Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The applications of artificial intelligence (AI) in pharmaceutical sectors have advanced drug discovery and development methods. AI has been applied in virtual drug design, molecule synthesis, advanced research, various screening methods, and decision-making processes. In the fourth industrial revolution, when medical discoveries are happening swiftly, AI technology is essential to reduce the costs, effort, and time in the pharmaceutical industry. Further, it will aid “genome-based medicine” and “drug discovery.” AI may prepare proactive databases according to diseases, disorders, and appropriate usage of drugs which will facilitate the required data for the process of drug development. The application of AI has improved clinical trials on patient selection in a population, stratification, and sample assessment such as biomarkers, effectiveness measures, dosage selection, and trial length. Various studies suggest AI could be perform better compared to conventional techniques in drug discovery. The present review focused on the positive impact of AI in drug discovery and development processes in the pharmaceutical industry and beneficial usage in health sectors as well.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501322734241008163304
2024-10-29
2025-05-06
Loading full text...

Full text loading...

References

  1. DashputeS. PansareJ. DeoreY. Artificial intelligence and machine learning in the pharmaceutical industry introduction.Int. J. Pharm. Pharm. Res.202328111131
    [Google Scholar]
  2. JarrahiM.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making.Bus. Horiz.201861457758610.1016/j.bushor.2018.03.007
    [Google Scholar]
  3. MyersS. BakerA. Drug discovery — An operating model for a new era.Nat. Biotechnol.200119872773010.1038/9076511479559
    [Google Scholar]
  4. IvyS.P. SiuL.L. Garrett-MayerE. RubinsteinL. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: A report from the clinical trial design task force of the national cancer institute investigational drug steering committee.Clin. Cancer Res.20101661726173610.1158/1078‑0432.CCR‑09‑196120215542
    [Google Scholar]
  5. LiJ. TongC. ZhangR. A data-informed review of scientific and technological developments and future trends in hot stamping.Int. J. Lightweight Mater. Manuf.2023115
    [Google Scholar]
  6. WoutersO.J. McKeeM. LuytenJ. Estimated research and development investment needed to bring a new medicine to market, 2009-2018.JAMA2020323984485310.1001/jama.2020.116632125404
    [Google Scholar]
  7. ChakrabortyU. RoyS. KumarS. Rise of Generative AI and ChatGPT: Understand how Generative AI and ChatGPT are transforming and reshaping the business world (English Edition).BPB PublicationsLondon2023
    [Google Scholar]
  8. MaghsoudiS. Taghavi ShahrakiB. RamehF. NazarabiM. FatahiY. AkhavanO. RabieeM. MostafaviE. LimaE.C. SaebM.R. RabieeN. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery.Chem. Biol. Drug Des.2022100569972110.1111/cbdd.1413636002440
    [Google Scholar]
  9. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  10. MakK.K. WongY.H. PichikaM.R. Artificial intelligence in drug discovery and development.Drug Discovery and Evaluation: Safety and Pharmacokinetic AssaysSpringerCham HockFJ. PugsleyMK. 2023113810.1007/978‑3‑030‑73317‑9_92‑1
    [Google Scholar]
  11. KalayilN.V. D’SouzaS.S. KhanS.Y. Artificial intelligence in pharmacy drug design.Asian J. Pharm. Clin. Res.202215417
    [Google Scholar]
  12. SharmaK. ManchikantiP. Regulation of artificial intelligence in drug discovery and health care.Biotechnol. Law Rep.39537110.1089/blr.2020.29183.ks
    [Google Scholar]
  13. TurnerZ. Edison to AI: Intellectual property in AI-driven drug R&D. Thesis, University of Texas at Austin,2023
    [Google Scholar]
  14. PunF.W. OzerovI.V. ZhavoronkovA. AI-powered therapeutic target discovery.Trends Pharmacol. Sci.202344956157210.1016/j.tips.2023.06.01037479540
    [Google Scholar]
  15. LinazaM.T. PosadaJ. BundJ. Data-driven artificial intelligence applications for sustainable precision agriculture.Agronomy (Basel)202111122710.3390/agronomy11061227
    [Google Scholar]
  16. RahimF. Zaki ZadehA. JavanmardiP. Emmanuel KomolafeT. KhalafiM. ArjomandiA. GhofraniH.A. ShirbandiK. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study.Biomed. Eng. Online20232216810.1186/s12938‑023‑01132‑937430259
    [Google Scholar]
  17. HussainS. AliS.A. IslamT. MahboobM.R. Design and detection method of a four electrodes cross-conductive sensor for fluid conductivity measurement.Appl. Phys., A Mater. Sci. Process.2023129531410.1007/s00339‑023‑06577‑2
    [Google Scholar]
  18. YalabadiA. Yazdani-JahromiM. AbdidizajiS. Controlling the misinformation diffusion in social media by the effect of different classes of agents.arXiv202410.48550/arXiv.2401.11524
    [Google Scholar]
  19. SanaeiM. GilbertS.B. JavadpourN. SabouniH. DorneichM.C. KellyJ.W. The correlations of scene complexity, workload, presence, and cybersickness in a task-based VR game.Lect. Notes Comput. Sci.20241470627728910.1007/978‑3‑031‑61041‑7_18
    [Google Scholar]
  20. SalehiM. JavadpourN. BeisnerB. Cybersickness detection through head movement patterns: A promising approach.202410.48550/arXiv.2402.02725
    [Google Scholar]
  21. KazeminejadM. KaramifardM. SheibaniA. Reconfiguration of distribution network-based wind energy resource allocation considering time-varying load using hybrid optimization method.Wind Eng.202448593895310.1177/0309524X241247230
    [Google Scholar]
  22. KiaghadiM. SheikholeslamiM. AliniaA.M. BooraF.M. Predicting the performance of a photovoltaic unit via machine learning methods in the existence of finned thermal storage unit.J. Energy Storage20249011176610.1016/j.est.2024.111766
    [Google Scholar]
  23. NaeiniA.B. MahdipourA.G. DorriR. Using eye tracking to measure overall usability of online grocery shopping websites.Int. J. Mobile Comput. Multimedia Commun.202314112410.4018/IJMCMC.326129
    [Google Scholar]
  24. FaghihinejadF. ZoghifardM. AmiriA. Evaluating social and spatial equity in public transport: A case study.Transp. Lett.15101420142910.1080/19427867.2022.2158541
    [Google Scholar]
  25. NewendorpA. SanaeiM. PerronA. Apple’s knowledge navigator: Why doesn’t that conversational agent exist yet?CHI Conference on Human Factors in Computing Systems2024Honolulu, USA11-16 May, 202411410.1145/3613904.3642739
    [Google Scholar]
  26. PradhanR.K. JenaL.K. Employee performance at workplace: Conceptual model and empirical validation.Bus. Perspect. Res.201751698510.1177/2278533716671630
    [Google Scholar]
  27. SinghA.K. KrishnanS. ECG signal feature extraction trends in methods and applications.Biomed. Eng. Online20232212210.1186/s12938‑023‑01075‑136890566
    [Google Scholar]
  28. ZhangM. YangM. Optimal electric bus scheduling considering battery degradation effect and charging facility capacity.Transp. Lett.202411110.1080/19427867.2024.2363659
    [Google Scholar]
  29. ZoghifardM. SunC. Adu-GyamfiY. Highway safety manual training prepared for.Technical Note, University of Missouri Report20201
    [Google Scholar]
  30. TabakhiS. SuvonM.N.I. AhadianP. LuH. Multimodal learning for multi-omics: A survey.World Sci. Annu. Rev. Artif. Intell.20231225000410.1142/S2811032322500047
    [Google Scholar]
  31. AliAMA. AlrobaianMM. Strengths and weaknesses of current and future prospects of artificial intelligence-mounted technologies applied in the development of pharmaceutical products and services.Saudi Pharm. J.325102043202410.1016/j.jsps.2024.102043
    [Google Scholar]
  32. DuanY. EdwardsJ.S. DwivediY.K. Artificial intelligence for decision making in the era of Big Data – Evolution, challenges and research agenda.Int. J. Inf. Manage.201948637110.1016/j.ijinfomgt.2019.01.021
    [Google Scholar]
  33. Jiménez-LunaJ. GrisoniF. WeskampN. SchneiderG. Artificial intelligence in drug discovery: Recent advances and future perspectives.Expert Opin. Drug Discov.202116994995910.1080/17460441.2021.190956733779453
    [Google Scholar]
  34. PatraJ. SinghD. JainS. MahindrooN. Chapter 13 - Application of docking for lead optimization.Molecular Docking for Computer-Aided Drug DesignAcademic Press2021127129410.1016/B978‑0‑12‑822312‑3.00012‑6
    [Google Scholar]
  35. RadM. EbrahimipourG. BandehpourM. AkhavanO. YarianF. SOEing PCR/docking optimization of protein A-G/scFv-Fc-bioconjugated Au nanoparticles for interaction with meningitidis bacterial antigen.Catalysts202313579010.3390/catal13050790
    [Google Scholar]
  36. BandiA. AdapaP.V.S.R. KuchiY.E.V.P.K. The power of generative AI: A review of requirements, models, input–output formats, evaluation metrics, and challenges.Future Internet202315826010.3390/fi15080260
    [Google Scholar]
  37. SubbiahV. The next generation of evidence-based medicine.Nat. Med.2023291495810.1038/s41591‑022‑02160‑z36646803
    [Google Scholar]
  38. OlkP. WestJ. The relationship of industry structure to open innovation: Cooperative value creation in pharmaceutical consortia.R&D Manag.202050111613510.1111/radm.12364
    [Google Scholar]
  39. DambachD.M. MisnerD. BrockM. FullertonA. ProctorW. MaherJ. LeeD. FordK. DiazD. Safety lead optimization and candidate identification: Integrating new technologies into decision-making.Chem. Res. Toxicol.201629445247210.1021/acs.chemrestox.5b0039626625186
    [Google Scholar]
  40. GiaccottoC. SanterreR.E. VernonJ.A. Drug prices and research and development investment behavior in the pharmaceutical industry.J. Law Econ.200548119521410.1086/426882
    [Google Scholar]
  41. WongC.H. SiahK.W. LoA.W. Estimation of clinical trial success rates and related parameters.Biostatistics201920227328610.1093/biostatistics/kxx06929394327
    [Google Scholar]
  42. Van NormanG.A. PhaseI.I. Phase II trials in drug development and adaptive trial design.JACC Basic Transl. Sci.20194342843710.1016/j.jacbts.2019.02.00531312766
    [Google Scholar]
  43. Tariq AnwarS. Creating a national champion or a global pharmaceutical company: A tale of French connection.J. Bus. Ind. Mark.200823858659610.1108/08858620810913399
    [Google Scholar]
  44. DhudumR. GaneshpurkarA. PawarA. Revolutionizing drug discovery: A comprehensive review of AI applications.Drugs Drug Candidates20243114817110.3390/ddc3010009
    [Google Scholar]
  45. DavenportTH. The AI advantage: How to put the artificial intelligence revolution to workMIT Press201810.7551/mitpress/11781.001.0001
    [Google Scholar]
  46. HarrerS. MenardJ. RiversM. Chapter 40 - Artificial intelligence drives the digital transformation of pharma.Artificial Intelligence in Clinical PracticeAcademic Press202434537210.1016/B978‑0‑443‑15688‑5.00049‑8
    [Google Scholar]
  47. SavageN. Tapping into the drug discovery potential of AI.Nat. BioPharma Deal.2021B37B3910.1038/d43747‑021‑00045‑7
    [Google Scholar]
  48. AI-based drug discovery company atomwise sets its sights on inflammatory disease market.2023Available from: https://www.genengnews.com/topics/artificial-intelligence/ai-based-drug-discovery-company-atomwise-sets-its-sights-on-inflammatory-disease-market/
  49. QureshiR. IrfanM. GondalT.M. KhanS. WuJ. HadiM.U. HeymachJ. LeX. YanH. AlamT. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e1757537396052
    [Google Scholar]
  50. KamyaP. OzerovI.V. PunF.W. TretinaK. FokinaT. ChenS. NaumovV. LongX. LinS. KorzinkinM. PolykovskiyD. AliperA. RenF. ZhavoronkovA. PandaOmics: An AI-driven platform for therapeutic target and biomarker discovery.J. Chem. Inf. Model.202464103961396910.1021/acs.jcim.3c0161938404138
    [Google Scholar]
  51. XuT. ZhengW. HuangR. High-throughput screening assays for SARS-CoV-2 drug development: Current status and future directions.Drug Discov. Today202126102439244410.1016/j.drudis.2021.05.01234048893
    [Google Scholar]
  52. DeFrancescoL. 2Q22 — Slip sliding away.Nat. Biotechnol.20224081166116810.1038/s41587‑022‑01414‑y35945434
    [Google Scholar]
  53. UpadhyaR. KosuriS. TamasiM. MeyerT.A. AttaS. WebbM.A. GormleyA.J. Automation and data-driven design of polymer therapeutics.Adv. Drug Deliv. Rev.202117112810.1016/j.addr.2020.11.00933242537
    [Google Scholar]
  54. OveringtonJ HannM The reality of AI in drug discovery. highlights from the society for medicines research online meeting. virtual - March 4, 2021.Drugs Future202146541510.1358/dof.2021.46.5.3303554
    [Google Scholar]
  55. KhetanR. Biopharma licensing and M&A trends in the 21st-century landscape.J. Commer. Biotechnol.20202531510.5912/jcb943
    [Google Scholar]
  56. KempA. Collaboration leverages the Cellectis gene editing technologies and manufacturing capabilities, to develop up to 10 novel cell and gene therapy candidate products.2023Available from: https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-cell-and-gene-therapy-deal-w-cellectis.html
  57. KirkpatrickP. Artificial intelligence makes a splash in small- molecule drug discovery.Biopharma Dealmakers202211310.1038/d43747‑022‑00104‑7
    [Google Scholar]
  58. Johnson & Johnson – Artificial intelligence is helping revolutionize healthcare as we know it.Available from: https://www.califesciences.org/artificial-intelligence-is-helping-revolutionize-healthcare-as-we-know-it/
  59. PhilippidisA. In through the out door: Editas' CEOs grasp opportunities amidst challenges.GEN Biotechnol.20221321521710.1089/genbio.2022.29030.aph
    [Google Scholar]
  60. PhilippidisA. CRISPR therapeutics, vertex complete rolling biologics license applications for exa-cel in sickle cell disease, beta thalassemia.Hum. Gene Ther.2023349-1034134410.1089/hum.2023.29241.bfs37219993
    [Google Scholar]
  61. LiB.T. JankuF. JungB. HouC. MadwaniK. AldenR. RazaviP. Reis-FilhoJ.S. ShenR. IsbellJ.M. BlockerA.W. EattockN. GnerreS. SatyaR.V. XuH. ZhaoC. HallM.P. HuY. SehnertA.J. BrownD. LadanyiM. RudinC.M. HunkapillerN. FeeneyN. MillsG.B. PaweletzC.P. JanneP.A. SolitD.B. RielyG.J. AravanisA. OxnardG.R. Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: Results from the actionable genome consortium.Ann. Oncol.201930459760310.1093/annonc/mdz04630891595
    [Google Scholar]
  62. ManimekalaiR. SureshG. Govinda KurupH. AthiappanS. KandalamM. Role of NGS and SNP genotyping methods in sugarcane improvement programs.Crit. Rev. Biotechnol.202040686588010.1080/07388551.2020.176573032508157
    [Google Scholar]
  63. YaoX. XiaoS. ZhouL. Integrative proteomic and metabolomic analyses reveal the mechanism by which bismuth enables Helicobacter pylori eradication.Helicobacter2021266e1284610.1111/hel.1284634414638
    [Google Scholar]
  64. StaffR. Agilent and mytide therapeutics to collaborate on automated drug manufacturing.Robotics (Basel)20222471Available from: https://www.robotics247.com/article/agilent_and_mytide_ therapeutics_to_collaborate_on_automated_drug_manufacturing
    [Google Scholar]
  65. GSK announces expanded collaboration with Tempus in precision medicine to accelerate R&D.2022Available from: https://www.gsk.com/en-gb/media/press-releases/gsk-announces-expanded-collaboration-with-tempus-in-precision-medicine-to-accelerate-rd/#:~:text=Through%20its%20leading%20Artificial%20Intelligence,with%20more%20personalised%20treatment%20faster
  66. WestT.G. AshB. SandlerN. Nanopaticle engineering and 3DP delivery for gamechanging oral therapeutics.Frederick Furness Publishing Ltd2021
    [Google Scholar]
  67. MassW. X-Chem announces achievement of collaboration milestone.2023Available from: https://www.x-chemrx.com/about/ news/x-chem-announces-achievement-of-collaboration-milestone/
  68. DeoreA.B. DhumaneJ.R. WaghR. SonawaneR. The stages of drug discovery and development process.Asian J. Pharm. Res.201976626710.22270/ajprd.v7i6.616
    [Google Scholar]
  69. MoffatJ.G. VincentF. LeeJ.A. EderJ. PrunottoM. Opportunities and challenges in phenotypic drug discovery: A industry perspective.Nat. Rev. Drug Discov.201716853154310.1038/nrd.2017.11128685762
    [Google Scholar]
  70. SchenoneM. DančíkV. WagnerB.K. ClemonsP.A. Target identification and mechanism of action in chemical biology and drug discovery.Nat. Chem. Biol.20139423224010.1038/nchembio.119923508189
    [Google Scholar]
  71. BleicherK.H. BöhmH.J. MüllerK. AlanineA.I. Hit and lead generation: Beyond high-throughput screening.Nat. Rev. Drug Discov.20032536937810.1038/nrd108612750740
    [Google Scholar]
  72. WaltersW.P. NamchukM. Designing screens: How to make your hits a hit.Nat. Rev. Drug Discov.20032425926610.1038/nrd106312669025
    [Google Scholar]
  73. BergnerA. ParelS.P. Hit expansion approaches using multiple similarity methods and virtualized query structures.J. Chem. Inf. Model.20135351057106610.1021/ci400059p23600728
    [Google Scholar]
  74. PatersonR.R.M. Cordyceps – A traditional Chinese medicine and another fungal therapeutic biofactory?Phytochemistry20086971469149510.1016/j.phytochem.2008.01.02718343466
    [Google Scholar]
  75. AggarwalP. HallJ.B. McLelandC.B. DobrovolskaiaM.A. McNeilS.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.Adv. Drug Deliv. Rev.200961642843710.1016/j.addr.2009.03.00919376175
    [Google Scholar]
  76. ChungT.D.Y. TerryD.B. SmithL.H. in vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization–guidelines, benchmarks and rules of thumb.Assay Guidance ManualBethesda (MD) MarkossianS. GrossmanA. ArkinM. 2004112026561695
    [Google Scholar]
  77. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  78. Benefits of AI in preclinical studies.2022Available from: https://www.aiforia.com/resource-library/ai-in-preclinical-studies
  79. AndradeE.L. BentoA.F. CavalliJ. OliveiraS.K. SchwankeR.C. SiqueiraJ.M. FreitasC.S. MarconR. CalixtoJ.B. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies.Braz. J. Med. Biol. Res.20164912e564610.1590/1414‑431x20165646
    [Google Scholar]
  80. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement. (N.Y.)20173465165710.1016/j.trci.2017.10.00529255791
    [Google Scholar]
  81. FriedmanL.M. FurbergC.D. DeMetsD.L. Fundamentals of Clinical TrialsSpringerCham201510.1007/978‑3‑319‑18539‑2
    [Google Scholar]
  82. AksuB. ParadkarA. de MatasM. ÖzerÖ. GüneriT. YorkP. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.Pharm. Dev. Technol.201318123624510.3109/10837450.2012.70529422881350
    [Google Scholar]
  83. StoneN.D. DunawayS.B. FlexnerC. TierneyC. CalandraG.B. BeckerS. CaoY.J. WigginsI.P. ConleyJ. MacFarlandR.T. ParkJ.G. LalamaC. SnyderS. KallungalB. KlingmanK.L. HendrixC.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects.Antimicrob. Agents Chemother.20075172351235810.1128/AAC.00013‑0717452489
    [Google Scholar]
  84. WoodcockJ. WoosleyR. The FDA critical path initiative and its influence on new drug development.Annu. Rev. Med.200859111210.1146/annurev.med.59.090506.15581918186700
    [Google Scholar]
  85. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  86. MarchantJ. Powerful antibiotics discovered using AI.Nature202011510.1038/d41586‑020‑00018‑333603175
    [Google Scholar]
  87. DhamodharanG. MohanC.G. Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease.Mol. Divers.20222631501151710.1007/s11030‑021‑10282‑834327619
    [Google Scholar]
  88. ChiH. HuangJ. YanY. Unraveling the role of disulfidptosis-related LncRNAs in colon cancer: A prognostic indicator for immunotherapy response, chemotherapy sensitivity, and insights into cell death mechanisms.Front. Mol. Biosci.202310125423210.3389/fmolb.2023.1254232
    [Google Scholar]
  89. FerruzN. HeinzingerM. AkdelM. GoncearencoA. NaefL. DallagoC. From sequence to function through structure: Deep learning for protein design.Comput. Struct. Biotechnol. J.20232123825010.1016/j.csbj.2022.11.01436544476
    [Google Scholar]
  90. Real-time notifications of suspected intracranial hemorrhage.Available from: https://www.brainomix.com/stroke/triage-ich/
  91. DuccaM. Adjunctive predictive cardiovascular indicator.2023Available from: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-870/subpart-C/section-870.2210
  92. SmithJ. Medical devices; Gastroenterology-urology Devices; Classification of the gastrointestinal lesion software detection system.2023Available from: https://www.federalregister.gov/documents/2023/01/03/2022-28494/medical-devices-gastroenterology-urology-devices-classification-of-the-gastrointestinal-lesion
  93. AkpakpaF. Ultrasonic pulsed doppler imaging system.2024Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf24/K240406.pdf
  94. LacroixV. Medical image management and processing system.Phys. Med. Biol.2023691010TR0110.1088/1361‑6560/ad387d
    [Google Scholar]
  95. ChenB.K. YangY.T. Post-marketing surveillance of prescription drug safety: Past, present, and future.J. Leg. Med.201334219321310.1080/01947648.2013.80079723980746
    [Google Scholar]
  96. ZhuangW. XuJ. WuY. YangJ. LinX. LiaoY. WanJ. WengL. LinW. Post-marketing safety concerns with nirmatrelvir: A disproportionality analysis of spontaneous reports submitted to the FDA Adverse Event Reporting System.Br. J. Clin. Pharmacol.20238992830284210.1111/bcp.1578337170890
    [Google Scholar]
  97. MakK.K. BalijepalliM.K. PichikaM.R. Success stories of AI in drug discovery - Where do things stand?Expert Opin. Drug Discov.2022171799210.1080/17460441.2022.198510834553659
    [Google Scholar]
  98. ShahB. Revolutionizing drug discovery: The role of artificial intelligence.Int. J. Sci. Res. (Raipur)202312121948195210.21275/SR231219092956
    [Google Scholar]
  99. DavenportT. GuhaA. GrewalD. BressgottT. How artificial intelligence will change the future of marketing.J. Acad. Mark. Sci.2020481244210.1007/s11747‑019‑00696‑0
    [Google Scholar]
  100. SellwoodM.A. AhmedM. SeglerM.H.S. BrownN. Artificial intelligence in drug discovery.Future Med. Chem.201810172025202810.4155/fmc‑2018‑021230101607
    [Google Scholar]
  101. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/13816120778076595417504169
    [Google Scholar]
  102. ZhuH. Big data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  103. SarkarC. DasB. RawatV.S. WahlangJ.B. NongpiurA. TiewsohI. LyngdohN.M. DasD. BidarolliM. SonyH.T. Artificial intelligence and machine learning technology driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms2403202636768346
    [Google Scholar]
  104. HaririR.H. FredericksE.M. BowersK.M. Uncertainty in big data analytics: Survey, opportunities, and challenges.J. Big Data2019614410.1186/s40537‑019‑0206‑3
    [Google Scholar]
  105. ZhaoL. WangW. SedykhA. ZhuH. Experimental errors in QSAR modeling sets: What we can do and what we cannot do.ACS Omega2017262805281210.1021/acsomega.7b0027428691113
    [Google Scholar]
  106. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  107. SciorT. BenderA. TresadernG. Medina-FrancoJ.L. Martínez-MayorgaK. LangerT. Cuanalo-ContrerasK. AgrafiotisD.K. Recognizing pitfalls in virtual screening: A critical review.J. Chem. Inf. Model.201252486788110.1021/ci200528d22435959
    [Google Scholar]
  108. MasciocchiJ. FrauG. FantonM. SturleseM. FlorisM. PiredduL. PallaP. CedratiF. Rodriguez-ToméP. MoroS. MMsINC: A large-scale chemoinformatics database.Nucleic Acids Res.2009371D284D29010.1093/nar/gkn72718931373
    [Google Scholar]
  109. ZhangL. TanJ. HanD. ZhuH. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery.Drug Discov. Today201722111680168510.1016/j.drudis.2017.08.01028881183
    [Google Scholar]
  110. GimenoA. Ojeda-MontesM.J. Tomás-HernándezS. Cereto-MassaguéA. Beltrán-DebónR. MuleroM. PujadasG. Garcia-VallvéS. The light and dark sides of virtual screening: What is there to know?Int. J. Mol. Sci.2019206137510.3390/ijms2006137530893780
    [Google Scholar]
  111. KingR.D. HirstJ.D. SternbergM.J. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS.Appl. Artif. Intell.19959221323310.1080/08839519508945474
    [Google Scholar]
  112. WangY. GuoY. KuangQ. PuX. JiY. ZhangZ. LiM. A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach.J. Comput. Aided Mol. Des.201529434936010.1007/s10822‑014‑9827‑y25527073
    [Google Scholar]
  113. AgrawalP. Artificial intelligence in drug discovery and development.J. Pharmacovigil.2018621000117310.4172/2329‑6887.1000e173
    [Google Scholar]
  114. MullowneyM.W. DuncanK.R. ElsayedS.S. GargN. van der HooftJ.J.J. MartinN.I. MeijerD. TerlouwB.R. BiermannF. BlinK. DurairajJ. Gorostiola GonzálezM. HelfrichE.J.N. HuberF. Leopold-MesserS. RajanK. de RondT. van SantenJ.A. SorokinaM. BalunasM.J. BeniddirM.A. van BergeijkD.A. CarrollL.M. ClarkC.M. ClevertD.A. DejongC.A. DuC. FerrinhoS. GrisoniF. HofstetterA. JespersW. KalininaO.V. KautsarS.A. KimH. LeaoT.F. MasscheleinJ. ReesE.R. ReherR. RekerD. SchwallerP. SeglerM. SkinniderM.A. WalkerA.S. WillighagenE.L. ZdrazilB. ZiemertN. GossR.J.M. GuyomardP. VolkamerA. GerwickW.H. KimH.U. MüllerR. van WezelG.P. van WestenG.J.P. HirschA.K.H. LiningtonR.G. RobinsonS.L. MedemaM.H. Artificial intelligence for natural product drug discovery.Nat. Rev. Drug Discov.2023221189591610.1038/s41573‑023‑00774‑737697042
    [Google Scholar]
  115. MilesJ.C. WalkerA.J. The potential application of artificial intelligence in transport.IET Intell. Transp. Syst.2006153318319810.1049/ip‑its:20060014
    [Google Scholar]
  116. WirtzBW. WeyererJC. GeyerC. Artificial intelligence and the public sector — Applications and challenges.Int. J. Public Adm.201942759661510.1080/01900692.2018.1498103
    [Google Scholar]
  117. YangY. SiauK.L. A qualitative research on marketing and sales in the artificial intelligence age.The 13th Annual Conference of the Midwest Association for Information Systems (MWAIS 2018)17-18 May, 2018St. Louis, Missouri, US2018
    [Google Scholar]
  118. da SilvaI.N. Hernane SpattiD. Andrade FlauzinoR. LiboniL.H.B. dos Reis AlvesS.F. Neural network architectures and training processes.Artificial Neural NetworksSpringerCham20171212810.1007/978‑3‑319‑43162‑8_2
    [Google Scholar]
  119. CiallellaH.L. ZhuH. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism- driven modeling for chemical toxicity.Chem. Res. Toxicol.201932453654710.1021/acs.chemrestox.8b0039330907586
    [Google Scholar]
  120. PereiraJ.C. CaffarenaE.R. dos SantosC.N. Boosting docking-based virtual screening with deep learning.J. Chem. Inf. Model.201656122495250610.1021/acs.jcim.6b0035528024405
    [Google Scholar]
  121. BrownN. in silico medicinal chemistry: Computational methods to support drug design.Theor. Comput. Chem. Ser.2015123210.1039/9781782622604
    [Google Scholar]
  122. MehtaC.H. NarayanR. NayakU.Y. Computational modeling for formulation design.Drug Discov. Today201924378178810.1016/j.drudis.2018.11.01830502513
    [Google Scholar]
  123. LiebmanM. The role of artificial intelligence in drug discovery and development.Chem. Int.2022441161910.1515/ci‑2022‑0105
    [Google Scholar]
  124. MoingeonP. KuenemannM. GuedjM. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine.Drug Discov. Today202227121522210.1016/j.drudis.2021.09.00634555509
    [Google Scholar]
  125. MoingeonP. Artificial intelligence and the future of medicine: A multidimensional analysis.Life Res.202141310.53388/life2021‑0103‑301
    [Google Scholar]
  126. ZimmermannG.R. LehárJ. KeithC.T. Multi-target therapeutics: When the whole is greater than the sum of the parts.Drug Discov. Today2007121-2344210.1016/j.drudis.2006.11.00817198971
    [Google Scholar]
  127. LiS. HuangS. PengS.B. Overexpression of G protein-coupled receptors in cancer cells: Involvement in tumor progression.Int. J. Oncol.20052751329133910.3892/ijo.27.5.132916211229
    [Google Scholar]
  128. SchauperlM. DennyR.A. Denny RAJJoCI and modeling. AI-based protein structure prediction in drug discovery: Impacts and challenges.J. Chem. Inf. Model.202262133142315610.1021/acs.jcim.2c0002635727311
    [Google Scholar]
  129. WanF. ZengJ.J.B. Deep learning with feature embedding for compound-protein interaction prediction.Biorxiv201610.1101/086033
    [Google Scholar]
  130. HutsonM. AI protein-folding algorithms solve structures faster than ever.Nature201911510.1038/d41586‑019‑01357‑632690960
    [Google Scholar]
  131. AlQuraishiM. End-to-end differentiable learning of protein structure.Cell Syst.201984292301.e310.1016/j.cels.2019.03.00631005579
    [Google Scholar]
  132. WangF. LiuD. WangH. LuoC. ZhengM. LiuH. ZhuW. LuoX. ZhangJ. JiangH. Computational screening for active compounds targeting protein sequences: Methodology and experimental validation.J. Chem. Inf. Model.201151112821282810.1021/ci200264h21955088
    [Google Scholar]
  133. TianK. ShaoM. WangY. GuanJ. ZhouS. Boosting compound-protein interaction prediction by deep learning.Methods2016110647210.1016/j.ymeth.2016.06.02427378654
    [Google Scholar]
  134. XiaoX. MinJ.L. LinW.Z. LiuZ. ChengX. ChouK.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.J. Biomol. Struct. Dyn.201533102221223310.1080/07391102.2014.99871025513722
    [Google Scholar]
  135. YuH. ChenJ. XuX. LiY. ZhaoH. FangY. LiX. ZhouW. WangW. WangY. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.PLoS One201275e3760810.1371/journal.pone.003760822666371
    [Google Scholar]
  136. ZhangW. FanY. Structure of keratin.Methods Mol. Biol.20212347415310.1007/978‑1‑0716‑1574‑4_534472054
    [Google Scholar]
  137. SachdevK. GuptaM.K. A comprehensive review of feature based methods for drug target interaction prediction.J. Biomed. Inform.20199310315910.1016/j.jbi.2019.10315930926470
    [Google Scholar]
  138. SeglerM.H.S. KogejT. TyrchanC. WallerM.P. Generating focused molecule libraries for drug discovery with recurrent neural networks.ACS Cent. Sci.20184112013110.1021/acscentsci.7b0051229392184
    [Google Scholar]
  139. MezianeF. VaderaS. KobbacyK. ProudloveN. Intelligent systems in manufacturing: Current developments and future prospects.Integrated Manuf. Syst.200011421823810.1108/09576060010326221
    [Google Scholar]
  140. ArdenN.S. FisherA.C. TynerK. YuL.X. LeeS.L. KopchaM. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.Int. J. Pharm.202160212055410.1016/j.ijpharm.2021.12055433794326
    [Google Scholar]
  141. ChitiF. Lagrangian studies of turbulent mixing in a vessel agitated by a rushron turbine: Positron emission particle tracking (PEPT) and computational fluid dynamics (CFD).Thesis, University of Birmingham Report2008
    [Google Scholar]
  142. ShenY. BorowskiJ.E. HardyM.A. SarpongR. DoyleA.G. CernakT. Automation and computer-assisted planning for chemical synthesis.Nature Reviews Methods Primers2021112310.1038/s43586‑021‑00022‑5
    [Google Scholar]
  143. ÇelikM. Use of artificial intelligence and expert systems in pharmaceutical applications.Handbook of Pharmaceutical Granulation TechnologyCRC Press20214th ed
    [Google Scholar]
  144. AntonyJ. Bardhan AnandR. KumarM. TiwariM.K. Multiple response optimization using Taguchi methodology and neuro-fuzzy based model.J. Manuf. Tech. Manag.200617790892510.1108/17410380610688232
    [Google Scholar]
  145. SureshP. SreedharI. VaidhiswaranR. VenugopalA. A comprehensive review on process and engineering aspects of pharmaceutical wet granulation.Chem. Eng. J.201732878581510.1016/j.cej.2017.07.091
    [Google Scholar]
  146. BattinaD.S. Artificial intelligence in software test automation: A systematic literature review.SSRN201961213291332
    [Google Scholar]
  147. BraiekH.B. KhomhF. On testing machine learning programs.J. Syst. Softw.202016411054210.1016/j.jss.2020.110542
    [Google Scholar]
  148. HeJ. BaxterS.L. XuJ. XuJ. ZhouX. ZhangK. The practical implementation of artificial intelligence technologies in medicine.Nat. Med.2019251303610.1038/s41591‑018‑0307‑030617336
    [Google Scholar]
  149. YnionJ.C. Using AI in automated UI localization testing of a mobile app.Thesis, Metropolia University of Applied Sciences2020
    [Google Scholar]
  150. ZhaoC. JainA. HailemariamL. SureshP. AkkisettyP. JoglekarG. VenkatasubramanianV. ReklaitisG.V. MorrisK. BasuP. Toward intelligent decision support for pharmaceutical product development.J. Pharm. Innov.200611233510.1007/BF02784878
    [Google Scholar]
  151. WangX. Intelligent quality management using knowledge discovery in databases.International Conference on Computational Intelligence and Software EngineeringWuhan, China11-13 Dec, 200920091410.1109/CISE.2009.5364999
    [Google Scholar]
  152. HayM. ThomasD.W. CraigheadJ.L. EconomidesC. RosenthalJ. Clinical development success rates for investigational drugs.Nat. Biotechnol.2014321405110.1038/nbt.278624406927
    [Google Scholar]
  153. KöpckeF. ProkoschH.U. Employing computers for the recruitment into clinical trials: A comprehensive systematic review.J. Med. Internet Res.2014167e16110.2196/jmir.344624985568
    [Google Scholar]
  154. FarghaliH. Kutinová CanováN. AroraM. The potential applications of artificial intelligence in drug discovery and development.Physiol. Res.202170Suppl. 4S715S72210.33549/physiolres.93476535199553
    [Google Scholar]
  155. BiddleK. WhiteJ. SofatN. What is the full potential of baricitinib in treating patients with COVID-19?Expert Rev. Clin. Immunol.202218654554910.1080/1744666X.2022.207229835486502
    [Google Scholar]
  156. TerstappenG.C. ReggianiA. in silico research in drug discovery.Trends Pharmacol. Sci.2001221232610.1016/S0165‑6147(00)01584‑411165668
    [Google Scholar]
  157. RobsonB. De novo protein folding on computers. Benefits and challenges.Comput. Biol. Med.202214310529210.1016/j.compbiomed.2022.10529235158120
    [Google Scholar]
  158. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  159. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  160. StokesJ.M. YangK. SwansonK. JinW. Cubillos-RuizA. DonghiaN.M. MacNairC.R. FrenchS. CarfraeL.A. Bloom-AckermannZ. TranV.M. Chiappino-PepeA. BadranA.H. AndrewsI.W. ChoryE.J. ChurchG.M. BrownE.D. JaakkolaT.S. BarzilayR. CollinsJ.J. A deep learning approach to antibiotic discovery.Cell20201804688702.e1310.1016/j.cell.2020.01.02132084340
    [Google Scholar]
  161. AlimirzaeiF. KieslichC.A. Machine learning models for predicting membranolytic anticancer peptides.Comput. Aided Chem. Eng.2023522691269610.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
  162. AltayO. MohammadiE. LamS. TurkezH. BorenJ. NielsenJ. UhlenM. MardinogluA. Current status of COVID-19 therapies and drug repositioning applications.iScience202023710130310.1016/j.isci.2020.10130332622261
    [Google Scholar]
  163. JohnsW.R. Computer-aided chemical engineering.Kirk-Othmer Encyclopedia of Chemical TechnologyWiey200210.1002/0471238961.0315131620012525.a01.pub2
    [Google Scholar]
  164. AguP.C. ObuloseC.N. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications.Drug Dev. Res.2024852e2215910.1002/ddr.2215938375772
    [Google Scholar]
  165. AkbarR. BashourH. RawatP. RobertP.A. SmorodinaE. CotetT.S. Flem-KarlsenK. FrankR. MehtaB.B. VuM.H. ZenginT. Gutierrez-MarcosJ. Lund-JohansenF. AndersenJ.T. GreiffV. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies.MAbs2022141200879010.1080/19420862.2021.200879035293269
    [Google Scholar]
  166. KhuatT.T. BassettR. OtteE. Grevis-JamesA. GabrysB. Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities.Comput. Chem. Eng.202418210858510.1016/j.compchemeng.2024.108585
    [Google Scholar]
  167. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z34686947
    [Google Scholar]
  168. PaulJ. SeibR. PrescottT. The Internet and clinical trials: Background, online resources, examples and issues.J. Med. Internet Res.200571e510.2196/jmir.7.1.e515829477
    [Google Scholar]
  169. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  170. MoingeonP. Applications of Artificial Intelligence to drug development: Why is this a revolution?Am. Pharm. Rev.202179556657110.1016/j.pharma.2021.01.00833529579
    [Google Scholar]
  171. CreightonC.J. Using large-scale molecular data sets to improve breast cancer treatment.Breast Cancer Manag.201211576410.2217/bmt.12.1423869198
    [Google Scholar]
  172. Raufaste-CazavieilleV. SantiagoR. DroitA. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology.Front. Mol. Biosci.2022996274310.3389/fmolb.2022.96274336304921
    [Google Scholar]
  173. García del ValleE.P. Lagunes GarcíaG. Prieto SantamaríaL. ZaninM. Menasalvas RuizE. Rodríguez-GonzálezA. Disease networks and their contribution to disease understanding: A review of their evolution, techniques and data sources.J. Biomed. Inform.20199410320610.1016/j.jbi.2019.10320631077818
    [Google Scholar]
  174. HasinY. SeldinM. LusisA. Multi-omics approaches to disease.Genome Biol.20171818310.1186/s13059‑017‑1215‑128476144
    [Google Scholar]
  175. TiniG. MarchettiL. PriamiC. Scott-BoyerM.P. Multi-omics integration — A comparison of unsupervised clustering methodologies.Brief. Bioinform.20192041269127910.1093/bib/bbx16729272335
    [Google Scholar]
  176. ChiH. ChenH. WangR. ZhangJ. JiangL. ZhangS. JiangC. HuangJ. QuanX. LiuY. ZhangQ. YangG. Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model.Front. Oncol.202313124457810.3389/fonc.2023.124457837601672
    [Google Scholar]
  177. OulasA. MinadakisG. ZachariouM. SokratousK. BourdakouM.M. SpyrouG.M. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches.Brief. Bioinform.201920380682410.1093/bib/bbx15129186305
    [Google Scholar]
  178. Moreno-MoralA. PesceF. BehmoarasJ. PetrettoE. Systems genetics as a tool to identify master genetic regulators in complex disease.Methods Mol. Biol.2017148833736210.1007/978‑1‑4939‑6427‑7_1627933533
    [Google Scholar]
  179. JedrzejewskiF.V. Privacy-preserving natural language processing: A systematic mapping study.IEEE Access2021991110.1109/ACCESS.2021.3124163
    [Google Scholar]
  180. ShermanS. Exscientia announces sixth molecule created through generative AI platform to enter clinical stage.2023Available from: https://investors.exscientia.ai/press-releases/press-release-details/2023/Exscientia-Announces-Sixth-Molecule-Created-Through-Generative-AI-Platform-to-Enter-Clinical-Stage/default.aspx
  181. SaeedH. El NaqaI. Artificial intelligence in clinical trials.Machine and Deep Learning in Oncology, Medical Physics and RadiologySpringerCham El NaqaI. MurphyM.J. 20221453501
    [Google Scholar]
  182. IdnayB. DreisbachC. WengC. SchnallR. A systematic review on natural language processing systems for eligibility prescreening in clinical research.J. Am. Med. Inform. Assoc.202129119720610.1093/jamia/ocab22834725689
    [Google Scholar]
  183. KaurH. Digitally enabled, wearable remote patient monitoring of clinical trials to assess patient reported outcomes - A systematic review: Shifting paradigm from site-centric to patient centric health care.2021Thesis, Halmstad University, School of Health and Welfare
    [Google Scholar]
  184. ShahP. KendallF. KhozinS. GoosenR. HuJ. LaramieJ. RingelM. SchorkN. Artificial intelligence and machine learning in clinical development: A translational perspective.NPJ Digit. Med.2019216910.1038/s41746‑019‑0148‑331372505
    [Google Scholar]
  185. TuckerA. WangZ. RotalintiY. MylesP. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software.NPJ Digit. Med.20203114710.1038/s41746‑020‑00353‑933299100
    [Google Scholar]
  186. KirchmairJ. GöllerA.H. LangD. KunzeJ. TestaB. WilsonI.D. GlenR.C. SchneiderG. Predicting drug metabolism: Experiment and/or computation?Nat. Rev. Drug Discov.201514638740410.1038/nrd458125907346
    [Google Scholar]
  187. FriedrichC.M. A model qualification method for mechanistic physiological QSP models to support model-informed drug development.CPT Pharmacometrics Syst. Pharmacol.201652435310.1002/psp4.1205626933515
    [Google Scholar]
  188. RaynerC.R. SmithP.F. AndesD. AndrewsK. DerendorfH. FribergL.E. HannaD. LepakA. MillsE. PolasekT.M. RobertsJ.A. SchuckV. SheltonM.J. WescheD. Rowland-YeoK. Model-informed drug development for anti-infectives: State of the art and future.Clin. Pharmacol. Ther.2021109486789110.1002/cpt.219833555032
    [Google Scholar]
  189. BhardwajN.D. Challenges in healthcare in India.Administration in India1st edTaylor & Francis Group20215269
    [Google Scholar]
  190. PrasadA. KapoorP. SinghT.P. Security threats in IOT and their prevention.Communication Technologies and Security Challenges in IoSpringerSingapore202413114610.1007/978‑981‑97‑0052‑3_7
    [Google Scholar]
  191. ArchanaT. StephenR.K. The future of artificial intelligence in manufacturing industries.Industry Applications of Thrust Manufacturing: Convergence with Real-Time Data and AIIGI Global20249811710.4018/979‑8‑3693‑4276‑3.ch004
    [Google Scholar]
  192. SeyhanA.A. CariniC. Are innovation and new technologies in precision medicine paving a new era in patients centric care?J. Transl. Med.201917111410.1186/s12967‑019‑1864‑930953518
    [Google Scholar]
  193. SharmaP. MehraS. GuptaP. Chapter 22: Role of Blockchain, AI and Big Data in Healthcare Industry.Information for Efficient Decision MakingWorld Scientific Publishing Co. Pte. Ltd. BalachandranKR. 2021162364810.1142/9789811220470_0022
    [Google Scholar]
  194. UmitV. Artificial intelligence and the new health era.Thesis, University of Twente2018
    [Google Scholar]
  195. SalmonJW. ThompsonSL. SalmonJW. Big data: Information technology as control over the profession of medicine.The Corporatization of American Health CareSpringerCham202118125410.1007/978‑3‑030‑60667‑1_5
    [Google Scholar]
  196. Torab-MiandoabA. Samad-SoltaniT. JodatiA. Rezaei-HachesuP. Interoperability of heterogeneous health information systems: A systematic literature review.BMC Med. Inform. Decis. Mak.20232311810.1186/s12911‑023‑02115‑536694161
    [Google Scholar]
  197. PaulM. MaglarasL. FerragM.A. AlmomaniI. Digitization of healthcare sector: A study on privacy and security concerns.ICT Express20239457158810.1016/j.icte.2023.02.007
    [Google Scholar]
  198. BaowalyM.K. LinC.C. LiuC.L. ChenK.T. Synthesizing electronic health records using improved generative adversarial networks.J. Am. Med. Inform. Assoc.201926322824110.1093/jamia/ocy14230535151
    [Google Scholar]
  199. khanB. FatimaH. QureshiA. KumarS. HananA. HussainJ. AbdullahS. Drawbacks of artificial intelligence and their potential solutions in the healthcare sector.Biomed. Mater. Devices20231273173810.1007/s44174‑023‑00063‑236785697
    [Google Scholar]
  200. SongB. ChiH. PengG. SongY. CuiZ. ZhuY. ChenG. WuJ. LiuW. DongC. WangY. XuK. YuZ. SongB. Characterization of coagulation-related gene signature to predict prognosis and tumor immune microenvironment in skin cutaneous melanoma.Front. Oncol.20221297525510.3389/fonc.2022.97525536059641
    [Google Scholar]
  201. DhamijaS. Leveraging the google cloud environment for accomplishing an enhanced efficacy of health-care centric data.Int. J. Res. Med. Sci.202091170175
    [Google Scholar]
  202. GuoH. ScrineyM. LiuK. An ostensive information architecture to enhance semantic interoperability for healthcare information systems.Inf. Syst. Front.2023112410.1007/s10796‑023‑10379‑537361885
    [Google Scholar]
  203. CramerP. AlphaFold2 and the future of structural biology.Nat. Struct. Mol. Biol.202128970470510.1038/s41594‑021‑00650‑134376855
    [Google Scholar]
  204. GaleE.M. DurandD.J. Improving reaction prediction.Nat. Chem.202012650951010.1038/s41557‑020‑0478‑432409721
    [Google Scholar]
  205. ShakerB. AhmadS. LeeJ. JungC. NaD. in silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.10485134520990
    [Google Scholar]
  206. ThomasU. AI-based drug discovery company atomwise sets its sights on inflammatory disease market.GEN Edge20235168368710.1089/genedge.5.1.132
    [Google Scholar]
  207. MullardA. The drug-maker’s guide to the galaxy.Nature2017549767344544710.1038/549445a28959982
    [Google Scholar]
  208. RaffaR.B. PergolizziJ.V. MillerT. MottoD. Commentary: Unexpected novel chemical weapon agents designed by innocuous drug-development AI (artificial intelligence) algorithm.Pharmacol. Pharm.202213722522910.4236/pp.2022.137018
    [Google Scholar]
  209. DohertyT. YaoZ. KhleifatA.A. TantiangcoH. TamburinS. AlbertynC. ThakurL. LlewellynD.J. OxtobyN.P. LouridaI. RansonJ.M. DuceJ.A. Artificial intelligence for dementia drug discovery and trials optimization.Alzheimers Dement.202319125922593310.1002/alz.1342837587767
    [Google Scholar]
  210. OszustowiczR.J. Financial considerations toward securing a searle medidata multitest system for the swedish medical center.The Seventh Annual Symposium on Computer Applications in Medical CareWashington, DC, USA198338738910.1109/SCAMC.1983.764644
    [Google Scholar]
  211. Blaudin de ThéF.X. BaudierC. Andrade PereiraR. LefebvreC. MoingeonP. Transforming drug discovery with a high-throughput AI-powered platform: A 5-year experience with Patrimony.Drug Discov. Today2023281110377210.1016/j.drudis.2023.10377237717933
    [Google Scholar]
  212. YesavageT. AI in drug discovery: Trust, but verify.Genet. Eng. Biotechnol. News2024441283010.1089/gen.44.01.09
    [Google Scholar]
  213. KorshunovaM. GinsburgB. TropshaA. IsayevO. OpenChem: A deep learning toolkit for computational chemistry and drug design.J. Chem. Inf. Model.202161171310.1021/acs.jcim.0c0097133393291
    [Google Scholar]
  214. GhoshN. SantoniD. SahaI. Predicting transcription factor binding sites using transformer based capsule network.Int. J. Mol. Sci.2023259499010.3390/ijms2509499038732207
    [Google Scholar]
  215. DengL. ZengY. LiuH. LiuZ. LiuX. DeepMHADTA: Prediction of drug-target binding affinity using multi-head self-attention and convolutional neural network.Curr. Issues Mol. Biol.20224452287229910.3390/cimb4405015535678684
    [Google Scholar]
  216. LovrićM. MoleroJ.M. KernR. PySpark and RDKit: Moving towards Big Data in Cheminformatics.Mol. Inform.2019386180008210.1002/minf.20180008230844132
    [Google Scholar]
  217. ChithranandaS. GrandG. ChemBERTa: Large-scale self-supervised pretraining for molecular property prediction.arXiv202010.48550/arXiv.2010.09885
    [Google Scholar]
  218. SharmaV. WakodeS. KumarH.J.C. Chapter 2 - Structure- and ligand-based drug design: concepts, approaches, and challenges.Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences2021Academic Press275310.1016/B978‑0‑12‑821748‑1.00004‑X
    [Google Scholar]
  219. ErlichY. MitraP.P. delaBastideM. McCombieW.R. HannonG.J. Alta-Cyclic: A self-optimizing base caller for next-generation sequencing.Nat. Methods20085867968210.1038/nmeth.123018604217
    [Google Scholar]
  220. CookeP. From the machine learning region to the deep learning region: Tesla, DarkTrace and DeepMind as internationalized local to global cluster firms.The Globalization of Regional ClustersEdward Elgar Publishing FornahlD. GrashofN. 20213357
    [Google Scholar]
  221. KoG.Y. ShinD. AuhS. LeeY. HanS.P. Learning outside the classroom during a pandemic: Evidence from an artificial intelligence-based education app.Manage. Sci.20236963616364910.1287/mnsc.2022.4531
    [Google Scholar]
  222. KumarP. Artificial intelligence: Reshaping life and business.BPB PublicationsIndia201912035
    [Google Scholar]
  223. All in on AI: How smart companies win big with artificial intelligence.2023Available from: https://www.forbes.com/sites/bernardmarr/2023/01/27/all-in-on-ai-how-smart-companies-win-big-with-artificial-intelligence/
  224. TeamG. AnilR. BorgeaudS. Gemini: A family of highly capable multimodal models.arXiv202310.48550/arXiv.2312.11805
    [Google Scholar]
  225. SharonT. Blind-sided by privacy? Digital contact tracing, the Apple/Google API and big tech’s newfound role as global health policy makers.Ethics Inf. Technol.202123Suppl 1455710.1007/s10676‑020‑09547‑x32837287
    [Google Scholar]
  226. VentolaC.L. Mobile devices and apps for health care professionals: Uses and benefits.P. T.201439535636424883008
    [Google Scholar]
  227. SchmitzH. HoweC.L. ArmstrongD.G. SubbianV. Leveraging mobile health applications for biomedical research and citizen science: A scoping review.J. Am. Med. Inform. Assoc.201825121685169510.1093/jamia/ocy13030445467
    [Google Scholar]
  228. XieQ. Deep learning based chatbot in fintech applications.Doctor of Philosophy, University of Maryland, Baltimore County2023
    [Google Scholar]
  229. CarterDJBIR How real is the impact of artificial intelligence? The business information survey 2018.Bus. Inf. Rev.20183539911510.1177/0266382118790150
    [Google Scholar]
  230. KejriwalM. Artificial intelligence for industries of the future: Beyond Facebook, Amazon, Microsoft and Google.Springer Nature2022115
    [Google Scholar]
  231. KiteJ. GrunseitA. LiV. VineburgJ. BertonN. BaumanA. FreemanB. Generating engagement on the make healthy normal campaign Facebook page: Analysis of Facebook analytics.JMIR Public Health Surveill.201951e1113210.2196/1113231344679
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501322734241008163304
Loading
/content/journals/cdt/10.2174/0113894501322734241008163304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test