Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic neuropathy, also known as diabetic peripheral sensorimotor neuropathy (DPN), is a consequential complexity of diabetes, alongside diabetic nephropathy, diabetic cardiomyopathy, and diabetic retinopathy. It is characterized by signs and symptoms of peripheral nerve damage in diabetes patients after ruling out other causes. Approximately 20% of people with diabetes are affected by this painful and severe condition. The development of diabetic neuropathy is influenced by factors such as impaired blood flow to the peripheral nerves and metabolic issues, including increased polyol pathway activation, myo-inositol loss, and non-enzymatic glycation. The present review article provides a brief overview of the pathological changes in diabetic neuropathy and the mechanisms and types of DPN. Various diagnostic tests and biomarkers are available to assess nerve damage and its severity. Pharmacotherapy for neuropathic pain in diabetic neuropathy is complex. This review will explore current treatment options and potential future developments to improve the quality of life for patients suffering from diabetic neuropathy.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998290606240521113832
2024-05-24
2025-05-06
Loading full text...

Full text loading...

References

  1. CorriereM. RooparinesinghN. KalyaniR.R. Epidemiology of diabetes and diabetes complications in the elderly: An emerging public health burden.Curr. Diab. Rep.201313680581310.1007/s11892‑013‑0425‑524018732
    [Google Scholar]
  2. SherrD. LipmanR.D. The Diabetes Educator and the Diabetes Self-management Education Engagement.Diabetes Educ.201541561662410.1177/014572171559926826306525
    [Google Scholar]
  3. OstensonC. G. The pathophysiology of type 2 diabetes mellitus: An overview.Acta Physiol. Scand.20011713241247
    [Google Scholar]
  4. DongS. LauH. ChavarriaC. AlexanderM. CimlerA. ElliottJ. P. Effects of periodic intensive insulin therapy: An updated review.Curr. Ther. Res. Clin. Exp.2019906167
    [Google Scholar]
  5. UnoS. ImagawaA. KozawaJ. FukuiK. IwahashiH. ShimomuraI. Complete loss of insulin secretion capacity in type 1A diabetes patients during long‐term follow up.J. Diabetes Investig.20189480681210.1111/jdi.1276329034607
    [Google Scholar]
  6. PorteD. Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications.Diabetes Metab. Res. Rev.2001173181183
    [Google Scholar]
  7. ReinehrT. Pathophysiologie und Spätfolgen des Diabetes mellitus Typ 2.Monatsschr. Kinderheilkd.20051531092793510.1007/s00112‑005‑1224‑0
    [Google Scholar]
  8. DyckP.J. KratzK.M. KarnesJ.L. LitchyW.J. KleinR. PachJ.M. WilsonD.M. O’BrienP.C. MeltonL.J.III ServiceF.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort.Neurology199343481782410.1212/WNL.43.4.8178469345
    [Google Scholar]
  9. AlbersJ.W. Pop-BusuiR. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes.Curr. Neurol. Neurosci. Rep.201414847310.1007/s11910‑014‑0473‑524954624
    [Google Scholar]
  10. DietrichI. BragaG.A. de MeloF.G. da Costa Silva SilvaA.C.C. The diabetic foot as a proxy for cardiovascular events and mortality review.Curr. Atheroscler. Rep.201719114410.1007/s11883‑017‑0680‑z28971322
    [Google Scholar]
  11. VadivelooT. JeffcoateW. DonnanP.T. ColhounH.C. McGurnaghanS. WildS. McCrimmonR. LeeseG.P. Amputation-free survival in 17,353 people at high risk for foot ulceration in diabetes: a national observational study.Diabetologia201861122590259710.1007/s00125‑018‑4723‑y30171278
    [Google Scholar]
  12. AllemanC.J.M. WesterhoutK.Y. HensenM. ChambersC. StokerM. LongS. van NootenF.E. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature.Diabetes Res. Clin. Pract.2015109221522510.1016/j.diabres.2015.04.03126008721
    [Google Scholar]
  13. ArmstrongD. G. BoultonA. J. M. BusS.A. Diabetic foot ulcers and their recurrence.N Engl J Med2017376242367237510.1056/NEJMra1615439
    [Google Scholar]
  14. SloanG. ShilloP. SelvarajahD. WuJ. WilkinsonI.D. TraceyI. AnandP. TesfayeS. A new look at painful diabetic neuropathy.Diabetes Res. Clin. Pract.201814417719110.1016/j.diabres.2018.08.02030201394
    [Google Scholar]
  15. SadoskyA. MardekianJ. ParsonsB. HoppsM. BienenE.J. MarkmanJ. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy.J. Diabetes Complications201529221221710.1016/j.jdiacomp.2014.10.01325498300
    [Google Scholar]
  16. KioskliK. ScottW. WinkleyK. KylakosS. McCrackenL.M. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies.Pain Med.20192091756177310.1093/pm/pnz07130980660
    [Google Scholar]
  17. YangQ.Q. SunJ.W. ShaoD. ZhangH.H. BaiC.F. CaoF.L. The association between diabetes complications, diabetes distress, and depressive symptoms in patients with type 2 diabetes mellitus.Clin. Nurs. Res.202130329330110.1177/105477382095193332799656
    [Google Scholar]
  18. Pop-BusuiR. BoultonA.J.M. FeldmanE.L. BrilV. FreemanR. MalikR.A. SosenkoJ.M. ZieglerD. Diabetic neuropathy: A position statement by the american diabetes association.Diabetes Care201740113615410.2337/dc16‑2042
    [Google Scholar]
  19. TesfayeS. BoultonA.J.M. DickensonA.H. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy.Diabetes Care20133692456246510.2337/dc12‑196423970715
    [Google Scholar]
  20. FinnerupN.B. AttalN. HaroutounianS. McNicolE. BaronR. DworkinR.H. GilronI. HaanpääM. HanssonP. JensenT.S. KamermanP.R. LundK. MooreA. RajaS.N. RiceA.S.C. RowbothamM. SenaE. SiddallP. SmithB.H. WallaceM. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis.Lancet Neurol.201514216217310.1016/S1474‑4422(14)70251‑025575710
    [Google Scholar]
  21. ThomasP. K. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy.Diabetes199746Suppl 2S54S5710.2337/diab.46.2.S54
    [Google Scholar]
  22. TesfayeS. BoultonA.J.M. DyckP.J. FreemanR. HorowitzM. KemplerP. LauriaG. MalikR.A. SpalloneV. VinikA. BernardiL. ValensiP. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments.Diabetes Care201033102285229310.2337/dc10‑130320876709
    [Google Scholar]
  23. ChongM.S. HesterJ. Diabetic painful neuropathy: current and future treatment options.Drugs200767456958510.2165/00003495‑200767040‑0000617352515
    [Google Scholar]
  24. TesfayeS. SelvarajahD. GandhiR. GreigM. ShilloP. FangF. WilkinsonI.D. Diabetic peripheral neuropathy may not be as its name suggests.Pain2016157Suppl. 1S72S8010.1097/j.pain.000000000000046526785159
    [Google Scholar]
  25. KennedyW.R. Wendelschafer-CrabbG. JohnsonT. Quantitation of epidermal nerves in diabetic neuropathy.Neurology19964741042104810.1212/WNL.47.4.10428857742
    [Google Scholar]
  26. DyckP.J. GianniniC. Pathologic alterations in the diabetic neuropathies of humans: A review.J. Neuropathol. Exp. Neurol.199655121181119310.1097/00005072‑199612000‑000018957441
    [Google Scholar]
  27. Reske-NielsenE. LundbækK. RafaelsenO.J. Pathological changes in the central and peripheral nervous system of young long-term diabetics : I. Diabetic encephalopathy.Diabetologia196613-423324110.1007/BF0125791724173307
    [Google Scholar]
  28. Reske-NielsenE. LundbaekK. Pathological changes in the central and peripheral nervous system of young long-term diabetics. II. The spinal cord and peripheral nerves.Diabetologia196841344310.1007/BF012410314190608
    [Google Scholar]
  29. SelvarajahD. WilkinsonI.D. EmeryC.J. HarrisN.D. ShawP.J. WitteD.R. GriffithsP.D. TesfayeS. Early involvement of the spinal cord in diabetic peripheral neuropathy.Diabetes Care200629122664266910.2337/dc06‑065017130202
    [Google Scholar]
  30. SelvarajahD. WilkinsonI.D. MaxwellM. DaviesJ. SankarA. BolandE. GandhiR. TraceyI. TesfayeS. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy.Diabetes Care20143761681168810.2337/dc13‑261024658391
    [Google Scholar]
  31. CameronN.E. EatonS.E.M. CotterM.A. TesfayeS. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy.Diabetologia200144111973198810.1007/s00125010000111719828
    [Google Scholar]
  32. FeldmanE.L. NaveK.A. JensenT.S. BennettD.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain.Neuron20179361296131310.1016/j.neuron.2017.02.00528334605
    [Google Scholar]
  33. Hey-MogensenM. HøjlundK. VindB.F. WangL. DelaF. Beck-NielsenH. FernströmM. SahlinK. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes.Diabetologia20105391976198510.1007/s00125‑010‑1813‑x20526759
    [Google Scholar]
  34. AnthonsenS. LarsenJ. PedersenP. DalgaardL. KvetnyJ. Basal and T3-induced ROS production in lymphocyte mitochondria is increased in type 2 diabetic patients.Horm. Metab. Res.201245426126610.1055/s‑0032‑132759023015613
    [Google Scholar]
  35. KassanM. ChoiS. K. GalánM. LeeY. H. Enhanced P22phox expression impairs vascular function through P38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice.Am. J. Physiol. Heart Circ. Physiol.20143067H972H980
    [Google Scholar]
  36. ManoharanB. BobbyZ. DorairajanG. JacobS.E. GladwinV. VinayagamV. PackirisamyR.M. Increased placental expressions of nuclear factor erythroid 2–related factor 2 and antioxidant enzymes in gestational diabetes: Protective mechanisms against the placental oxidative stress?Eur. J. Obstet. Gynecol. Reprod. Biol.2019238788510.1016/j.ejogrb.2019.05.01631121342
    [Google Scholar]
  37. ChenJ. P. XuH. Y. LiaoL. Resolvin D2 prevents inflammation and oxidative stress in the retina of streptozocin-induced diabetic mice.Int. J. Clin. Exp. Pathol.202013819861994
    [Google Scholar]
  38. Nogueira-MachadoJ.A. Lima e SilvaF.C. CunhaE.P. CalsolariM.R. CostaD.C. PeriloC.S. HortaB.C. FerreiraI.C. ChavesM.M. Modulation of the production of Reactive Oxygen Species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: an Akt/PKB-dependent phenomenon.Diabetes Metab.200632433133510.1016/S1262‑3636(07)70287‑216977260
    [Google Scholar]
  39. TureckýL. KupčováV. UhlíkováE. Peroxisomal Enzymes in the Liver of Rats with Experimental Diabetes Mellitus Type 2.Physiol. Res.201463S585S591
    [Google Scholar]
  40. SharifzadehM. RanjbarA. HosseiniA. The effect of green tea extract on oxidative stress and spatial learning in streptozotocin diabetic rats.Iran J. Pharm. Res.2017161201209
    [Google Scholar]
  41. GhouiniA. RahalL. Screening of insulin resistance in subjects at risk for type 2 diabetes.Acta Physiol.2016217109
    [Google Scholar]
  42. YangZ.H. PengX.D. Insulin resistance and heart injury in rats with insulin resistance or type 2 diabetes mellitus.Acta Cardiol.201065332933510.2143/AC.65.3.205035020666272
    [Google Scholar]
  43. ZhaoY. YeW. BoyeK. S. Healthcare charges and utilization associated with diabetic neuropathy: Impact of type 1 diabetes and presence of other diabetes-related complications and comorbidities.Diabet Med.20092616169
    [Google Scholar]
  44. SchofieldC.J. SutherlandC. Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes.Diabet. Med.201229897297910.1111/j.1464‑5491.2012.03655.x22443306
    [Google Scholar]
  45. Fagundes-NettoF.S. AnjosP.M.F. VolpeC.M.O. Nogueira-MachadoJ.A. The production of reactive oxygen species in TLR-stimulated granulocytes is not enhanced by hyperglycemia in diabetes.Int. Immunopharmacol.201317392492910.1016/j.intimp.2013.09.01824121038
    [Google Scholar]
  46. Shi. L. L.; Yang. J.; Jiang. H. Y.; Effects of Sitagliptin Phosphate/ metformin Hydrochloride Tablets on Insulin Resistance in Obese Patients with Type 2 Diabetes and NAFLD.Diabetes-Metabolism Res. Rev. 2016, 32 (2), 45–46.
  47. ElzingaS. MurdockB. J. GuoK. HayesJ. M. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease?Exp. Neurol.2019320112967
    [Google Scholar]
  48. TianJ. SongT. WangH. WangW. MaX. HuY. Toll-like receptor 2 antagonist ameliorates type 2 diabetes mellitus associated neuropathic pain by repolarizing pro-inflammatory macrophages.Neurochem. Res.20214692276228410.1007/s11064‑021‑03365‑334081245
    [Google Scholar]
  49. BaruttaF. PiscitelliF. PinachS. BrunoG. GambinoR. RastaldiM.P. SalvidioG. Di MarzoV. Cavallo PerinP. GrudenG. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy.Diabetes20116092386239610.2337/db10‑180921810593
    [Google Scholar]
  50. MihanfarA. AkbarzadehM. Ghazizadeh DarbandS. MajidiniaM. SIRT1: A promising therapeutic target in type 2 diabetes mellitus.Arch. Physiol. Biochem.20211116
    [Google Scholar]
  51. KanetoH. KatakamiN. MatsuhisaM. MatsuokaT. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.Mediators Inflamm.2010201011110.1155/2010/45389220182627
    [Google Scholar]
  52. ChattopadhyayM. KhemkaV.K. ChatterjeeG. GangulyA. MukhopadhyayS. ChakrabartiS. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects.Mol. Cell. Biochem.20153991-29510310.1007/s11010‑014‑2236‑725312902
    [Google Scholar]
  53. Burgos-MorónE. Abad-JiménezZ. MarañónA.M. IannantuoniF. Escribano-LópezI. López-DomènechS. SalomC. JoverA. MoraV. RoldanI. SoláE. RochaM. VíctorV.M. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues.J. Clin. Med.201989138510.3390/jcm809138531487953
    [Google Scholar]
  54. De MarañónA. M. Díaz-PozoP. IannantuoniF. CanetF. Good glycaemic control reduces carotid-intimamedia thickness, inflammation markers and ROS production in type 2 diabetes.Free Radic. Biol. Med.2020159S89
    [Google Scholar]
  55. Wright. E.; Scism-Bacon. J. L.; Glass. L. C.; Oxidative Stress in Type 2 Diabetes: the Role of Fasting and Postprandial Glycaemia. Int. J. Clin. Pract. 2006, 60 (3), 308–314.
  56. OparaE. C. Role of oxidative stress in the etiology of type 2 diabetes and the effect of antioxidant supplementation on glycemic control.J. Investig. Med.2004521192310.1136/jim‑52‑01‑22
    [Google Scholar]
  57. BeliaS. SantilliF. BeccaficoS. De FeudisL. MorabitoC. DavìG. FanòG. MariggiòM.A. Oxidative-induced membrane damage in diabetes lymphocytes: Effects on intracellular Ca 2 + homeostasis.Free Radic. Res.200943213814810.1080/1071576080262958819115119
    [Google Scholar]
  58. GonzalezC.D. LeeM.S. MarchettiP. PietropaoloM. TownsR. VaccaroM.I. WatadaH. WileyJ.W. The emerging role of autophagy in the pathophysiology of diabetes mellitus.Autophagy20117121110.4161/auto.7.1.1304420935516
    [Google Scholar]
  59. YanagiK. MondenT. IkedaS. MatsumuraM. KasaiK. A crossover study of rosuvastatin and pitavastatin in patients with type 2 diabetes.Adv. Ther.201128216017110.1007/s12325‑010‑0098‑221222064
    [Google Scholar]
  60. ChaoW. C. YenC. L. WuY. H. ChenS. Y. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection.Microbes Infect.2015173195204
    [Google Scholar]
  61. DaveG.S. KaliaK. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy.Cell. Mol. Biol.2007535687810.1170/t82017543235
    [Google Scholar]
  62. Hirao. K.; Maruyama. T.; Ohno. Y.; Hirose. H.; Shimada. A.; Takei. I.; Association of Increased Reactive Oxygen Species Production with Abdominal Obesity in Type 2 Diabetes. Obes. Res. Clin. Pract. 2010, 4 (2), E83–E90. doi:10.1016/j. orcp.2009.09.004.
  63. KhanM.W.A. BangaK. MashalS.N. KhanW.A. Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications.BMC Immunol.20111211910.1186/1471‑2172‑12‑1921385406
    [Google Scholar]
  64. PetropoulosI.N. PonirakisG. KhanA. AlmuhannadiH. GadH. MalikR.A. Diagnosing diabetic neuropathy: Something old, something new.Diabetes Metab. J.201842425526910.4093/dmj.2018.005630136449
    [Google Scholar]
  65. BoultonA.J.M. GriesF.A. JervellJ.A. Guidelines for the diagnosis and outpatient management of diabetic peripheral neuropathy.Diabet. Med.199815650851410.1002/(SICI)1096‑9136(199806)15:6<508::AID‑DIA613>3.0.CO;2‑L9632127
    [Google Scholar]
  66. EnglandJ.D. GronsethG.S. FranklinG. MillerR.G. AsburyA.K. CarterG.T. CohenJ.A. FisherM.A. HowardJ.F. KinsellaL.J. LatovN. LewisR.A. LowP.A. SumnerA.J. Distal symmetric polyneuropathy: A definition for clinical research.Neurology200564219920710.1212/01.WNL.0000149522.32823.EA15668414
    [Google Scholar]
  67. VincentA.M. CallaghanB.C. SmithA.L. FeldmanE.L. Diabetic neuropathy: cellular mechanisms as therapeutic targets.Nat. Rev. Neurol.201171057358310.1038/nrneurol.2011.13721912405
    [Google Scholar]
  68. MalikR.A. VevesA. TesfayeS. SmithG. CameronN. ZochodneD. LauriaG. Small fibre neuropathy: Role in the diagnosis of diabetic sensorimotor polyneuropathy.Diabetes Metab. Res. Rev.201127767868410.1002/dmrr.122221695760
    [Google Scholar]
  69. AdkiK.M. KulkarniY.A. Biomarkers in diabetic neuropathy.Arch. Physiol. Biochem.2023129246047510.1080/13813455.2020.183718333186087
    [Google Scholar]
  70. AngstD.B.M. PinheiroR.O. VieiraJ.S.S. CobasR.A. HackerM.A.V.B. PittaI.J.R. GieselL.M. SarnoE.N. JardimM.R. Cytokine levels in neural pain in leprosy.Front. Immunol.2020112310.3389/fimmu.2020.0002332038662
    [Google Scholar]
  71. MertT. SahinE. YamanS. SahinM. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats.Naunyn Schmiedebergs Arch. Pharmacol.202039371293130210.1007/s00210‑020‑01871‑932361779
    [Google Scholar]
  72. KallinikouD. SoldatouA. TsentidisC. LourakiM. Kanaka-GantenbeinC. KanavakisE. KaravanakiK. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: Diagnosis, pathogenesis, and associated genetic markers.Diabetes Metab. Res. Rev.2019357e317810.1002/dmrr.317831083769
    [Google Scholar]
  73. SugimotoK. MurakamiH. DeguchiT. ArimuraA. DaimonM. SuzukiS. ShimboT. YagihashiS. Cutaneous microangiopathy in patients with type 2 diabetes: Impaired vascular endothelial growth factor expression and its correlation with neuropathy, retinopathy and nephropathy.J. Diabetes Investig.20191051318133110.1111/jdi.1302030719863
    [Google Scholar]
  74. DüllM.M. RiegelK. TappenbeckJ. RiesV. StrupfM. FlemingT. SauerS.K. NamerB. Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation.Pain2019160112497250710.1097/j.pain.000000000000164431219946
    [Google Scholar]
  75. AgarwalN. TabernerF.J. Rangel RojasD. MoroniM. OmberbasicD. NjooC. AndrieuxA. GuptaP. BaliK.K. HerpelE. FaghihiF. FlemingT. DejeanA. LechnerS.G. NawrothP.P. LewinG.R. KunerR. SUMOylation of enzymes and ion channels in sensory neurons protects against metabolic dysfunction, neuropathy, and sensory loss in diabetes.Neuron2020107611411159.e710.1016/j.neuron.2020.06.03732735781
    [Google Scholar]
  76. YangX. CaoZ. WuP. LiZ. Effect and mechanism of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib on rat model of diabetic foot ulcers.Med. Sci. Monit.2019257951795710.12659/MSM.91695031644524
    [Google Scholar]
  77. LiuY. ShaoS. GuoH. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy.Life Sci.202024811745910.1016/j.lfs.2020.11745932092332
    [Google Scholar]
  78. GupteA.A. LyonC.J. HsuehW.A. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis.Curr. Diab. Rep.201313336237110.1007/s11892‑013‑0372‑123475581
    [Google Scholar]
  79. LiJ. HuX. LiangF. LiuJ. ZhouH. LiuJ. WangH. TangH. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy.Appl. Biochem. Biotechnol.201918941167118210.1007/s12010‑019‑03052‑831209719
    [Google Scholar]
  80. ChaJ.J. MinH.S. KimK. LeeM.J. LeeM.H. KimJ.E. SongH.K. ChaD.R. KangY.S. Long-term study of the association of adipokines and glucose variability with diabetic complications.Korean J. Intern. Med.201833236738210.3904/kjim.2016.11427809453
    [Google Scholar]
  81. GrayS.P. JhaJ.C. Di MarcoE. Jandeleit-DahmK.A.M. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications.Expert Rev. Endocrinol. Metab.20149211112210.1586/17446651.2014.88798430743754
    [Google Scholar]
  82. SamokyszynV.M. MillerD.M. ReifD.W. AustS.D. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin.J. Biol. Chem.19892641212610.1016/S0021‑9258(17)31218‑82535839
    [Google Scholar]
  83. LengJ. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the nrf2/ho-1 pathway.BMC complementary medicine and therapies.202020116
    [Google Scholar]
  84. ChenJ. LiQ. Lipoic acid decreases the expression of poly ADP-ribose polymerase and inhibits apoptosis in diabetic rats.Diabetes Metab. Syndr. Obes.2020131725173110.2147/DMSO.S24167832547134
    [Google Scholar]
  85. OstanR. LanzariniC. PiniE. ScurtiM. VianelloD. BertarelliC. FabbriC. IzziM. PalmasG. BiondiF. MartucciM. BellavistaE. SalvioliS. CapriM. FranceschiC. SantoroA. Inflammaging and cancer: A challenge for the Mediterranean diet.Nutrients2015742589262110.3390/nu704258925859884
    [Google Scholar]
  86. OzaM.J. KulkarniY.A. Formononetin ameliorates diabetic neuropathy by increasing expression of SIRT1 and NGF.Chem. Biodivers.2020176e200016210.1002/cbdv.20200016232459048
    [Google Scholar]
  87. JiaG.L. HuangQ. CaoY.N. XieC.S. ShenY.J. ChenJ.L. LuJ.H. ZhangM.B. LiJ. TaoY.X. CaoH. Cav‐1 participates in the development of diabetic neuropathy pain through the TLR4 signaling pathway.J. Cell. Physiol.202023532060207010.1002/jcp.2910631318049
    [Google Scholar]
  88. ZhouL. XuD. ShaW. ShenL. LuG. Long non-coding RNA MALAT1 interacts with transcription factor Foxo1 to regulate SIRT1 transcription in high glucose-induced HK-2 cells injury.Biochem. Biophys. Res. Commun.2018503284985510.1016/j.bbrc.2018.06.08629928873
    [Google Scholar]
  89. XourgiaE. PapazafiropoulouA. MelidonisA. Circulating microRNAs as biomarkers for diabetic neuropathy: A novel approach.World J. Exp. Med.201883182310.5493/wjem.v8.i3.1830596030
    [Google Scholar]
  90. ChenJ. LiC. LiuW. YanB. HuX. YangF. miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy.J. Mol. Endocrinol.201963322723810.1530/JME‑19‑006731404910
    [Google Scholar]
  91. KennethH. GabbayN. S. SherryL. HarryJ. H. AlbertA. A. Aldose reductase inhibition: studies with alrestatin.Metabolism197928147147610.1016/0026‑0495(79)90059‑3
    [Google Scholar]
  92. MaxM.B. Endogenous monoamine analgesic systems: amitriptyline in painful diabetic neuropathy.Anesth. Prog.198734412312719598699
    [Google Scholar]
  93. MaxM.B. Kishore-KumarR. SchaferS.C. MeisterB. GracelyR.H. SmollerB. DubnerR. Efficacy of desipramine in painful diabetic neuropathy: A placebo-controlled trial.Pain19914513910.1016/0304‑3959(91)90157‑S
    [Google Scholar]
  94. WardW.H.J. SennittC.M. RossH. DingleA. TimmsD. MirrleesD.J. TuffinD.P. Ponalrestat: A potent and specific inhibitor of aldose reductase.Biochem. Pharmacol.199039233734610.1016/0006‑2952(90)90033‑H2105733
    [Google Scholar]
  95. MassonE.A. BoultonA.J.M. Aldose reductase inhibitors in the treatment of diabetic neuropathy. A review of the rationale and clinical evidence.Drugs199039219020210.2165/00003495‑199039020‑000032109678
    [Google Scholar]
  96. SimonsF.E.R. Mizolastine: antihistaminic activity from preclinical data to clinical evaluation.Clin. Exp. Allergy199929s1Suppl. 138, 3-810.1046/j.1365‑2222.1999.00002.x10209699
    [Google Scholar]
  97. MylariB.L. LarsonE.R. BeyerT.A. ZembrowskiW.J. AldingerC.E. DeeM.F. SiegelT.W. SingletonD.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners.J. Med. Chem.199134110812210.1021/jm00105a0181899452
    [Google Scholar]
  98. NelsonK.A. ParkK.M. RobinovitzE. TsigosC. MaxM.B. High‐dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia.Neurology19974851212121810.1212/WNL.48.5.12129153445
    [Google Scholar]
  99. BackonjaM. BeydounA. EdwardsK.R. SchwartzS.L. FonsecaV. HesM. LaMoreauxL. GarofaloE. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial.JAMA1998280211831183610.1001/jama.280.21.18319846777
    [Google Scholar]
  100. di VadiP. P. HamannW. The use of lamotrigine in neuropathic pain, Anaesthesia.Case report.199853804809
    [Google Scholar]
  101. WiffenP. J. DerryS. R. MooreA. Lamotrigine for acute and chronic pain.Cochrane Database Syst Rev.201420142CD006044
    [Google Scholar]
  102. WiffenP. J. DerryS. MooreR. A. Lamotrigine for chronic neuropathic pain and fibromyalgia in adults.Cochrane Database Syst Rev.2013201312CD00604410.1002/14651858.CD006044.pub4
    [Google Scholar]
  103. HaratiY. GoochC. SwensonM. EdelmanS. GreeneD. RaskinP. DonofrioP. CornblathD. SachdeoR. SiuC.O. KaminM. Double‐blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy.Neurology19985061842184610.1212/WNL.50.6.18429633738
    [Google Scholar]
  104. DavisJ.L. SmithR.L. Painful peripheral diabetic neuropathy treated with venlafaxine HCl extended release capsules.Diabetes Care199922111909191010.2337/diacare.22.11.190910546032
    [Google Scholar]
  105. Da SettimoF. PrimofioreG. Da SettimoA. La MottaC. TalianiS. SimoriniF. NovellinoE. GrecoG. LavecchiaA. BoldriniE. [1,2,4]Triazino[4,3-a]benzimidazole acetic acid derivatives: A new class of selective aldose reductase inhibitors.J. Med. Chem.200144254359436910.1021/jm010921011728182
    [Google Scholar]
  106. AkamineE.H. HohmanT.C. NigroD. CarvalhoM.H.C. TostesR.C. FortesZ.B. Minalrestat, an aldose reductase inhibitor, corrects the impaired microvascular reactivity in diabetes.J. Pharmacol. Exp. Ther.200330431236124210.1124/jpet.102.04469312604701
    [Google Scholar]
  107. WatsonP.C.N. MoulinD. Watt-WatsonJ. GordonA. EisenhofferJ. Controlled-release oxycodone relieves neuropathic pain: A randomized controlled trial in painful diabetic neuropathy.Pain20031051717810.1016/S0304‑3959(03)00160‑X14499422
    [Google Scholar]
  108. KocharD.K. RawatN. AgrawalR.P. VyasA. BeniwalR. KocharS.K. GargP. Sodium valproate for painful diabetic neuropathy: A randomized double-blind placebo-controlled study.QJM2004971333810.1093/qjmed/hch00714702509
    [Google Scholar]
  109. KocharD.K. JainN. AgarwalR.P. SrivastavaT. AgarwalP. GuptaS. Sodium valproate in the management of painful neuropathy in type 2 diabetes a randomized placebo controlled study.Acta Neurol. Scand.2002106524825210.1034/j.1600‑0404.2002.01229.x12371916
    [Google Scholar]
  110. RaskinJ. PritchettY.L. WangF. D’SouzaD.N. WaningerA.L. IyengarS. WernickeJ.F. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain.Pain Med.20056534635610.1111/j.1526‑4637.2005.00061.x16266355
    [Google Scholar]
  111. Cymbalta (duloxetine) prescribing information. Indianapolis, Indiana: Eli Lilly and Company; December 2014. Available at: http://pi.lilly.com/us/ cymbalta-pi.pdf (Accessed March 18, 2015).
  112. ZinC.S. NissenL.M. SmithM.T. O’CallaghanJ.P. MooreB.J. An update on the pharmacological management of post-herpetic neuralgia and painful diabetic neuropathy.CNS Drugs200822541744210.2165/00023210‑200822050‑0000518399710
    [Google Scholar]
  113. The Capsaicin Study GroupTreatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study.Arch. Intern. Med.1991151112225222910.1001/archinte.1991.004001100790171953227
    [Google Scholar]
  114. American Academy of Neurology. AAN summary of evidence-based guidelines for clinicians: treatment of painful diabetic neuropathy., 2011. Available at: https://www.aan.com/Guidelines/home/GetGuidelineContent/480 (Accessed March 13, 2015).
  115. HoK.Y. HuhB.K. WhiteW.D. YehC.C. MillerE.J. Topical amitriptyline versus lidocaine in the treatment of neuropathic pain.Clin. J. Pain2008241515510.1097/AJP.0b013e318156db2618180637
    [Google Scholar]
  116. LynchM.E. ClarkA.J. SawynokJ. SullivanM.J.L. Topical 2% amitriptyline and 1% ketamine in neuropathic pain syndromes: A randomized, double-blind, placebo-controlled trial.Anesthesiology2005103114014610.1097/00000542‑200507000‑0002115983466
    [Google Scholar]
  117. KopskyD.J. Keppel HesselinkJ.M. High doses of topical amitriptyline in neuropathic pain: two cases and literature review.Pain Pract.201212214815310.1111/j.1533‑2500.2011.00477.x21676162
    [Google Scholar]
  118. SharmaS.R. SharmaN. RETRACTED: Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: An Indian perspective.Ann. Indian Acad. Neurol.200811423123510.4103/0972‑2327.4455819893679
    [Google Scholar]
  119. RamirezM.A. BorjaN.L. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy.Pharmacotherapy200828564665510.1592/phco.28.5.64618447661
    [Google Scholar]
  120. HottaN. SakamotoN. ShigetaY. KikkawaR. GotoY. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: Multicenter study.J. Diabetes Complications199610316817210.1016/1056‑8727(96)00113‑48807467
    [Google Scholar]
  121. BaronR. MayoralV. LeijonG. BinderA. SteigerwaldI. SerpellM. 5% lidocaine medicated plaster versus pregabalin in post-herpetic neuralgia and diabetic polyneuropathy: An open-label, non-inferiority two-stage RCT study.Curr. Med. Res. Opin.20092571663167610.1185/0300799090304788019485723
    [Google Scholar]
  122. NohH.L. HuY. ParkT.S. DiCioccioT. NicholsA.J. OkajimaK. HommaS. GoldbergI.J. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat.J. Pharmacol. Exp. Ther.2009328249650310.1124/jpet.108.13628318974362
    [Google Scholar]
  123. Van ZandtM.C. JonesM.L. GunnD.E. GeraciL.S. JonesJ.H. SawickiD.R. SredyJ. JacotJ.L. DiCioccioA.T. PetrovaT. MitschlerA. PodjarnyA.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications.J. Med. Chem.20054893141315210.1021/jm049209415857120
    [Google Scholar]
  124. HearnL. DerryS. MooreR. A. Lacosamide for neuropathic pain and fibromyalgia in adults.Cochrane Database Syst Rev201220122CD00931810.1002/14651858.CD009318.pub2
    [Google Scholar]
  125. ZhouM. ChenN. HeL. YangM. ZhuC. WuF. Oxcarbazepine for neuropathic pain.Cochrane Libr.201333CD00796310.1002/1465185823543558
    [Google Scholar]
  126. WiffenP. J. DerryS. LunnM. P. T. Topiramate for neuropathic pain and fibromyalgia in adults.Cochrane Database Syst Rev.201320138CD00831410.1002/14651858.CD008314.pub2
    [Google Scholar]
  127. ChangjinZ. Aldose Reductase Inhibitors as Potential Therapeutic Drugs of Diabetic Complications.Diabetes Mellitus Insights and Perspectives20131746
    [Google Scholar]
  128. HuangQ. LiuQ. OuyangD. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications.Med. Chem.20191513710.2174/157340641466618052408244529792152
    [Google Scholar]
  129. O’BrienM.M. SchofieldP.J. EdwardsM.R. Inhibition of human brain aldose reductase and hexonate dehydrogenase by alrestatin and sorbinil.J. Neurochem.198239381081410.1111/j.1471‑4159.1982.tb07964.x6808090
    [Google Scholar]
  130. KinoshitaJ.H. FukushiS. KadorP. MerolaL.O. Aldose reductase in diabetic complications of the eye.Metabolism1979284Suppl. 146246910.1016/0026‑0495(79)90057‑X45423
    [Google Scholar]
  131. PetersonM. J. A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic ratsMetabolism19792845646110.1016/0026‑0495(79)90056‑8
    [Google Scholar]
  132. SinghM. KapoorA. BhatnagarA. Physiological and pathological roles of aldose reductase.Metabolites2021111065510.3390/metabo1110065534677370
    [Google Scholar]
  133. BrilV. HiroseT. TomiokaS. BuchananR. Ranirestat for the management of diabetic sensorimotor polyneuropathy.Diabetes Care20093271256126010.2337/dc08‑2110
    [Google Scholar]
  134. SestanjK. BelliniF. FungS. AbrahamN. TreasurywalaA. HumberL. Simard-DequesneN. DvornikD. N-[[5-(Trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor.J. Med. Chem.198427325525610.1021/jm00369a0036422042
    [Google Scholar]
  135. AsanoT. SaitoY. KawakamiM. YamadaN. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients.J. Diabetes Complications200216213313810.1016/S1056‑8727(01)00175‑112039395
    [Google Scholar]
  136. ShimoshigeY. IkumaK. YamamotoT. TakakuraS. KawamuraI. SekiJ. MutohS. GotoT. The effects of zenarestat, an aldose reductase inhibitor, on peripheral neuropathy in Zucker diabetic fatty rats.Metabolism200049111395139910.1053/meta.2000.1772311092500
    [Google Scholar]
  137. WiffenP.J. DerryS. MooreR.A. KalsoE.A. Carbamazepine for chronic neuropathic pain and fibromyalgia in adults.Cochrane Libr.201420195CD00545110.1002/14651858.CD005451.pub324719027
    [Google Scholar]
  138. WangY. YangH. ShenC. LuoJ. I. Morphine and pregabalin in the treatment of neuropathic pain.Exp Ther Med.20171313931397
    [Google Scholar]
  139. FreoU. RomualdiP. KressH.G. Tapentadol for neuropathic pain: A review of clinical studies.J. Pain Res.2019121537155110.2147/JPR.S19016231190965
    [Google Scholar]
  140. American Diabetes Association11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2021.Diabetes Care202144Suppl. 1S151S16710.2337/dc21‑S011
    [Google Scholar]
  141. VermaV. SinghN. JaggiA. Pregabalin in neuropathic pain: Evidences and possible mechanisms.Curr. Neuropharmacol.2014121445610.2174/1570159X120114011716280224533015
    [Google Scholar]
  142. SharmaU. GriesingT. EmirB. YoungJ.P.Jr Time to onset of neuropathic pain reduction: A retrospective analysis of data from nine controlled trials of pregabalin for painful diabetic peripheral neuropathy and postherpetic neuralgia.Am. J. Ther.201017657758510.1097/MJT.0b013e3181d5e4f320393345
    [Google Scholar]
  143. SchwartzS. EtropolskiM. ShapiroD.Y. OkamotoA. LangeR. HaeusslerJ. RauschkolbC. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial.Curr. Med. Res. Opin.201127115116210.1185/03007995.2010.53758921162697
    [Google Scholar]
  144. CruzJ.W.C.M. Soto-SuazoM.W. HohmanT.C. AkamineE.H. ZornT.T. FortesZ.B. Minalrestat and leukocyte migration in diabetes mellitus.Diabetes Metab. Res. Rev.200319322323110.1002/dmrr.37612789656
    [Google Scholar]
  145. AlbersJ.W. HermanW.H. Pop-BusuiR. FeldmanE.L. MartinC.L. ClearyP.A. WaberskiB.H. LachinJ.M. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study.Diabetes Care20103351090109610.2337/dc09‑194120150297
    [Google Scholar]
  146. CallaghanB.C. LittleA.A. FeldmanE.L. HughesR.A.C. Enhanced glucose control for preventing and treating diabetic neuropathy.Cochrane Libr.201266CD00754310.1002/14651858.CD007543.pub222696371
    [Google Scholar]
  147. HanT. BaiJ. LiuW. HuY. THERAPY OF ENDOCRINE DISEASE: A systematic review and meta-analysis of α-lipoic acid in the treatment of diabetic peripheral neuropathy.Eur. J. Endocrinol.2012167446547110.1530/EJE‑12‑055522837391
    [Google Scholar]
  148. WinklerG. PálB. NagybéganyiE. OryI. PorochnavecM. KemplerP. Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy.Arzneimittelforschung199949322022410219465
    [Google Scholar]
  149. FraserD. A. DiepLM HovdenIA The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes.Diabetes Care.201235510951097
    [Google Scholar]
  150. KhannaS. RoyS. PackerL. SenC.K. Cytokine-induced glucose uptake in skeletal muscle: redox regulation and the role of alpha-lipoic acid.Am. J. Physiol.19992765R1327R133310233023
    [Google Scholar]
  151. AmetovA.S. BarinovA. DyckP.J. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With α-Lipoic Acid.2003http://care.diabetesjournals.org/content/26/3/770
    [Google Scholar]
  152. ZieglerD. AmetovA. BarinovA. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With α-Lipoic Acid. Diabetes Care 2003. Available from: http://care.diabetesjournals.org/content/ 29/11/2365
  153. ZieglerD. NowakH. KemplerP. VarghaP. LowP.A. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α‐lipoic acid: A meta‐analysis.Diabet. Med.200421211412110.1111/j.1464‑5491.2004.01109.x14984445
    [Google Scholar]
  154. MijnhoutG.S. KollenB.J. AlkhalafA. KleefstraN. BiloH.J.G. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials.Int. J. Endocrinol.201220121810.1155/2012/45627922331979
    [Google Scholar]
  155. El-KabbaniO. DarmaninC. SchneiderT.R. HazemannI. RuizF. OkaM. JoachimiakA. Schulze-BrieseC. Ultrahigh resolution drug design. atomic resolution structures of human aldose reductase holoenzyme complexed with fidarestat and minalrestat: Implications for the binding of cyclic imide inhibitors.Proteins200455480581310.1002/prot.2000115146479
    [Google Scholar]
  156. SyedO. JancicP. KnezevicN.N. A review of recent pharmacological advances in the management of diabetes-associated peripheral neuropathy.Pharmaceuticals202316680110.3390/ph1606080137375749
    [Google Scholar]
  157. U.S. National Library Of Medicine. Available from: https://classic.clinicaltrials.gov/ct2/home
/content/journals/cdr/10.2174/0115733998290606240521113832
Loading
/content/journals/cdr/10.2174/0115733998290606240521113832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test