Skip to content
2000
image of Trends of Artificial Intelligence (AI) Use in Drug Targets, Discovery and Development: Current Status and Future Perspectives

Abstract

The applications of artificial intelligence (AI) in pharmaceutical sectors have advanced drug discovery and development methods. AI has been applied in virtual drug design, molecule synthesis, advanced research, various screening methods, and decision-making processes. In the fourth industrial revolution, when medical discoveries are happening swiftly, AI technology is essential to reduce the costs, effort, and time in the pharmaceutical industry. Further, it will aid “genome-based medicine” and “drug discovery.” AI may prepare proactive databases according to diseases, disorders, and appropriate usage of drugs which will facilitate the required data for the process of drug development. The application of AI has improved clinical trials on patient selection in a population, stratification, and sample assessment such as biomarkers, effectiveness measures, dosage selection, and trial length. Various studies suggest AI could be perform better compared to conventional techniques in drug discovery. The present review focused on the positive impact of AI in drug discovery and development processes in the pharmaceutical industry and beneficial usage in health sectors as well.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501322734241008163304
2024-10-29
2024-11-22
Loading full text...

Full text loading...

References

  1. Dashpute S. Pansare J. Deore Y. Artificial intelligence and machine learning in the pharmaceutical industry introduction. Int. J. Pharm. Pharm. Res. 2023 28 111 131
    [Google Scholar]
  2. Jarrahi M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018 61 4 577 586 10.1016/j.bushor.2018.03.007
    [Google Scholar]
  3. Myers S. Baker A. Drug discovery — An operating model for a new era. Nat. Biotechnol. 2001 19 8 727 730 10.1038/90765 11479559
    [Google Scholar]
  4. Ivy S.P. Siu L.L. Garrett-Mayer E. Rubinstein L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: A report from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin. Cancer Res. 2010 16 6 1726 1736 10.1158/1078‑0432.CCR‑09‑1961 20215542
    [Google Scholar]
  5. Li J. Tong C. Zhang R. A data-informed review of scientific and technological developments and future trends in hot stamping. Int. J. Lightweight Mater. Manuf. 2023 1 1 5
    [Google Scholar]
  6. Wouters O.J. McKee M. Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 2020 323 9 844 853 10.1001/jama.2020.1166 32125404
    [Google Scholar]
  7. Chakraborty U. Roy S. Kumar S. Rise of Generative AI and ChatGPT: Understand how Generative AI and ChatGPT are transforming and reshaping the business world (English Edition). BPB Publications London 2023
    [Google Scholar]
  8. Maghsoudi S. Taghavi Shahraki B. Rameh F. Nazarabi M. Fatahi Y. Akhavan O. Rabiee M. Mostafavi E. Lima E.C. Saeb M.R. Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem. Biol. Drug Des. 2022 100 5 699 721 10.1111/cbdd.14136 36002440
    [Google Scholar]
  9. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  10. Mak K.K. Wong Y.H. Pichika M.R. Artificial intelligence in drug discovery and development. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays Springer Cham Hock FJ. Pugsley MK. 2023 1 1 38 10.1007/978‑3‑030‑73317‑9_92‑1
    [Google Scholar]
  11. Kalayil N.V. D’Souza S.S. Khan S.Y. Artificial intelligence in pharmacy drug design. Asian J. Pharm. Clin. Res. 2022 15 4 1 7
    [Google Scholar]
  12. Sharma K. Manchikanti P. Regulation of artificial intelligence in drug discovery and health care. Biotechnol. Law Rep. 39 5 371 10.1089/blr.2020.29183.ks
    [Google Scholar]
  13. Turner Z. Edison to AI: Intellectual property in AI-driven drug R&D. 2023 Thesis, University of Texas at Austin
    [Google Scholar]
  14. Pun F.W. Ozerov I.V. Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol. Sci. 2023 44 9 561 572 10.1016/j.tips.2023.06.010 37479540
    [Google Scholar]
  15. Linaza M.T. Posada J. Bund J. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy (Basel) 2021 11 1227 10.3390/agronomy11061227
    [Google Scholar]
  16. Rahim F. Zaki Zadeh A. Javanmardi P. Emmanuel Komolafe T. Khalafi M. Arjomandi A. Ghofrani H.A. Shirbandi K. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study. Biomed. Eng. Online 2023 22 1 68 10.1186/s12938‑023‑01132‑9 37430259
    [Google Scholar]
  17. Hussain S. Ali S.A. Islam T. Mahboob M.R. Design and detection method of a four electrodes cross-conductive sensor for fluid conductivity measurement. Appl. Phys., A Mater. Sci. Process. 2023 129 5 314 10.1007/s00339‑023‑06577‑2
    [Google Scholar]
  18. Yalabadi A. Yazdani-Jahromi M. Abdidizaji S. Controlling the misinformation diffusion in social media by the effect of different classes of agents. arXiv 2024 10.48550/arXiv.2401.11524
    [Google Scholar]
  19. Sanaei M. Gilbert S.B. Javadpour N. Sabouni H. Dorneich M.C. Kelly J.W. The correlations of scene complexity, workload, presence, and cybersickness in a task-based VR game. Lect. Notes Comput. Sci. 2024 14706 277 289 10.1007/978‑3‑031‑61041‑7_18
    [Google Scholar]
  20. Salehi M. Javadpour N. Beisner B. Cybersickness detection through head movement patterns: A promising approach. 2024 10.48550/arXiv.2402.02725
    [Google Scholar]
  21. Kazeminejad M. Karamifard M. Sheibani A. Reconfiguration of distribution network-based wind energy resource allocation considering time-varying load using hybrid optimization method. Wind Eng. 2024 48 5 938 953 10.1177/0309524X241247230
    [Google Scholar]
  22. Kiaghadi M. Sheikholeslami M. Alinia A.M. Boora F.M. Predicting the performance of a photovoltaic unit via machine learning methods in the existence of finned thermal storage unit. J. Energy Storage 2024 90 111766 10.1016/j.est.2024.111766
    [Google Scholar]
  23. Naeini A.B. Mahdipour A.G. Dorri R. Using eye tracking to measure overall usability of online grocery shopping websites. Int. J. Mobile Comput. Multimedia Commun. 2023 14 1 1 24 10.4018/IJMCMC.326129
    [Google Scholar]
  24. Faghihinejad F. Zoghifard M. Amiri A. Evaluating social and spatial equity in public transport: A case study. Transp. Lett. 15 10 1420 1429 10.1080/19427867.2022.2158541
    [Google Scholar]
  25. Newendorp A. Sanaei M. Perron A. Apple’s knowledge navigator: Why doesn’t that conversational agent exist yet? CHI Conference on Human Factors in Computing Systems 2024 Honolulu, USA 11-16 May, 2024 1 14 10.1145/3613904.3642739
    [Google Scholar]
  26. Pradhan R.K. Jena L.K. Employee performance at workplace: Conceptual model and empirical validation. Bus. Perspect. Res. 2017 5 1 69 85 10.1177/2278533716671630
    [Google Scholar]
  27. Singh A.K. Krishnan S. ECG signal feature extraction trends in methods and applications. Biomed. Eng. Online 2023 22 1 22 10.1186/s12938‑023‑01075‑1 36890566
    [Google Scholar]
  28. Zhang M. Yang M. Optimal electric bus scheduling considering battery degradation effect and charging facility capacity. Transp. Lett. 2024 ••• 1 11 10.1080/19427867.2024.2363659
    [Google Scholar]
  29. Zoghifard M. Sun C. Adu-Gyamfi Y. Highway safety manual training prepared for. Technical Note, University of Missouri Report 2020 1
    [Google Scholar]
  30. Tabakhi S. Suvon M.N.I. Ahadian P. Lu H. Multimodal learning for multi-omics: A survey. World Sci. Annu. Rev. Artif. Intell. 2023 1 2250004 10.1142/S2811032322500047
    [Google Scholar]
  31. Ali AMA. Alrobaian MM. Strengths and weaknesses of current and future prospects of artificial intelligence-mounted technologies applied in the development of pharmaceutical products and services. Saudi Pharm. J. 32 5 102043 2024 10.1016/j.jsps.2024.102043
    [Google Scholar]
  32. Duan Y. Edwards J.S. Dwivedi Y.K. Artificial intelligence for decision making in the era of Big Data – Evolution, challenges and research agenda. Int. J. Inf. Manage. 2019 48 63 71 10.1016/j.ijinfomgt.2019.01.021
    [Google Scholar]
  33. Jiménez-Luna J. Grisoni F. Weskamp N. Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin. Drug Discov. 2021 16 9 949 959 10.1080/17460441.2021.1909567 33779453
    [Google Scholar]
  34. Patra J. Singh D. Jain S. Mahindroo N. Chapter 13 - Application of docking for lead optimization. Molecular Docking for Computer-Aided Drug Design Academic Press 2021 1 271 294 10.1016/B978‑0‑12‑822312‑3.00012‑6
    [Google Scholar]
  35. Rad M. Ebrahimipour G. Bandehpour M. Akhavan O. Yarian F. SOEing PCR/docking optimization of protein A-G/scFv-Fc-bioconjugated Au nanoparticles for interaction with meningitidis bacterial antigen. Catalysts 2023 13 5 790 10.3390/catal13050790
    [Google Scholar]
  36. Bandi A. Adapa P.V.S.R. Kuchi Y.E.V.P.K. The power of generative AI: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 2023 15 8 260 10.3390/fi15080260
    [Google Scholar]
  37. Subbiah V. The next generation of evidence-based medicine. Nat. Med. 2023 29 1 49 58 10.1038/s41591‑022‑02160‑z 36646803
    [Google Scholar]
  38. Olk P. West J. The relationship of industry structure to open innovation: Cooperative value creation in pharmaceutical consortia. R&D Manag. 2020 50 1 116 135 10.1111/radm.12364
    [Google Scholar]
  39. Dambach D.M. Misner D. Brock M. Fullerton A. Proctor W. Maher J. Lee D. Ford K. Diaz D. Safety lead optimization and candidate identification: Integrating new technologies into decision-making. Chem. Res. Toxicol. 2016 29 4 452 472 10.1021/acs.chemrestox.5b00396 26625186
    [Google Scholar]
  40. Giaccotto C. Santerre R.E. Vernon J.A. Drug prices and research and development investment behavior in the pharmaceutical industry. J. Law Econ. 2005 48 1 195 214 10.1086/426882
    [Google Scholar]
  41. Wong C.H. Siah K.W. Lo A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019 20 2 273 286 10.1093/biostatistics/kxx069 29394327
    [Google Scholar]
  42. Van Norman G.A. Phase I.I. Phase II trials in drug development and adaptive trial design. JACC Basic Transl. Sci. 2019 4 3 428 437 10.1016/j.jacbts.2019.02.005 31312766
    [Google Scholar]
  43. Tariq Anwar S. Creating a national champion or a global pharmaceutical company: A tale of French connection. J. Bus. Ind. Mark. 2008 23 8 586 596 10.1108/08858620810913399
    [Google Scholar]
  44. Dhudum R. Ganeshpurkar A. Pawar A. Revolutionizing drug discovery: A comprehensive review of AI applications. Drugs Drug Candidates 2024 3 1 148 171 10.3390/ddc3010009
    [Google Scholar]
  45. Davenport TH. The AI advantage: How to put the artificial intelligence revolution to work MIT Press 2018 10.7551/mitpress/11781.001.0001
    [Google Scholar]
  46. Harrer S. Menard J. Rivers M. Chapter 40 - Artificial intelligence drives the digital transformation of pharma. Artificial Intelligence in Clinical Practice Academic Press 2024 345 372 10.1016/B978‑0‑443‑15688‑5.00049‑8
    [Google Scholar]
  47. Savage N. Tapping into the drug discovery potential of AI. Nat. BioPharma Deal. 2021 B37 B39 10.1038/d43747‑021‑00045‑7
    [Google Scholar]
  48. AI-based drug discovery company atomwise sets its sights on inflammatory disease market. 2023 Available from: https://www.genengnews.com/topics/artificial-intelligence/ai-based-drug-discovery-company-atomwise-sets-its-sights-on-inflammatory-disease-market/
  49. Qureshi R. Irfan M. Gondal T.M. Khan S. Wu J. Hadi M.U. Heymach J. Le X. Yan H. Alam T. AI in drug discovery and its clinical relevance. Heliyon 2023 9 7 e17575 10.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  50. Kamya P. Ozerov I.V. Pun F.W. Tretina K. Fokina T. Chen S. Naumov V. Long X. Lin S. Korzinkin M. Polykovskiy D. Aliper A. Ren F. Zhavoronkov A. PandaOmics: An AI-driven platform for therapeutic target and biomarker discovery. J. Chem. Inf. Model. 2024 64 10 3961 3969 10.1021/acs.jcim.3c01619 38404138
    [Google Scholar]
  51. Xu T. Zheng W. Huang R. High-throughput screening assays for SARS-CoV-2 drug development: Current status and future directions. Drug Discov. Today 2021 26 10 2439 2444 10.1016/j.drudis.2021.05.012 34048893
    [Google Scholar]
  52. DeFrancesco L. 2Q22 — Slip sliding away. Nat. Biotechnol. 2022 40 8 1166 1168 10.1038/s41587‑022‑01414‑y 35945434
    [Google Scholar]
  53. Upadhya R. Kosuri S. Tamasi M. Meyer T.A. Atta S. Webb M.A. Gormley A.J. Automation and data-driven design of polymer therapeutics. Adv. Drug Deliv. Rev. 2021 171 1 28 10.1016/j.addr.2020.11.009 33242537
    [Google Scholar]
  54. Overington J Hann M The reality of AI in drug discovery. highlights from the society for medicines research online meeting. virtual - March 4, 2021. Drugs Future 2021 46 5 415 10.1358/dof.2021.46.5.3303554
    [Google Scholar]
  55. Khetan R. Biopharma licensing and M&A trends in the 21st-century landscape. J. Commer. Biotechnol. 2020 25 3 1 5 10.5912/jcb943
    [Google Scholar]
  56. Kemp A. Collaboration leverages the Cellectis gene editing technologies and manufacturing capabilities, to develop up to 10 novel cell and gene therapy candidate products. 2023 Available from: https://www.astrazeneca.com/media-centre/press-releases/2023/astrazeneca-cell-and-gene-therapy-deal-w-cellectis.html
  57. Kirkpatrick P. Artificial intelligence makes a splash in small-molecule drug discovery. Biopharma Dealmakers 2022 1 1 3 10.1038/d43747‑022‑00104‑7
    [Google Scholar]
  58. Johnson & Johnson – Artificial intelligence is helping revolutionize healthcare as we know it. Available from: https://www.califesciences.org/artificial-intelligence-is-helping-revolutionize-healthcare-as-we-know-it/
  59. Philippidis A. In through the out door: Editas' CEOs grasp opportunities amidst challenges. GEN Biotechnol. 2022 1 3 215 217 10.1089/genbio.2022.29030.aph
    [Google Scholar]
  60. Philippidis A. CRISPR therapeutics, vertex complete rolling biologics license applications for exa-cel in sickle cell disease, beta thalassemia. Hum. Gene Ther. 2023 34 9-10 341 344 10.1089/hum.2023.29241.bfs 37219993
    [Google Scholar]
  61. Li B.T. Janku F. Jung B. Hou C. Madwani K. Alden R. Razavi P. Reis-Filho J.S. Shen R. Isbell J.M. Blocker A.W. Eattock N. Gnerre S. Satya R.V. Xu H. Zhao C. Hall M.P. Hu Y. Sehnert A.J. Brown D. Ladanyi M. Rudin C.M. Hunkapiller N. Feeney N. Mills G.B. Paweletz C.P. Janne P.A. Solit D.B. Riely G.J. Aravanis A. Oxnard G.R. Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: Results from the actionable genome consortium. Ann. Oncol. 2019 30 4 597 603 10.1093/annonc/mdz046 30891595
    [Google Scholar]
  62. Manimekalai R. Suresh G. Govinda Kurup H. Athiappan S. Kandalam M. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Crit. Rev. Biotechnol. 2020 40 6 865 880 10.1080/07388551.2020.1765730 32508157
    [Google Scholar]
  63. Yao X. Xiao S. Zhou L. Integrative proteomic and metabolomic analyses reveal the mechanism by which bismuth enables Helicobacter pylori eradication. Helicobacter 2021 26 6 e12846 10.1111/hel.12846 34414638
    [Google Scholar]
  64. Staff R. Agilent and mytide therapeutics to collaborate on automated drug manufacturing. Robotics (Basel) 2022 247 1 https://www.robotics247.com/article/agilent_and_mytide_therapeutics_to_collaborate_on_automated_drug_manufacturing
    [Google Scholar]
  65. GSK announces expanded collaboration with Tempus in precision medicine to accelerate R&D. 2022 Available from: https://www.gsk.com/en-gb/media/press-releases/gsk-announces-expanded-collaboration-with-tempus-in-precision-medicine-to-accelerate-rd/#:~:text=Through%20its%20leading%20Artificial%20Intelligence,with%20more%20personalised%20treatment%20faster
  66. West T.G. Ash B. Sandler N. Nanopaticle engineering and 3DP delivery for gamechanging oral therapeutics. Frederick Furness Publishing Ltd 2021
    [Google Scholar]
  67. Mass W. X‑Chem announces achievement of collaboration milestone. 2023 Available from: https://www.x-chemrx.com/about/news/x-chem-announces-achievement-of-collaboration-milestone/
  68. Deore A.B. Dhumane J.R. Wagh R. Sonawane R. The stages of drug discovery and development process. Asian J. Pharm. Res. 2019 7 6 62 67 10.22270/ajprd.v7i6.616
    [Google Scholar]
  69. Moffat J.G. Vincent F. Lee J.A. Eder J. Prunotto M. Opportunities and challenges in phenotypic drug discovery: A industry perspective. Nat. Rev. Drug Discov. 2017 16 8 531 543 10.1038/nrd.2017.111 28685762
    [Google Scholar]
  70. Schenone M. Dančík V. Wagner B.K. Clemons P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013 9 4 232 240 10.1038/nchembio.1199 23508189
    [Google Scholar]
  71. Bleicher K.H. Böhm H.J. Müller K. Alanine A.I. Hit and lead generation: Beyond high-throughput screening. Nat. Rev. Drug Discov. 2003 2 5 369 378 10.1038/nrd1086 12750740
    [Google Scholar]
  72. Walters W.P. Namchuk M. Designing screens: How to make your hits a hit. Nat. Rev. Drug Discov. 2003 2 4 259 266 10.1038/nrd1063 12669025
    [Google Scholar]
  73. Bergner A. Parel S.P. Hit expansion approaches using multiple similarity methods and virtualized query structures. J. Chem. Inf. Model. 2013 53 5 1057 1066 10.1021/ci400059p 23600728
    [Google Scholar]
  74. Paterson R.R.M. Cordyceps – A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008 69 7 1469 1495 10.1016/j.phytochem.2008.01.027 18343466
    [Google Scholar]
  75. Aggarwal P. Hall J.B. McLeland C.B. Dobrovolskaia M.A. McNeil S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009 61 6 428 437 10.1016/j.addr.2009.03.009 19376175
    [Google Scholar]
  76. Chung T.D.Y. Terry D.B. Smith L.H. in vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization–guidelines, benchmarks and rules of thumb. Assay Guidance Manual Bethesda (MD) Markossian S. Grossman A. Arkin M. 2004 1 1 20 26561695
    [Google Scholar]
  77. Hughes J.P. Rees S. Kalindjian S.B. Philpott K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011 162 6 1239 1249 10.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  78. Benefits of AI in preclinical studies. 2022 Available from: https://www.aiforia.com/resource-library/ai-in-preclinical-studies
  79. Andrade E.L. Bento A.F. Cavalli J. Oliveira S.K. Schwanke R.C. Siqueira J.M. Freitas C.S. Marcon R. Calixto J.B. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz. J. Med. Biol. Res. 2016 49 12 e5646 10.1590/1414‑431x20165646
    [Google Scholar]
  80. Mohs R.C. Greig N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. (N.Y.) 2017 3 4 651 657 10.1016/j.trci.2017.10.005 29255791
    [Google Scholar]
  81. Friedman L.M. Furberg C.D. DeMets D.L. Fundamentals of Clinical Trials Springer Cham 2015 10.1007/978‑3‑319‑18539‑2
    [Google Scholar]
  82. Aksu B. Paradkar A. de Matas M. Özer Ö. Güneri T. York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm. Dev. Technol. 2013 18 1 236 245 10.3109/10837450.2012.705294 22881350
    [Google Scholar]
  83. Stone N.D. Dunaway S.B. Flexner C. Tierney C. Calandra G.B. Becker S. Cao Y.J. Wiggins I.P. Conley J. MacFarland R.T. Park J.G. Lalama C. Snyder S. Kallungal B. Klingman K.L. Hendrix C.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother. 2007 51 7 2351 2358 10.1128/AAC.00013‑07 17452489
    [Google Scholar]
  84. Woodcock J. Woosley R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 2008 59 1 1 12 10.1146/annurev.med.59.090506.155819 18186700
    [Google Scholar]
  85. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  86. Marchant J. Powerful antibiotics discovered using AI. Nature 2020 1 1 5 10.1038/d41586‑020‑00018‑3 33603175
    [Google Scholar]
  87. Dhamodharan G. Mohan C.G. Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Mol. Divers. 2022 26 3 1501 1517 10.1007/s11030‑021‑10282‑8 34327619
    [Google Scholar]
  88. Chi H. Huang J. Yan Y. Unraveling the role of disulfidptosis-related LncRNAs in colon cancer: A prognostic indicator for immunotherapy response, chemotherapy sensitivity, and insights into cell death mechanisms. Front. Mol. Biosci. 2023 10 1254232 10.3389/fmolb.2023.1254232
    [Google Scholar]
  89. Ferruz N. Heinzinger M. Akdel M. Goncearenco A. Naef L. Dallago C. From sequence to function through structure: Deep learning for protein design. Comput. Struct. Biotechnol. J. 2023 21 238 250 10.1016/j.csbj.2022.11.014 36544476
    [Google Scholar]
  90. Real-time notifications of suspected intracranial hemorrhage. Available from: https://www.brainomix.com/stroke/triage-ich/
  91. Ducca M. Adjunctive predictive cardiovascular indicator. 2023 Available from: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-870/subpart-C/section-870.2210
  92. Smith J. Medical devices; Gastroenterology-urology Devices; Classification of the gastrointestinal lesion software detection system. 2023 Available from: https://www.federalregister.gov/documents/2023/01/03/2022-28494/medical-devices-gastroenterology-urology-devices-classification-of-the-gastrointestinal-lesion
  93. Akpakpa F. Ultrasonic pulsed doppler imaging system. 2024 Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf24/K240406.pdf
  94. Lacroix V. Medical image management and processing system. Phys. Med. Biol. 2023 69 10 10TR01 10.1088/1361‑6560/ad387d
    [Google Scholar]
  95. Chen B.K. Yang Y.T. Post-marketing surveillance of prescription drug safety: Past, present, and future. J. Leg. Med. 2013 34 2 193 213 10.1080/01947648.2013.800797 23980746
    [Google Scholar]
  96. Zhuang W. Xu J. Wu Y. Yang J. Lin X. Liao Y. Wan J. Weng L. Lin W. Post-marketing safety concerns with nirmatrelvir: A disproportionality analysis of spontaneous reports submitted to the FDA Adverse Event Reporting System. Br. J. Clin. Pharmacol. 2023 89 9 2830 2842 10.1111/bcp.15783 37170890
    [Google Scholar]
  97. Mak K.K. Balijepalli M.K. Pichika M.R. Success stories of AI in drug discovery - Where do things stand? Expert Opin. Drug Discov. 2022 17 1 79 92 10.1080/17460441.2022.1985108 34553659
    [Google Scholar]
  98. Shah B. Revolutionizing drug discovery: The role of artificial intelligence. Int. J. Sci. Res. (Raipur) 2023 12 12 1948 1952 10.21275/SR231219092956
    [Google Scholar]
  99. Davenport T. Guha A. Grewal D. Bressgott T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020 48 1 24 42 10.1007/s11747‑019‑00696‑0
    [Google Scholar]
  100. Sellwood M.A. Ahmed M. Segler M.H.S. Brown N. Artificial intelligence in drug discovery. Future Med. Chem. 2018 10 17 2025 2028 10.4155/fmc‑2018‑0212 30101607
    [Google Scholar]
  101. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  102. Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 573 589 10.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  103. Sarkar C. Das B. Rawat V.S. Wahlang J.B. Nongpiur A. Tiewsoh I. Lyngdoh N.M. Das D. Bidarolli M. Sony H.T. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int. J. Mol. Sci. 2023 24 3 2026 10.3390/ijms24032026 36768346
    [Google Scholar]
  104. Hariri R.H. Fredericks E.M. Bowers K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data 2019 6 1 44 10.1186/s40537‑019‑0206‑3
    [Google Scholar]
  105. Zhao L. Wang W. Sedykh A. Zhu H. Experimental errors in QSAR modeling sets: What we can do and what we cannot do. ACS Omega 2017 2 6 2805 2812 10.1021/acsomega.7b00274 28691113
    [Google Scholar]
  106. Chan H.C.S. Shan H. Dahoun T. Vogel H. Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019 40 8 592 604 10.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  107. Scior T. Bender A. Tresadern G. Medina-Franco J.L. Martínez-Mayorga K. Langer T. Cuanalo-Contreras K. Agrafiotis D.K. Recognizing pitfalls in virtual screening: A critical review. J. Chem. Inf. Model. 2012 52 4 867 881 10.1021/ci200528d 22435959
    [Google Scholar]
  108. Masciocchi J. Frau G. Fanton M. Sturlese M. Floris M. Pireddu L. Palla P. Cedrati F. Rodriguez-Tomé P. Moro S. MMsINC: A large-scale chemoinformatics database. Nucleic Acids Res. 2009 37 1 D284 D290 10.1093/nar/gkn727 18931373
    [Google Scholar]
  109. Zhang L. Tan J. Han D. Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017 22 11 1680 1685 10.1016/j.drudis.2017.08.010 28881183
    [Google Scholar]
  110. Gimeno A. Ojeda-Montes M.J. Tomás-Hernández S. Cereto-Massagué A. Beltrán-Debón R. Mulero M. Pujadas G. Garcia-Vallvé S. The light and dark sides of virtual screening: What is there to know? Int. J. Mol. Sci. 2019 20 6 1375 10.3390/ijms20061375 30893780
    [Google Scholar]
  111. King R.D. Hirst J.D. Sternberg M.J. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS. Appl. Artif. Intell. 1995 9 2 213 233 10.1080/08839519508945474
    [Google Scholar]
  112. Wang Y. Guo Y. Kuang Q. Pu X. Ji Y. Zhang Z. Li M. A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach. J. Comput. Aided Mol. Des. 2015 29 4 349 360 10.1007/s10822‑014‑9827‑y 25527073
    [Google Scholar]
  113. Agrawal P. Artificial intelligence in drug discovery and development. J. Pharmacovigil. 2018 6 2 1000 1173 10.4172/2329‑6887.1000e173
    [Google Scholar]
  114. Mullowney M.W. Duncan K.R. Elsayed S.S. Garg N. van der Hooft J.J.J. Martin N.I. Meijer D. Terlouw B.R. Biermann F. Blin K. Durairaj J. Gorostiola González M. Helfrich E.J.N. Huber F. Leopold-Messer S. Rajan K. de Rond T. van Santen J.A. Sorokina M. Balunas M.J. Beniddir M.A. van Bergeijk D.A. Carroll L.M. Clark C.M. Clevert D.A. Dejong C.A. Du C. Ferrinho S. Grisoni F. Hofstetter A. Jespers W. Kalinina O.V. Kautsar S.A. Kim H. Leao T.F. Masschelein J. Rees E.R. Reher R. Reker D. Schwaller P. Segler M. Skinnider M.A. Walker A.S. Willighagen E.L. Zdrazil B. Ziemert N. Goss R.J.M. Guyomard P. Volkamer A. Gerwick W.H. Kim H.U. Müller R. van Wezel G.P. van Westen G.J.P. Hirsch A.K.H. Linington R.G. Robinson S.L. Medema M.H. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 2023 22 11 895 916 10.1038/s41573‑023‑00774‑7 37697042
    [Google Scholar]
  115. Miles J.C. Walker A.J. The potential application of artificial intelligence in transport. IET Intell. Transp. Syst. 2006 153 3 183 198 10.1049/ip‑its:20060014
    [Google Scholar]
  116. Wirtz BW. Weyerer JC. Geyer C. Artificial intelligence and the public sector — Applications and challenges. Int. J. Public Adm. 2019 42 7 596 615 10.1080/01900692.2018.1498103
    [Google Scholar]
  117. Yang Y. Siau K.L. A qualitative research on marketing and sales in the artificial intelligence age. The 13th Annual Conference of the Midwest Association for Information Systems (MWAIS 2018) 17-18 May, 2018 St. Louis, Missouri, US 2018
    [Google Scholar]
  118. da Silva I.N. Hernane Spatti D. Andrade Flauzino R. Liboni L.H.B. dos Reis Alves S.F. Neural network architectures and training processes. Artificial Neural Networks Springer Cham 2017 1 21 28 10.1007/978‑3‑319‑43162‑8_2
    [Google Scholar]
  119. Ciallella H.L. Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 2019 32 4 536 547 10.1021/acs.chemrestox.8b00393 30907586
    [Google Scholar]
  120. Pereira J.C. Caffarena E.R. dos Santos C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 2016 56 12 2495 2506 10.1021/acs.jcim.6b00355 28024405
    [Google Scholar]
  121. Brown N. in silico medicinal chemistry: Computational methods to support drug design. Theor. Comput. Chem. Ser. 2015 1 232 10.1039/9781782622604
    [Google Scholar]
  122. Mehta C.H. Narayan R. Nayak U.Y. Computational modeling for formulation design. Drug Discov. Today 2019 24 3 781 788 10.1016/j.drudis.2018.11.018 30502513
    [Google Scholar]
  123. Liebman M. The role of artificial intelligence in drug discovery and development. Chem. Int. 2022 44 1 16 19 10.1515/ci‑2022‑0105
    [Google Scholar]
  124. Moingeon P. Kuenemann M. Guedj M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. Drug Discov. Today 2022 27 1 215 222 10.1016/j.drudis.2021.09.006 34555509
    [Google Scholar]
  125. Moingeon P. Artificial intelligence and the future of medicine: A multidimensional analysis. Life Res. 2021 4 1 3 10.53388/life2021‑0103‑301
    [Google Scholar]
  126. Zimmermann G.R. Lehár J. Keith C.T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today 2007 12 1-2 34 42 10.1016/j.drudis.2006.11.008 17198971
    [Google Scholar]
  127. Li S. Huang S. Peng S.B. Overexpression of G protein-coupled receptors in cancer cells: Involvement in tumor progression. Int. J. Oncol. 2005 27 5 1329 1339 10.3892/ijo.27.5.1329 16211229
    [Google Scholar]
  128. Schauperl M. Denny R.A. Denny RAJJoCI and modeling. AI-based protein structure prediction in drug discovery: Impacts and challenges. J. Chem. Inf. Model. 2022 62 13 3142 3156 10.1021/acs.jcim.2c00026 35727311
    [Google Scholar]
  129. Wan F. Zeng J.J.B. Deep learning with feature embedding for compound-protein interaction prediction. Biorxiv 2016 10.1101/086033
    [Google Scholar]
  130. Hutson M. AI protein-folding algorithms solve structures faster than ever. Nature 2019 1 1 5 10.1038/d41586‑019‑01357‑6 32690960
    [Google Scholar]
  131. AlQuraishi M. End-to-end differentiable learning of protein structure. Cell Syst. 2019 8 4 292 301.e3 10.1016/j.cels.2019.03.006 31005579
    [Google Scholar]
  132. Wang F. Liu D. Wang H. Luo C. Zheng M. Liu H. Zhu W. Luo X. Zhang J. Jiang H. Computational screening for active compounds targeting protein sequences: Methodology and experimental validation. J. Chem. Inf. Model. 2011 51 11 2821 2828 10.1021/ci200264h 21955088
    [Google Scholar]
  133. Tian K. Shao M. Wang Y. Guan J. Zhou S. Boosting compound-protein interaction prediction by deep learning. Methods 2016 110 64 72 10.1016/j.ymeth.2016.06.024 27378654
    [Google Scholar]
  134. Xiao X. Min J.L. Lin W.Z. Liu Z. Cheng X. Chou K.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn. 2015 33 10 2221 2233 10.1080/07391102.2014.998710 25513722
    [Google Scholar]
  135. Yu H. Chen J. Xu X. Li Y. Zhao H. Fang Y. Li X. Zhou W. Wang W. Wang Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012 7 5 e37608 10.1371/journal.pone.0037608 22666371
    [Google Scholar]
  136. Zhang W. Fan Y. Structure of keratin. Methods Mol. Biol. 2021 2347 41 53 10.1007/978‑1‑0716‑1574‑4_5 34472054
    [Google Scholar]
  137. Sachdev K. Gupta M.K. A comprehensive review of feature based methods for drug target interaction prediction. J. Biomed. Inform. 2019 93 103159 10.1016/j.jbi.2019.103159 30926470
    [Google Scholar]
  138. Segler M.H.S. Kogej T. Tyrchan C. Waller M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 2018 4 1 120 131 10.1021/acscentsci.7b00512 29392184
    [Google Scholar]
  139. Meziane F. Vadera S. Kobbacy K. Proudlove N. Intelligent systems in manufacturing: Current developments and future prospects. Integrated Manuf. Syst. 2000 11 4 218 238 10.1108/09576060010326221
    [Google Scholar]
  140. Arden N.S. Fisher A.C. Tyner K. Yu L.X. Lee S.L. Kopcha M. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future. Int. J. Pharm. 2021 602 120554 10.1016/j.ijpharm.2021.120554 33794326
    [Google Scholar]
  141. Chiti F. Lagrangian studies of turbulent mixing in a vessel agitated by a rushron turbine: Positron emission particle tracking (PEPT) and computational fluid dynamics (CFD). Thesis, University of Birmingham Report 2008
    [Google Scholar]
  142. Shen Y. Borowski J.E. Hardy M.A. Sarpong R. Doyle A.G. Cernak T. Automation and computer-assisted planning for chemical synthesis. Nature Reviews Methods Primers 2021 1 1 23 10.1038/s43586‑021‑00022‑5
    [Google Scholar]
  143. Çelik M. Use of artificial intelligence and expert systems in pharmaceutical applications. Handbook of Pharmaceutical Granulation Technology CRC Press 2021 4th ed
    [Google Scholar]
  144. Antony J. Bardhan Anand R. Kumar M. Tiwari M.K. Multiple response optimization using Taguchi methodology and neuro-fuzzy based model. J. Manuf. Tech. Manag. 2006 17 7 908 925 10.1108/17410380610688232
    [Google Scholar]
  145. Suresh P. Sreedhar I. Vaidhiswaran R. Venugopal A. A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem. Eng. J. 2017 328 785 815 10.1016/j.cej.2017.07.091
    [Google Scholar]
  146. Battina D.S. Artificial intelligence in software test automation: A systematic literature review. SSRN 2019 6 12 1329 1332
    [Google Scholar]
  147. Braiek H.B. Khomh F. On testing machine learning programs. J. Syst. Softw. 2020 164 110542 10.1016/j.jss.2020.110542
    [Google Scholar]
  148. He J. Baxter S.L. Xu J. Xu J. Zhou X. Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019 25 1 30 36 10.1038/s41591‑018‑0307‑0 30617336
    [Google Scholar]
  149. Ynion J.C. Using AI in automated UI localization testing of a mobile app. Thesis, Metropolia University of Applied Sciences 2020
    [Google Scholar]
  150. Zhao C. Jain A. Hailemariam L. Suresh P. Akkisetty P. Joglekar G. Venkatasubramanian V. Reklaitis G.V. Morris K. Basu P. Toward intelligent decision support for pharmaceutical product development. J. Pharm. Innov. 2006 1 1 23 35 10.1007/BF02784878
    [Google Scholar]
  151. Wang X. Intelligent quality management using knowledge discovery in databases. International Conference on Computational Intelligence and Software Engineering Wuhan, China 11-13 Dec, 2009 2009 1 4 10.1109/CISE.2009.5364999
    [Google Scholar]
  152. Hay M. Thomas D.W. Craighead J.L. Economides C. Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014 32 1 40 51 10.1038/nbt.2786 24406927
    [Google Scholar]
  153. Köpcke F. Prokosch H.U. Employing computers for the recruitment into clinical trials: A comprehensive systematic review. J. Med. Internet Res. 2014 16 7 e161 10.2196/jmir.3446 24985568
    [Google Scholar]
  154. Farghali H. Kutinová Canová N. Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiol. Res. 2021 70 Suppl. 4 S715 S722 10.33549/physiolres.934765 35199553
    [Google Scholar]
  155. Biddle K. White J. Sofat N. What is the full potential of baricitinib in treating patients with COVID-19? Expert Rev. Clin. Immunol. 2022 18 6 545 549 10.1080/1744666X.2022.2072298 35486502
    [Google Scholar]
  156. Terstappen G.C. Reggiani A. in silico research in drug discovery. Trends Pharmacol. Sci. 2001 22 1 23 26 10.1016/S0165‑6147(00)01584‑4 11165668
    [Google Scholar]
  157. Robson B. De novo protein folding on computers. Benefits and challenges. Comput. Biol. Med. 2022 143 105292 10.1016/j.compbiomed.2022.105292 35158120
    [Google Scholar]
  158. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  159. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  160. Stokes J.M. Yang K. Swanson K. Jin W. Cubillos-Ruiz A. Donghia N.M. MacNair C.R. French S. Carfrae L.A. Bloom-Ackermann Z. Tran V.M. Chiappino-Pepe A. Badran A.H. Andrews I.W. Chory E.J. Church G.M. Brown E.D. Jaakkola T.S. Barzilay R. Collins J.J. A deep learning approach to antibiotic discovery. Cell 2020 180 4 688 702.e13 10.1016/j.cell.2020.01.021 32084340
    [Google Scholar]
  161. Alimirzaei F. Kieslich C.A. Machine learning models for predicting membranolytic anticancer peptides. Comput. Aided Chem. Eng. 2023 52 2691 2696 10.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
  162. Altay O. Mohammadi E. Lam S. Turkez H. Boren J. Nielsen J. Uhlen M. Mardinoglu A. Current status of COVID-19 therapies and drug repositioning applications. iScience 2020 23 7 101303 10.1016/j.isci.2020.101303 32622261
    [Google Scholar]
  163. Johns W.R. Computer-aided chemical engineering. Kirk-Othmer Encyclopedia of Chemical Technology Wiey 2002 10.1002/0471238961.0315131620012525.a01.pub2
    [Google Scholar]
  164. Agu P.C. Obulose C.N. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Dev. Res. 2024 85 2 e22159 10.1002/ddr.22159 38375772
    [Google Scholar]
  165. Akbar R. Bashour H. Rawat P. Robert P.A. Smorodina E. Cotet T.S. Flem-Karlsen K. Frank R. Mehta B.B. Vu M.H. Zengin T. Gutierrez-Marcos J. Lund-Johansen F. Andersen J.T. Greiff V. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 2022 14 1 2008790 10.1080/19420862.2021.2008790 35293269
    [Google Scholar]
  166. Khuat T.T. Bassett R. Otte E. Grevis-James A. Gabrys B. Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities. Comput. Chem. Eng. 2024 182 108585 10.1016/j.compchemeng.2024.108585
    [Google Scholar]
  167. Selvaraj C. Chandra I. Singh S.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol. Divers. 2022 26 3 1893 1913 10.1007/s11030‑021‑10326‑z 34686947
    [Google Scholar]
  168. Paul J. Seib R. Prescott T. The Internet and clinical trials: Background, online resources, examples and issues. J. Med. Internet Res. 2005 7 1 e5 10.2196/jmir.7.1.e5 15829477
    [Google Scholar]
  169. Kumar Y. Koul A. Singla R. Ijaz M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2023 14 7 8459 8486 10.1007/s12652‑021‑03612‑z 35039756
    [Google Scholar]
  170. Moingeon P. Applications of Artificial Intelligence to drug development: Why is this a revolution? Am. Pharm. Rev. 2021 79 5 566 571 10.1016/j.pharma.2021.01.008 33529579
    [Google Scholar]
  171. Creighton C.J. Using large-scale molecular data sets to improve breast cancer treatment. Breast Cancer Manag. 2012 1 1 57 64 10.2217/bmt.12.14 23869198
    [Google Scholar]
  172. Raufaste-Cazavieille V. Santiago R. Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front. Mol. Biosci. 2022 9 962743 10.3389/fmolb.2022.962743 36304921
    [Google Scholar]
  173. García del Valle E.P. Lagunes García G. Prieto Santamaría L. Zanin M. Menasalvas Ruiz E. Rodríguez-González A. Disease networks and their contribution to disease understanding: A review of their evolution, techniques and data sources. J. Biomed. Inform. 2019 94 103206 10.1016/j.jbi.2019.103206 31077818
    [Google Scholar]
  174. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  175. Tini G. Marchetti L. Priami C. Scott-Boyer M.P. Multi-omics integration — A comparison of unsupervised clustering methodologies. Brief. Bioinform. 2019 20 4 1269 1279 10.1093/bib/bbx167 29272335
    [Google Scholar]
  176. Chi H. Chen H. Wang R. Zhang J. Jiang L. Zhang S. Jiang C. Huang J. Quan X. Liu Y. Zhang Q. Yang G. Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model. Front. Oncol. 2023 13 1244578 10.3389/fonc.2023.1244578 37601672
    [Google Scholar]
  177. Oulas A. Minadakis G. Zachariou M. Sokratous K. Bourdakou M.M. Spyrou G.M. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief. Bioinform. 2019 20 3 806 824 10.1093/bib/bbx151 29186305
    [Google Scholar]
  178. Moreno-Moral A. Pesce F. Behmoaras J. Petretto E. Systems genetics as a tool to identify master genetic regulators in complex disease. Methods Mol. Biol. 2017 1488 337 362 10.1007/978‑1‑4939‑6427‑7_16 27933533
    [Google Scholar]
  179. Jedrzejewski F.V. Privacy-preserving natural language processing: A systematic mapping study. IEEE Access 2021 99 1 1 10.1109/ACCESS.2021.3124163
    [Google Scholar]
  180. Sherman S. Exscientia announces sixth molecule created through generative AI platform to enter clinical stage. 2023 Available from: https://investors.exscientia.ai/press-releases/press-release-details/2023/Exscientia-Announces-Sixth-Molecule-Created-Through-Generative-AI-Platform-to-Enter-Clinical-Stage/default.aspx
  181. Saeed H. El Naqa I. Artificial intelligence in clinical trials. Machine and Deep Learning in Oncology, Medical Physics and Radiology Springer Cham El Naqa I. Murphy M.J. 2022 1 453 501
    [Google Scholar]
  182. Idnay B. Dreisbach C. Weng C. Schnall R. A systematic review on natural language processing systems for eligibility prescreening in clinical research. J. Am. Med. Inform. Assoc. 2021 29 1 197 206 10.1093/jamia/ocab228 34725689
    [Google Scholar]
  183. Kaur H. Digitally enabled, wearable remote patient monitoring of clinical trials to assess patient reported outcomes - A systematic review: Shifting paradigm from site-centric to patient centric health care. 2021 Thesis, Halmstad University, School of Health and Welfare
    [Google Scholar]
  184. Shah P. Kendall F. Khozin S. Goosen R. Hu J. Laramie J. Ringel M. Schork N. Artificial intelligence and machine learning in clinical development: A translational perspective. NPJ Digit. Med. 2019 2 1 69 10.1038/s41746‑019‑0148‑3 31372505
    [Google Scholar]
  185. Tucker A. Wang Z. Rotalinti Y. Myles P. Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. NPJ Digit. Med. 2020 3 1 147 10.1038/s41746‑020‑00353‑9 33299100
    [Google Scholar]
  186. Kirchmair J. Göller A.H. Lang D. Kunze J. Testa B. Wilson I.D. Glen R.C. Schneider G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015 14 6 387 404 10.1038/nrd4581 25907346
    [Google Scholar]
  187. Friedrich C.M. A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT Pharmacometrics Syst. Pharmacol. 2016 5 2 43 53 10.1002/psp4.12056 26933515
    [Google Scholar]
  188. Rayner C.R. Smith P.F. Andes D. Andrews K. Derendorf H. Friberg L.E. Hanna D. Lepak A. Mills E. Polasek T.M. Roberts J.A. Schuck V. Shelton M.J. Wesche D. Rowland-Yeo K. Model-informed drug development for anti-infectives: State of the art and future. Clin. Pharmacol. Ther. 2021 109 4 867 891 10.1002/cpt.2198 33555032
    [Google Scholar]
  189. Bhardwaj N.D. Challenges in healthcare in India. Administration in India 1st ed Taylor & Francis Group 2021 52 69
    [Google Scholar]
  190. Prasad A. Kapoor P. Singh T.P. Security threats in IOT and their prevention. Communication Technologies and Security Challenges in Io Springer Singapore 2024 131 146 10.1007/978‑981‑97‑0052‑3_7
    [Google Scholar]
  191. Archana T. Stephen R.K. The future of artificial intelligence in manufacturing industries. Industry Applications of Thrust Manufacturing: Convergence with Real-Time Data and AI IGI Global 2024 98 117 10.4018/979‑8‑3693‑4276‑3.ch004
    [Google Scholar]
  192. Seyhan A.A. Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med. 2019 17 1 114 10.1186/s12967‑019‑1864‑9 30953518
    [Google Scholar]
  193. Sharma P. Mehra S. Gupta P. Chapter 22: Role of Blockchain, AI and Big Data in Healthcare Industry. Information for Efficient Decision Making World Scientific Publishing Co. Pte. Ltd. Balachandran KR. 2021 1 623 648 10.1142/9789811220470_0022
    [Google Scholar]
  194. Umit V. Artificial intelligence and the new health era. Thesis, University of Twente 2018
    [Google Scholar]
  195. Salmon JW. Thompson SL. Salmon JW. Big data: Information technology as control over the profession of medicine. The Corporatization of American Health Care Springer Cham 2021 181 254 10.1007/978‑3‑030‑60667‑1_5
    [Google Scholar]
  196. Torab-Miandoab A. Samad-Soltani T. Jodati A. Rezaei-Hachesu P. Interoperability of heterogeneous health information systems: A systematic literature review. BMC Med. Inform. Decis. Mak. 2023 23 1 18 10.1186/s12911‑023‑02115‑5 36694161
    [Google Scholar]
  197. Paul M. Maglaras L. Ferrag M.A. Almomani I. Digitization of healthcare sector: A study on privacy and security concerns. ICT Express 2023 9 4 571 588 10.1016/j.icte.2023.02.007
    [Google Scholar]
  198. Baowaly M.K. Lin C.C. Liu C.L. Chen K.T. Synthesizing electronic health records using improved generative adversarial networks. J. Am. Med. Inform. Assoc. 2019 26 3 228 241 10.1093/jamia/ocy142 30535151
    [Google Scholar]
  199. khan B. Fatima H. Qureshi A. Kumar S. Hanan A. Hussain J. Abdullah S. Drawbacks of artificial intelligence and their potential solutions in the healthcare sector. Biomed. Mater. Devices 2023 1 2 731 738 10.1007/s44174‑023‑00063‑2 36785697
    [Google Scholar]
  200. Song B. Chi H. Peng G. Song Y. Cui Z. Zhu Y. Chen G. Wu J. Liu W. Dong C. Wang Y. Xu K. Yu Z. Song B. Characterization of coagulation-related gene signature to predict prognosis and tumor immune microenvironment in skin cutaneous melanoma. Front. Oncol. 2022 12 975255 10.3389/fonc.2022.975255 36059641
    [Google Scholar]
  201. Dhamija S. Leveraging the google cloud environment for accomplishing an enhanced efficacy of health-care centric data. Int. J. Res. Med. Sci. 2020 9 1 170 175
    [Google Scholar]
  202. Guo H. Scriney M. Liu K. An ostensive information architecture to enhance semantic interoperability for healthcare information systems. Inf. Syst. Front. 2023 1 1 24 10.1007/s10796‑023‑10379‑5 37361885
    [Google Scholar]
  203. Cramer P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol. 2021 28 9 704 705 10.1038/s41594‑021‑00650‑1 34376855
    [Google Scholar]
  204. Gale E.M. Durand D.J. Improving reaction prediction. Nat. Chem. 2020 12 6 509 510 10.1038/s41557‑020‑0478‑4 32409721
    [Google Scholar]
  205. Shaker B. Ahmad S. Lee J. Jung C. Na D. in silico methods and tools for drug discovery. Comput. Biol. Med. 2021 137 104851 10.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  206. Thomas U. AI-based drug discovery company atomwise sets its sights on inflammatory disease market. GEN Edge 2023 5 1 683 687 10.1089/genedge.5.1.132
    [Google Scholar]
  207. Mullard A. The drug-maker’s guide to the galaxy. Nature 2017 549 7673 445 447 10.1038/549445a 28959982
    [Google Scholar]
  208. Raffa R.B. Pergolizzi J.V. Miller T. Motto D. Commentary: Unexpected novel chemical weapon agents designed by innocuous drug-development AI (artificial intelligence) algorithm. Pharmacol. Pharm. 2022 13 7 225 229 10.4236/pp.2022.137018
    [Google Scholar]
  209. Doherty T. Yao Z. Khleifat A.A. Tantiangco H. Tamburin S. Albertyn C. Thakur L. Llewellyn D.J. Oxtoby N.P. Lourida I. Ranson J.M. Duce J.A. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimers Dement. 2023 19 12 5922 5933 10.1002/alz.13428 37587767
    [Google Scholar]
  210. Oszustowicz R.J. Financial considerations toward securing a searle medidata multitest system for the swedish medical center. The Seventh Annual Symposium on Computer Applications in Medical Care Washington, DC, USA 1983 387 389 10.1109/SCAMC.1983.764644
    [Google Scholar]
  211. Blaudin de Thé F.X. Baudier C. Andrade Pereira R. Lefebvre C. Moingeon P. Transforming drug discovery with a high-throughput AI-powered platform: A 5-year experience with Patrimony. Drug Discov. Today 2023 28 11 103772 10.1016/j.drudis.2023.103772 37717933
    [Google Scholar]
  212. Yesavage T. AI in drug discovery: Trust, but verify. Genet. Eng. Biotechnol. News 2024 44 1 28 30 10.1089/gen.44.01.09
    [Google Scholar]
  213. Korshunova M. Ginsburg B. Tropsha A. Isayev O. OpenChem: A deep learning toolkit for computational chemistry and drug design. J. Chem. Inf. Model. 2021 61 1 7 13 10.1021/acs.jcim.0c00971 33393291
    [Google Scholar]
  214. Ghosh N. Santoni D. Saha I. Predicting transcription factor binding sites using transformer based capsule network. Int. J. Mol. Sci. 2023 25 9 4990 10.3390/ijms25094990 38732207
    [Google Scholar]
  215. Deng L. Zeng Y. Liu H. Liu Z. Liu X. DeepMHADTA: Prediction of drug-target binding affinity using multi-head self-attention and convolutional neural network. Curr. Issues Mol. Biol. 2022 44 5 2287 2299 10.3390/cimb44050155 35678684
    [Google Scholar]
  216. Lovrić M. Molero J.M. Kern R. PySpark and RDKit: Moving towards Big Data in Cheminformatics. Mol. Inform. 2019 38 6 1800082 10.1002/minf.201800082 30844132
    [Google Scholar]
  217. Chithrananda S. Grand G. ChemBERTa: Large-scale self-supervised pretraining for molecular property prediction. arXiv 2020 10.48550/arXiv.2010.09885
    [Google Scholar]
  218. Sharma V. Wakode S. Kumar H.J.C. Chapter 2 - Structure- and ligand-based drug design: concepts, approaches, and challenges. Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences 2021 Academic Press 27 53 10.1016/B978‑0‑12‑821748‑1.00004‑X
    [Google Scholar]
  219. Erlich Y. Mitra P.P. delaBastide M. McCombie W.R. Hannon G.J. Alta-Cyclic: A self-optimizing base caller for next-generation sequencing. Nat. Methods 2008 5 8 679 682 10.1038/nmeth.1230 18604217
    [Google Scholar]
  220. Cooke P. From the machine learning region to the deep learning region: Tesla, DarkTrace and DeepMind as internationalized local to global cluster firms. The Globalization of Regional Clusters Edward Elgar Publishing Fornahl D. Grashof N. 2021 33 57
    [Google Scholar]
  221. Ko G.Y. Shin D. Auh S. Lee Y. Han S.P. Learning outside the classroom during a pandemic: Evidence from an artificial intelligence-based education app. Manage. Sci. 2023 69 6 3616 3649 10.1287/mnsc.2022.4531
    [Google Scholar]
  222. Kumar P. Artificial intelligence: Reshaping life and business. BPB Publications India 2019 1 20 35
    [Google Scholar]
  223. All in on AI: How smart companies win big with artificial intelligence. 2023 Available from: https://www.forbes.com/sites/bernardmarr/2023/01/27/all-in-on-ai-how-smart-companies-win-big-with-artificial-intelligence/
  224. Team G. Anil R. Borgeaud S. Gemini: A family of highly capable multimodal models. arXiv 2023 10.48550/arXiv.2312.11805
    [Google Scholar]
  225. Sharon T. Blind-sided by privacy? Digital contact tracing, the Apple/Google API and big tech’s newfound role as global health policy makers. Ethics Inf. Technol. 2021 23 Suppl 1 45 57 10.1007/s10676‑020‑09547‑x 32837287
    [Google Scholar]
  226. Ventola C.L. Mobile devices and apps for health care professionals: Uses and benefits. P. T. 2014 39 5 356 364 24883008
    [Google Scholar]
  227. Schmitz H. Howe C.L. Armstrong D.G. Subbian V. Leveraging mobile health applications for biomedical research and citizen science: A scoping review. J. Am. Med. Inform. Assoc. 2018 25 12 1685 1695 10.1093/jamia/ocy130 30445467
    [Google Scholar]
  228. Xie Q. Deep learning based chatbot in fintech applications. Doctor of Philosophy, University of Maryland, Baltimore County 2023
    [Google Scholar]
  229. Carter DJBIR How real is the impact of artificial intelligence? The business information survey 2018. Bus. Inf. Rev. 2018 35 3 99 115 10.1177/0266382118790150
    [Google Scholar]
  230. Kejriwal M. Artificial intelligence for industries of the future: Beyond Facebook, Amazon, Microsoft and Google. Springer Nature 2022 1 1 5
    [Google Scholar]
  231. Kite J. Grunseit A. Li V. Vineburg J. Berton N. Bauman A. Freeman B. Generating engagement on the make healthy normal campaign Facebook page: Analysis of Facebook analytics. JMIR Public Health Surveill. 2019 5 1 e11132 10.2196/11132 31344679
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501322734241008163304
Loading
/content/journals/cdt/10.2174/0113894501322734241008163304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test