10614537859276
    [Google Scholar]
  62. FuH. NiuZ. ZhangC. MaJ. ChenJ. Visual Cortex Inspired CNN Model for Feature Construction in Text Analysis.Front. Comput. Neurosci.2016106410.3389/fncom.2016.0006427471460
    [Google Scholar]
  63. HeK. ZhangX. RenS. SunJ. Deep Residual Learning for Image Recognition201510.48550/ARXIV.1512.03385
  64. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Commun. ACM2017606849010.1145/3065386
    [Google Scholar]
  65. SimonyanK. ZissermanA. Very Deep Convolutional Networks for Large-Scale Image Recognition201410.48550/ARXIV.1409.1556
  66. SzegedyC. Going Deeper with Convolutions201410.48550/ARXIV.1409.4842
  67. PahikkalaT. AirolaA. PietiläS. ShakyawarS. SzwajdaA. TangJ. AittokallioT. Toward more realistic drug- target interaction predictions.Brief. Bioinform.201516232533710.1093/bib/bbu01024723570
    [Google Scholar]
  68. HeT. HeidemeyerM. BanF. CherkasovA. EsterM. SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines.J. Cheminform.2017912410.1186/s13321‑017‑0209‑z29086119
    [Google Scholar]
  69. ZhaoQ. XiaoF. YangM. LiY. WangJ. AttentionDTA: prediction of drug–target binding affinity using attention model2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)San Diego, CA, USAIEEE2019646910.1109/BIBM47256.2019.8983125
    [Google Scholar]
  70. WangK. ZhouR. LiY. LiM. DeepDTAF: a deep learning method to predict protein–ligand binding affinity.Brief. Bioinform.2021225bbab07210.1093/bib/bbab07233834190
    [Google Scholar]
  71. MajumdarS. NandiS.K. GhosalS. GhoshB. MallikW. RoyN.D. BiswasA. MukherjeeS. PalS. BhattacharyyaN. Deep Learning-Based Potential Ligand Prediction Framework for COVID-19 with Drug- Target Interaction Model.Cognit. Comput.2021Feb11310.1007/s12559‑021‑09840‑x33552306
    [Google Scholar]
  72. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. JiX.L. LiuS.Q. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods.Int. J. Mol. Sci.201617214410.3390/ijms1702014426821017
    [Google Scholar]
  73. ZhengL. FanJ. MuY. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction.ACS Omega2019414159561596510.1021/acsomega.9b0199731592466
    [Google Scholar]
  74. ShimJ. HongZ.Y. SohnI. HwangC. Prediction of drug–target binding affinity using similarity-based convolutional neural network.Sci. Rep.2021111441610.1038/s41598‑021‑83679‑y33627791
    [Google Scholar]
  75. RifaiogluA.S. Cetin AtalayR. Cansen KahramanD. DoğanT. MartinM. AtalayV. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.Bioinformatics202137569370410.1093/bioinformatics/btaa85833067636
    [Google Scholar]
  76. de SouzaJ.G. FernandesM.A.C. de Melo BarbosaR. A Novel Deep Neural Network Technique for Drug–Target Interaction.Pharmaceutics202214362510.3390/pharmaceutics1403062535336000
    [Google Scholar]
  77. MelstedP. PritchardJ.K. Efficient counting of k-mers in DNA sequences using a bloom filter.BMC Bioinformatics201112133310.1186/1471‑2105‑12‑33321831268
    [Google Scholar]
  78. RizkG. LavenierD. ChikhiR. DSK: k -mer counting with very low memory usage.Bioinformatics201329565265310.1093/bioinformatics/btt02023325618
    [Google Scholar]
  79. KiranyazS. AvciO. AbdeljaberO. InceT. GabboujM. InmanD.J. 1D convolutional neural networks and applications: A survey.Mech. Syst. Signal Process.202115110739810.1016/j.ymssp.2020.107398
    [Google Scholar]
  80. AlzubaidiL. ZhangJ. HumaidiA.J. Al-DujailiA. DuanY. Al-ShammaO. SantamaríaJ. FadhelM.A. Al-AmidieM. FarhanL. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑833816053
    [Google Scholar]
  81. WangR. LaiL. WangS. Further development and validation of empirical scoring functions for structure-based binding affinity prediction.J. Comput. Aided Mol. Des.2002161112610.1023/A:101635781188212197663
    [Google Scholar]
  82. HartshornM.J. VerdonkM.L. ChessariG. BrewertonS.C. MooijW.T.M. MortensonP.N. MurrayC.W. Diverse, high-quality test set for the validation of protein-ligand docking performance.J. Med. Chem.200750472674110.1021/jm061277y17300160
    [Google Scholar]
  83. JiménezJ. ŠkaličM. Martínez-RosellG. De FabritiisG. K DEEP : Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks.J. Chem. Inf. Model.201858228729610.1021/acs.jcim.7b0065029309725
    [Google Scholar]
  84. WangY. WeiZ. XiL. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction.BMC Bioinformatics202223122210.1186/s12859‑022‑04762‑335676617
    [Google Scholar]
  85. LiY. RezaeiM.A. LiC. LiX. DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction.2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)San Diego, CA, USAIEEE201930331010.1109/BIBM47256.2019.8982964
    [Google Scholar]
  86. KwonY. ShinW.H. KoJ. LeeJ. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.Int. J. Mol. Sci.20202122842410.3390/ijms2122842433182567
    [Google Scholar]
  87. VolkovM. TurkJ.A. DrizardN. MartinN. HoffmannB. Gaston-MathéY. RognanD. On the Frustration to Predict Binding Affinities from Protein–Ligand Structures with Deep Neural Networks.J. Med. Chem.202265117946795810.1021/acs.jmedchem.2c0048735608179
    [Google Scholar]
  88. YangJ. ShenC. HuangN. Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets.Front. Pharmacol.2020116910.3389/fphar.2020.0006932161539
    [Google Scholar]
  89. ChenL. CruzA. RamseyS. DicksonC.J. DucaJ.S. HornakV. KoesD.R. KurtzmanT. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening.PLoS One2019148e022011310.1371/journal.pone.022011331430292
    [Google Scholar]
  90. LiuQ. WangP.S. ZhuC. GainesB.B. ZhuT. BiJ. SongM. OctSurf: Efficient hierarchical voxel-based molecular surface representation for protein-ligand affinity prediction.J. Mol. Graph. Model.202110510786510.1016/j.jmgm.2021.10786533640787
    [Google Scholar]
  91. ZhaoQ. ZhaoH. ZhengK. WangJ. HyperAttentionDTI: improving drug–protein interaction prediction by sequence-based deep learning with attention mechanism.Bioinformatics202238365566210.1093/bioinformatics/btab71534664614
    [Google Scholar]
  92. ZhuX. LiuJ. ZhangJ. YangZ. YangF. ZhangX. FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction.Big Data Mining and Analytics20236111010.26599/BDMA.2022.9020005
    [Google Scholar]
  93. WangS. LiuD. DingM. DuZ. ZhongY. SongT. ZhuJ. ZhaoR. SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction.Front. Genet.20211160782410.3389/fgene.2020.60782433737946
    [Google Scholar]
  94. SchmidtR.M. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview201910.48550/ARXIV.1912.05911
  95. ShenZ. ZhangQ. HanK. HuangD.S. A Deep Learning Model for RNA-Protein Binding Preference Prediction Based on Hierarchical LSTM and Attention NetworkIEEE/ACM Transactions on Computational Biology and Bioinformatics.IEEE Computer Society PressWashington, DC, United States.20201110.1109/TCBB.2020.3007544
    [Google Scholar]
  96. JisnaV.A. JayarajP.B. Protein Structure Prediction: Conventional and Deep Learning Perspectives.Protein J.202140452254410.1007/s10930‑021‑10003‑y34050498
    [Google Scholar]
  97. PandaB. MajhiB. A novel improved prediction of protein structural class using deep recurrent neural network.Evol. Intell.202114225326010.1007/s12065‑018‑0171‑3
    [Google Scholar]
  98. WangL. ZhongX. WangS. ZhangH. LiuY. A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network.BMC Bioinformatics202122116910.1186/s12859‑021‑04102‑x33789581
    [Google Scholar]
  99. ZhaiH. HouH. LuoJ. LiuX. WuZ. WangJ. DGDTA: dynamic graph attention network for predicting drug–target binding affinity.BMC Bioinformatics202324136710.1186/s12859‑023‑05497‑537777712
    [Google Scholar]
  100. WangX. LiuJ. ZhangC. WangS. SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning.Int. J. Mol. Sci.2022237378010.3390/ijms2307378035409140
    [Google Scholar]
  101. ZhijianL. ShaohuaJ. YigaoL. MinG. GDGRU-DTA: Predicting Drug-Target Binding Affinity Based on GNN and Double GRU202210.5121/csit.2022.120703
  102. VaswaniA. Attention Is All You Need201710.48550/ARXIV.1706.03762
  103. LiH. ZhaoD. ZengJ. KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property PredictionProceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data MiningWashington DC USAACM14 August202285786710.1145/3534678.3539426
    [Google Scholar]
  104. WangS. GuoY. WangY. SunH. HuangJ. SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property PredictionProceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health InformaticsNiagara Falls NY USAACM04 September201942943610.1145/3307339.3342186
    [Google Scholar]
  105. ZhangX. GuoH. ZhangF. WangX. WuK. QiuS. LiuB. WangY. HuY. LiJ. HNetGO: protein function prediction via heterogeneous network transformer.Brief. Bioinform.2023246bbab55610.1093/bib/bbab55637861172
    [Google Scholar]
  106. JiY. ZhouZ. LiuH. DavuluriR.V. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome.Bioinformatics202137152112212010.1093/bioinformatics/btab08333538820
    [Google Scholar]
  107. LeN.Q.K. HoQ.T. NguyenT.T.D. OuY.Y. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.Brief. Bioinform.2021225bbab00510.1093/bib/bbab00533539511
    [Google Scholar]
  108. ZhangL. QinX. LiuM. LiuG. RenY. BERT-m7G: A Transformer Architecture Based on BERT and Stacking Ensemble to Identify RNA N7-Methylguanosine Sites from Sequence Information.Comput. Math. Methods Med.2021202111010.1155/2021/776476434484416
    [Google Scholar]
  109. BaidG. CookD.E. ShafinK. YunT. Llinares-LópezF. BerthetQ. BelyaevaA. TöpferA. WengerA.M. RowellW.J. YangH. KolesnikovA. AmmarW. VertJ-P. VaswaniA. McLeanC.Y. NattestadM. ChangP-C. CarrollA. DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer.Nat. Biotechnol.2022Sep10.1038/s41587‑022‑01435‑736050551
    [Google Scholar]
  110. ClauwaertJ. MenschaertG. WaegemanW. Explainability in transformer models for functional genomics.Brief. Bioinform.2021225bbab06010.1093/bib/bbab06033834200
    [Google Scholar]
  111. RaadJ. BugnonL.A. MiloneD.H. StegmayerG. miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs.Bioinformatics20223851191119710.1093/bioinformatics/btab82334875006
    [Google Scholar]
  112. HuF. HuY. ZhangJ. WangD. YinP. Structure Enhanced Protein-Drug Interaction Prediction using Transformer and Graph Embedding2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)IEEESeoul, Korea16-19 December20201010101410.1109/BIBM49941.2020.9313456
    [Google Scholar]
  113. SaadatM. BehjatiA. Zare-MirakabadF. GharaghaniS. “Drug-Target Binding Affinity Prediction Using Transformers,” Bioinformatics202110.1101/2021.09.30.462610
  114. AlleyE.C. KhimulyaG. BiswasS. AlQuraishiM. ChurchG.M. Unified rational protein engineering with sequence-based deep representation learning.Nat. Methods201916121315132210.1038/s41592‑019‑0598‑131636460
    [Google Scholar]
  115. ElnaggarA. CodeTrans: Towards Cracking the Language of Silicon’s Code Through Self-Supervised Deep Learning and High Performance Computing202110.48550/ARXIV.2104.02443
  116. LiuY. RoBERTa: A Robustly Optimized BERT Pretraining Approach201910.48550/ARXIV.1907.11692
  117. MonteiroN.R.C. OliveiraJ.L. ArraisJ.P. DTITR: End-to-end drug–target binding affinity prediction with transformers.Comput. Biol. Med.202214710577210.1016/j.compbiomed.2022.10577235777085
    [Google Scholar]
  118. RoseT. MontiN. AnandN. ShenT. “PLAPT: Protein-Ligand Binding Affinity Prediction Using Pretrained Transformers,” Bioinformatics202410.1101/2024.02.08.575577
  119. ElnaggarA. ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Deep Learning and High Performance Computing202010.48550/ARXIV.2007.06225
  120. ChithranandaS. GrandG. RamsundarB. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction202010.48550/ARXIV.2010.09885
  121. GoriM. MonfardiniG. ScarselliF. A new model for learning in graph domains2005 IEEE International Joint Conference on Neural Networks31 July 20052005Montreal, Que., CanadaIEEE72973410.1109/IJCNN.2005.1555942
    [Google Scholar]
  122. LinX. DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction202010.48550/ARXIV.2003.13902
  123. JinY. LuJ. ShiR. YangY. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.Biomolecules20211112178310.3390/biom1112178334944427
    [Google Scholar]
  124. WangP. “X-DPI: A structure-aware multi-modal deep learning model for drug-protein interactions prediction,” Bioinformatics202110.1101/2021.06.17.448780
  125. JiangM. WangS. ZhangS. ZhouW. ZhangY. LiZ. Sequence-based drug-target affinity prediction using weighted graph neural networks.BMC Genomics202223144910.1186/s12864‑022‑08648‑935715739
    [Google Scholar]
  126. PandeyM. RadaevaM. MslatiH. GarlandO. FernandezM. EsterM. CherkasovA. Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks.Molecules20222716511410.3390/molecules2716511436014351
    [Google Scholar]
  127. KipfT.N. WellingM. Semi-Supervised Classification with Graph Convolutional Networks201610.48550/ARXIV.1609.02907
  128. SonJ. KimD. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.PLoS One2021164e024940410.1371/journal.pone.024940433831016
    [Google Scholar]
  129. ShenH. ZhangY. ZhengC. WangB. ChenP. A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity.Int. J. Mol. Sci.2021228402310.3390/ijms2208402333919681
    [Google Scholar]
  130. BianchiF.M. GrattarolaD. LiviL. AlippiC. Graph Neural Networks with Convolutional ARMA Filters.IEEE Trans. Pattern Anal. Mach. Intell.20224473496350710.1109/TPAMI.2021.305483033497331
    [Google Scholar]
  131. FengX. QuJ. WangT. WangB. LyuX. TangZ. Attention-enhanced Graph Cross-convolution for Protein-Ligand Binding Affinity Prediction2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Houston, TX, USAIEEE20211299130210.1109/BIBM52615.2021.9669341
    [Google Scholar]
  132. XuK. HuW. LeskovecJ. JegelkaS. How Powerful are Graph Neural Networks?201810.48550/ARXIV.1810.00826
  133. GuoJ. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning.PLoS One2024191e029667610.1371/journal.pone.029667638232063
    [Google Scholar]
  134. ZhangX. “PLANET: A Multi-Objective Graph Neural Network Model for Protein–Ligand Binding Affinity Prediction,” Bioinformatics202310.1101/2023.02.01.526585
  135. BaeH. NamH. GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity.Biomedicines20221116710.3390/biomedicines1101006736672575
    [Google Scholar]
  136. WuH. LiuJ. JiangT. ZouQ. QiS. CuiZ. TiwariP. DingY. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism.Neural Netw.202416962363610.1016/j.neunet.2023.11.01837976593
    [Google Scholar]
  137. QiH. YuT. YuW. LiuC. Drug–target affinity prediction with extended graph learning-convolutional networks.BMC Bioinformatics20242517510.1186/s12859‑024‑05698‑638365583
    [Google Scholar]
  138. SuviriyapaisalN. WichadakulD. “iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction,” Chemistry202310.26434/chemrxiv‑2023‑qs2w0
  139. ZhangS. JiangM. WangS. WangX. WeiZ. LiZ. SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.Int. J. Mol. Sci.20212216899310.3390/ijms2216899334445696
    [Google Scholar]
  140. DalkıranA. AtakanA. RifaioğluA.S Transfer learning for drug–target interaction predictionBioinformatics.2023391i103i11010.1093/bioinformatics/btad234
    [Google Scholar]
  141. WangC. ChenY. ZhangY. LiK. LinM. PanF. WuW. ZhangJ. A reinforcement learning approach for protein–ligand binding pose prediction.BMC Bioinformatics202223136810.1186/s12859‑022‑04912‑736076158
    [Google Scholar]
  142. HuangY. HuangH.Y. ChenY. LinY.C.D. YaoL. LinT. LengJ. ChangY. ZhangY. ZhuZ. MaK. ChengY.N. LeeT.Y. HuangH.D. A Robust Drug–Target Interaction Prediction Framework with Capsule Network and Transfer Learning.Int. J. Mol. Sci.202324181406110.3390/ijms24181406137762364
    [Google Scholar]
  143. FanF.J. ShiY. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction.Bioorg. Med. Chem.20227211700310.1016/j.bmc.2022.11700336103795
    [Google Scholar]
  144. ZhangS. JinY. LiuT. WangQ. ZhangZ. ZhaoS. ShanB. SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction.ACS Omega2023825224962250710.1021/acsomega.3c0008537396234
    [Google Scholar]
  145. SelvarajuR.R. CogswellM. DasA. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization2017 IEEE International Conference on Computer Vision (ICCV)VeniceIEEE22-29 October 2017201761862610.1109/ICCV.2017.74
    [Google Scholar]
  146. RibeiroM.T. SinghS. GuestrinC. Why Should I Trust You?’: Explaining the Predictions of Any ClassifierProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningSan Francisco California USAACM13 August 201620161135114410.1145/2939672.2939778
    [Google Scholar]
  147. LundbergS.M. LeeS-I. A Unified Approach to Interpreting Model Predictions.Advances in Neural Information Processing Systems 30 LuxburgU.V. BengioS. WallachH. FergusR. VishwanathanS. GarnettR. ICurran Associates, Inc.201747654774https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
    [Google Scholar]
  148. ModyV. HoJ. WillsS. MawriA. LawsonL. EbertM.C.C.J.C. FortinG.M. RayalamS. TavalS. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents.Commun. Biol.2021419310.1038/s42003‑020‑01577‑x33473151
    [Google Scholar]
  149. QiaoZ. NieW. VahdatA. MillerT.F.III AnandkumarA. State-specific protein–ligand complex structure prediction with a multiscale deep generative model.Nat. Mach. Intell.20246219520810.1038/s42256‑024‑00792‑z
    [Google Scholar]
  150. ShityakovS. AglikovA.S. SkorbE.V. NosonovskyM. Voronoi Entropy as a Ligand Molecular Descriptor of Protein–Ligand Interactions.ACS Omega2023848461904619610.1021/acsomega.3c0732838075811
    [Google Scholar]
  151. LeeE. YooJ. LeeH. MetaDTA: meta-learning-based drug- target binding affinity prediction.MLDD workshop, ICLR.2022
    [Google Scholar]
  152. WangY. XiaY. YanJ. YuanY. ShenH.B. PanX. ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions.Nat. Commun.2023141786110.1038/s41467‑023‑43597‑138030641
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501330963240905083020
Loading
/content/journals/cdt/10.2174/0113894501330963240905083020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test