Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The link between Type 2 Diabetes (T2DM) and Parkinson's Disease (PD) dates back to the early 1960s, and ongoing research is exploring this association. PD is linked to dysregulation of dopaminergic pathways, neuroinflammation, decreased PPAR-γ coactivator 1-α, increased phosphoprotein enriched in diabetes, and accelerated α-Syn amyloid fibril production caused by T2DM. This study aims to comprehensively evaluate the T2DM-PD association and risk factors for PD in T2DM individuals. The study reviews existing literature using reputable sources like Scopus, ScienceDirect, and PubMed, revealing a significant association between T2DM and worsened PD symptoms. Genetic profiles of T2DM-PD individuals show similarities, and potential risk factors include insulin-resistance and dysbiosis of the gut-brain microbiome. Anti-diabetic drugs exhibit neuroprotective effects in PD, and nanoscale delivery systems like exosomes, micelles, and liposomes show promise in enhancing drug efficacy by crossing the Blood-Brain Barrier (BBB). Brain targeting for PD uses exosomes, micelles, liposomes, dendrimers, solid lipid nanoparticles, nano-sized polymers, and niosomes to improve medication and gene therapy efficacy. Surface modification of nanocarriers with bioactive compounds (such as angiopep, lactoferrin, and OX26) enhances α-Syn conjugation and BBB permeability. Natural exosomes, though limited, hold potential for investigating DM-PD pathways in clinical research. The study delves into the underlying mechanisms of T2DM and PD and explores current therapeutic approaches in the field of nano-based targeted drug delivery. Emphasis is placed on resolved and ongoing issues in understanding and managing both conditions.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998291968240429111357
2024-05-13
2025-05-07
Loading full text...

Full text loading...

References

  1. Camargo MalufF FederD Alves de Siqueira CarvalhoA. Analysis of the relationship between type II diabetes mellitus and Parkinson’s disease: a systematic review.Parkinsons Dis.201923495137910.1155/2019/4951379
    [Google Scholar]
  2. SergiD. RenaudJ. SimolaN. MartinoliM.G. Diabetes, a contemporary risk for Parkinson’s disease: epidemiological and cellular evidences.Front. Aging Neurosci.20191130210.3389/fnagi.2019.0030231787891
    [Google Scholar]
  3. HassanA. Sharma KandelR. MishraR. GautamJ. AlarefA. JahanN. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications.Cureus2020128e985310.7759/cureus.985332832307
    [Google Scholar]
  4. HwangO. Role of oxidative stress in Parkinson’s disease.Exp. Neurobiol.2013221111710.5607/en.2013.22.1.1123585717
    [Google Scholar]
  5. Markowicz-PiaseckaM. SikoraJ. SzydłowskaA. Metformin – a Future Therapy for Neurodegenerative Diseases.Pharm Res.2017341226142627
    [Google Scholar]
  6. DauerW. PrzedborskiS. Parkinson’s Disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑312971891
    [Google Scholar]
  7. GibbW.R.G. LeesA.J. The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease.Neuropathol. Appl. Neurobiol.1989151274410.1111/j.1365‑2990.1989.tb01147.x2542825
    [Google Scholar]
  8. GibbW.R. LeesA.J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry199154538839610.1136/jnnp.54.5.3881865199
    [Google Scholar]
  9. BernheimerH. BirkmayerW. HornykiewiczO. JellingerK. SeitelbergerF. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations.J. Neurol. Sci.197320441545510.1016/0022‑510X(73)90175‑54272516
    [Google Scholar]
  10. HirschE. GraybielA.M. AgidY.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease.Nature1988334618034534810.1038/334345a02899295
    [Google Scholar]
  11. KouliA. TorsneyK.M. KuanW-L. Parkinson’s disease: etiology, neuropathology, and pathogenesis.Exon Publications2018326
    [Google Scholar]
  12. PathanA AlshahraniAM Gold Standard of Symptomatic treatment in Parkinson disease: Carbidopa / Levodopa.Neuro. Pharmac.2018336368
    [Google Scholar]
  13. ConnollyB.S. LangA.E. Pharmacological treatment of Parkinson disease: a review.JAMA2014311161670168310.1001/jama.2014.365424756517
    [Google Scholar]
  14. MarsdenC.D. ParkesJ.D. “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy.Lancet1976307795429229610.1016/S0140‑6736(76)91416‑155599
    [Google Scholar]
  15. ObesoJ.A. GrandasF. VaamondeJ. LuquinM.R. ArtiedaJ. LeraG. RodriguezM.E. Martinez-LageJ.M. Motor complications associated with chronic levodopa therapy in Parkinson’s disease.Neurology19893911Suppl. 211192685647
    [Google Scholar]
  16. van WamelenD.J. GrigoriouS. ChaudhuriK.R. OdinP. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease.J. Parkinsons Dis.20188s1S65S7210.3233/JPD‑18147630584160
    [Google Scholar]
  17. SeppiK. WeintraubD. CoelhoM. Perez-LloretS. FoxS.H. KatzenschlagerR. HametnerE.M. PoeweW. RascolO. GoetzC.G. SampaioC. The Movement Disorder Society evidence‐based medicine review update: treatments for the non‐motor symptoms of Parkinson’s disease.Mov. Disord.201126S3Suppl. 3S42S8010.1002/mds.2388422021174
    [Google Scholar]
  18. XuQ. ParkY. HuangX. HollenbeckA. BlairA. SchatzkinA. ChenH. Diabetes and risk of Parkinson’s disease.Diabetes Care201134491091510.2337/dc10‑192221378214
    [Google Scholar]
  19. SchapiraA.H.V. ChaudhuriK.R. JennerP. Non-motor features of Parkinson disease.Nat. Rev. Neurosci.201718743545010.1038/nrn.2017.6228592904
    [Google Scholar]
  20. YangY.W. HsiehT.F. LiC.I. LiuC.S. LinW.Y. ChiangJ.H. LiT.C. LinC.C. Increased risk of Parkinson disease with diabetes mellitus in a population-based study.Medicine (Baltimore)2017963e592110.1097/MD.000000000000592128099356
    [Google Scholar]
  21. FioryF. PerruoloG. CimminoI. CabaroS. PignalosaF.C. MieleC. BeguinotF. FormisanoP. OrienteF. The relevance of insulin action in the dopaminergic system.Front. Neurosci.20191386810.3389/fnins.2019.0086831474827
    [Google Scholar]
  22. DasR.R. UngerM.M. Diabetes and Parkinson disease: A sweet spot?Neurology.201886987010.1212/WNL.0000000000005470
    [Google Scholar]
  23. LopalcoA. CutrignelliA. DenoraN. LopedotaA. FrancoM. LaquintanaV. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood–brain barrier.Nanomaterials (Basel)20188317810.3390/nano803017829558440
    [Google Scholar]
  24. TrapaniA. MandracchiaD. TripodoG. CometaS. CellamareS. De GiglioE. KlepetsanisP. AntimisiarisS.G. Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes.Colloids Surf. B Biointerfaces2018170111910.1016/j.colsurfb.2018.05.04929859476
    [Google Scholar]
  25. RagusaA. PrioreP. GiudettiA. CiccarellaG. GaballoA. Neuroprotective investigation of chitosan nanoparticles for dopamine delivery.Appl. Sci. (Basel)20188447410.3390/app8040474
    [Google Scholar]
  26. TrapaniA. De GiglioE. CafagnaD. DenoraN. AgrimiG. CassanoT. GaetaniS. CuomoV. TrapaniG. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery.Int. J. Pharm.20114191-229630710.1016/j.ijpharm.2011.07.03621821107
    [Google Scholar]
  27. GuoQ. YouH. YangX. LinB. ZhuZ. LuZ. LiX. ZhaoY. MaoL. ShenS. ChengH. ZhangJ. DengL. FanJ. XiZ. LiR. LiC.M. Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice.Nanoscale2017930108321084510.1039/C7NR02682J28726961
    [Google Scholar]
  28. FabregatG. GiménezA. DíazA. PuiggalíJ. AlemánC. Dual‐Functionalization Device for Therapy through Dopamine Release and Monitoring.Macromol. Biosci.2018185180001410.1002/mabi.20180001429665284
    [Google Scholar]
  29. RenY. ZhaoX. LiangX. MaP.X. GuoB. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease.Int. J. Biol. Macromol.2017105Pt 11079108710.1016/j.ijbiomac.2017.07.13028746885
    [Google Scholar]
  30. KondaveetiS. CornejoD.R. PetriD.F.S. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine.Colloids Surf. B Biointerfaces20161389410110.1016/j.colsurfb.2015.11.05826674837
    [Google Scholar]
  31. AguileraG. BerryC.C. WestR.M. Gonzalez-MonterrubioE. Angulo-MolinaA. Arias-CarriónÓ. Méndez-RojasM.Á. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier.Nanoscale Adv.20191267168510.1039/C8NA00010G36132237
    [Google Scholar]
  32. KhanM.S. PandeyS. TalibA. BhaisareM.L. WuH.F. Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases.Colloids Surf. B Biointerfaces201513414014610.1016/j.colsurfb.2015.06.00626186107
    [Google Scholar]
  33. RashedE.R. Abd El-RehimH.A. El-GhazalyM.A. Potential efficacy of dopamine loaded‐PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity.J. Biomed. Mater. Res. A201510351713172010.1002/jbm.a.3531225131611
    [Google Scholar]
  34. TangS. WangA. YanX. ChuL. YangX. SongY. SunK. YuX. LiuR. WuZ. XueP. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease.Drug Deliv.201926170070710.1080/10717544.2019.163642031290705
    [Google Scholar]
  35. PahujaR. SethK. ShuklaA. ShuklaR.K. BhatnagarP. ChauhanL.K.S. SaxenaP.N. ArunJ. ChaudhariB.P. PatelD.K. SinghS.P. ShuklaR. KhannaV.K. KumarP. ChaturvediR.K. GuptaK.C. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.ACS Nano2015954850487110.1021/nn506408v25825926
    [Google Scholar]
  36. CeredaE. BarichellaM. PedrolliC. KlersyC. CassaniE. CaccialanzaR. PezzoliG. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis.Diabetes Care201134122614262310.2337/dc11‑158422110170
    [Google Scholar]
  37. MorrisJ.K. BomhoffG.L. GorresB.K. DavisV.A. KimJ. LeeP.P. BrooksW.M. GerhardtG.A. GeigerP.C. StanfordJ.A. Insulin resistance impairs nigrostriatal dopamine function.Exp. Neurol.2011231117118010.1016/j.expneurol.2011.06.00521703262
    [Google Scholar]
  38. BauraG.D. FosterD.M. PorteD.Jr KahnS.E. BergmanR.N. CobelliC. SchwartzM.W. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain.J. Clin. Invest.19939241824183010.1172/JCI1167738408635
    [Google Scholar]
  39. FiglewiczD.P. BrotM.D. McCallA.L. SzotP. Diabetes causes differential changes in CNS noradrenergic and dopaminergic neurons in the rat: a molecular study.Brain Res.19967361-2546010.1016/0006‑8993(96)00727‑58930308
    [Google Scholar]
  40. RenaudJ. BassareoV. BeaulieuJ. PinnaA. SchlichM. LavoieC. MurtasD. SimolaN. MartinoliM.G. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway.Neurobiol. Aging20186911712810.1016/j.neurobiolaging.2018.05.01029890391
    [Google Scholar]
  41. KhangR. ParkC. ShinJ.H. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice.Neuroscience201529418219210.1016/j.neuroscience.2015.03.01725779963
    [Google Scholar]
  42. MounierC. PosnerB.I. Transcriptional regulation by insulin: from the receptor to the geneThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference.Can. J. Physiol. Pharmacol.200684771372410.1139/y05‑15216998535
    [Google Scholar]
  43. PattiM.E. ButteA.J. CrunkhornS. CusiK. BerriaR. KashyapS. MiyazakiY. KohaneI. CostelloM. SacconeR. LandakerE.J. GoldfineA.B. MunE. DeFronzoR. FinlaysonJ. KahnC.R. MandarinoL.J. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.Proc. Natl. Acad. Sci. USA2003100148466847110.1073/pnas.103291310012832613
    [Google Scholar]
  44. PerruoloG. ViggianoD. FioryF. CasseseA. NigroC. LiottiA. MieleC. BeguinotF. FormisanoP. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice.Sci. Rep.2016612996710.1038/srep2996727426254
    [Google Scholar]
  45. ShinJ.H. KoH.S. KangH. LeeY. LeeY.I. PletinkovaO. TroconsoJ.C. DawsonV.L. DawsonT.M. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease.Cell2011144568970210.1016/j.cell.2011.02.01021376232
    [Google Scholar]
  46. WangL. ZhaiY.Q. XuL.L. QiaoC. SunX.L. DingJ.H. LuM. HuG. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice.Exp. Neurol.2014251222910.1016/j.expneurol.2013.11.00124220636
    [Google Scholar]
  47. SantiagoJ.A. PotashkinJ.A. System-based approaches to decode the molecular links in Parkinson’s disease and diabetes.Neurobiol. Dis.201472Pt A849110.1016/j.nbd.2014.03.01924718034
    [Google Scholar]
  48. SantiagoJ.A. PotashkinJ.A. Integrative network analysis unveils convergent molecular pathways in Parkinson’s disease and diabetes.PLoS One2013812e8394010.1371/journal.pone.008394024376773
    [Google Scholar]
  49. GazianoJ.M. CincottaA.H. VinikA. BlondeL. BohannonN. ScrantonR. Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects.J. Am. Heart Assoc.201215e00227910.1161/JAHA.112.00227923316290
    [Google Scholar]
  50. BohnenN.I. KotagalV. MüllerM.L.T.M. KoeppeR.A. ScottP.J.H. AlbinR.L. FreyK.A. PetrouM. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson disease.Parkinsonism Relat. Disord.201420121394139810.1016/j.parkreldis.2014.10.00825454317
    [Google Scholar]
  51. KotagalV. AlbinR.L. MüllerM.L.T.M. KoeppeR.A. FreyK.A. BohnenN.I. Diabetes is associated with postural instability and gait difficulty in Parkinson disease.Parkinsonism Relat. Disord.201319552252610.1016/j.parkreldis.2013.01.01623462483
    [Google Scholar]
  52. Mohamed IbrahimN. RamliR. Koya KuttyS. ShahS.A. Earlier onset of motor complications in Parkinson’s patients with comorbid diabetes mellitus.Mov. Disord.201833121967196810.1002/mds.2752630427552
    [Google Scholar]
  53. PaganoG. PolychronisS. WilsonH. GiordanoB. FerraraN. NiccoliniF. PolitisM. Diabetes mellitus and Parkinson disease.Neurology20189019e1654e166210.1212/WNL.000000000000547529626177
    [Google Scholar]
  54. PetrouM. DavatzikosC. HsiehM. FoersterB.R. AlbinR.L. KotagalV. MüllerM.L. KoeppeR.A. HermanW.H. FreyK.A. BohnenN.I. Diabetes, gray matter loss, and cognition in the setting of Parkinson disease.Acad. Radiol.201623557758110.1016/j.acra.2015.07.01426874576
    [Google Scholar]
  55. CeredaE. BarichellaM. CassaniE. CaccialanzaR. PezzoliG. Clinical features of Parkinson disease when onset of diabetes came first.Neurology201278191507151110.1212/WNL.0b013e3182553cc922539572
    [Google Scholar]
  56. NelsonP.T. SmithC.D. AbnerE.A. SchmittF.A. ScheffS.W. DavisG.J. KellerJ.N. JichaG.A. DavisD. Wang-XiaW. HartmanA. KatzD.G. MarkesberyW.R. Human cerebral neuropathology of Type 2 diabetes mellitus.Biochim. Biophys. Acta Mol. Basis Dis.20091792545446910.1016/j.bbadis.2008.08.005
    [Google Scholar]
  57. Van HartenB. De LeeuwF. WeinsteinH. ScheltensP. Brain imaging in patients with Diabetes Mellitus. A systematic review.Aspects of Subcortical Ischaemic Vascular Disease20062939
    [Google Scholar]
  58. ScheuingN. BestF. DappA. DreyhauptI. FilzH.P. KrakowD. LangW. SiegelE. ZeyfangA. HollR.W. DPV initiative and the German BMBF Competence Network Diabetes mellitus Multicentre analysis of 178,992 type 2 diabetes patients revealed better metabolic control despite higher rates of hypertension, stroke, dementia and repeated inpatient care in patients with comorbid Parkinson’s disease.Parkinsonism Relat. Disord.201319768769210.1016/j.parkreldis.2013.03.01123615668
    [Google Scholar]
  59. SciglianoG. MusiccoM. SoliveriP. PiccoloI. RonchettiG. GirottiF. Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study.Stroke20063751184118810.1161/01.STR.0000217384.03237.9c16574924
    [Google Scholar]
  60. TanseyM.G. Frank-CannonT.C. McCoyM.K. LeeJ.K. MartinezT.N. McAlpineF.E. RuhnK.A. TranT.A. Neuroinflammation in Parkinson’s Disease: Is there sufficient evidence for mechanism-based interventional therapy?Front. Biosci.2008131370971710.2741/271317981581
    [Google Scholar]
  61. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201425206509
    [Google Scholar]
  62. LingC. PoulsenP. CarlssonE. RidderstråleM. AlmgrenP. WojtaszewskiJ. Beck-NielsenH. GroopL. VaagA. Multiple environmental and genetic factors influence skeletal muscle PGC-1α and PGC-1β gene expression in twins.J. Clin. Invest.2004114101518152610.1172/JCI2188915546003
    [Google Scholar]
  63. ChenS.G. StribinskisV. RaneM.J. DemuthD.R. GozalE. RobertsA.M. JagadapillaiR. LiuR. ChoeK. ShivakumarB. SonF. JinS. KerberR. AdameA. MasliahE. FriedlandR.P. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans.Sci. Rep.2016613447710.1038/srep3447727708338
    [Google Scholar]
  64. SotoC. PritzkowS. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.Nat. Neurosci.201821101332134010.1038/s41593‑018‑0235‑930250260
    [Google Scholar]
  65. Vicente MirandaH. El-AgnafO.M.A. OuteiroT.F. G lycation in P arkinson’s disease and Alzheimer’s disease.Mov. Disord.201631678279010.1002/mds.2656626946341
    [Google Scholar]
  66. BéraudD. TwomeyM. BloomB. MitterederA. TonV. NeitzkeK. ChasovskikhS. MhyreT.R. Maguire-ZeissK.A. α-Synuclein alters toll-like receptor expression.Front. Neurosci.201158010.3389/fnins.2011.0008021747756
    [Google Scholar]
  67. SuX. Maguire-ZeissK.A. GiulianoR. PriftiL. VenkateshK. FederoffH.J. Synuclein activates microglia in a model of Parkinson’s disease.Neurobiol. Aging200829111690170110.1016/j.neurobiolaging.2007.04.00617537546
    [Google Scholar]
  68. ObasseI. TaylorM. FullwoodN.J. AllsopD. Development of proteolytically stable N-methylated peptide inhibitors of aggregation of the amylin peptide implicated in type 2 diabetes.Interface Focus2017762016012710.1098/rsfs.2016.012729147551
    [Google Scholar]
  69. EmamzadehF. Alpha-synuclein structure, functions, and interactions.J. Res. Med. Sci.20162112910.4103/1735‑1995.18198927904575
    [Google Scholar]
  70. Rodriguez-AraujoG. NakagamiH. TakamiY. KatsuyaT. AkasakaH. SaitohS. ShimamotoK. MorishitaR. RakugiH. KanedaY. Low alpha-synuclein levels in the blood are associated with insulin resistance.Sci. Rep.2015511208110.1038/srep1208126159928
    [Google Scholar]
  71. ShendureJ. ChurchG.M. Computational discovery of sense-antisense transcription in the human and mouse genomes.Genome Biol.200239research0044.110.1186/gb‑2002‑3‑9‑research004412225583
    [Google Scholar]
  72. XuL. PuJ. Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application.Parkinsons Dis.2016201611010.1155/2016/172062127610264
    [Google Scholar]
  73. TamgüneyG. KorczynA.D. A critical review of the prion hypothesis of human synucleinopathies.Cell Tissue Res.2018373121322010.1007/s00441‑017‑2712‑y29116402
    [Google Scholar]
  74. Aviles-OlmosI. LimousinP. LeesA. FoltynieT. Parkinson’s disease, insulin resistance and novel agents of neuroprotection.Brain2013136237438410.1093/brain/aws00922344583
    [Google Scholar]
  75. LuJ. RandellE. HanY. AdeliK. KrahnJ. MengQ.H. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy.Clin. Biochem.201144430731110.1016/j.clinbiochem.2010.11.00421126514
    [Google Scholar]
  76. DengY. ZhangY. LiY. XiaoS. SongD. QingH. LiQ. RajputA.H. Occurrence and distribution of salsolinol-like compound, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (ADTIQ) in Parkinsonian brains.J. Neural Transm. (Vienna)2012119443544110.1007/s00702‑011‑0724‑422065205
    [Google Scholar]
  77. SongD.W. XinN. XieB.J. LiY.J. MengL.Y. LiH.M. SchläppiM. DengY.L. Formation of a salsolinol-like compound, the neurotoxin, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, in a cellular model of hyperglycemia and a rat model of diabetes.Int. J. Mol. Med.201433373674210.3892/ijmm.2013.160424366308
    [Google Scholar]
  78. XieB. LinF. UllahK. PengL. DingW. DaiR. QingH. DengY. A newly discovered neurotoxin ADTIQ associated with hyperglycemia and Parkinson’s disease.Biochem. Biophys. Res. Commun.2015459336136610.1016/j.bbrc.2015.02.06925744031
    [Google Scholar]
  79. BohnenN.I. MüllerM.L.T.M. ZarzhevskyN. KoeppeR.A. BoganC.W. KilbournM.R. FreyK.A. AlbinR.L. Leucoaraiosis, nigrostriatal denervation and motor symptoms in Parkinson’s disease.Brain201113482358236510.1093/brain/awr13921653540
    [Google Scholar]
  80. SunY. ChangY.H. ChenH.F. SuY.H. SuH.F. LiC.Y. Risk of Parkinson disease onset in patients with diabetes: a 9-year population-based cohort study with age and sex stratifications.Diabetes Care20123551047104910.2337/dc11‑151122432112
    [Google Scholar]
  81. OngM. FooH. ChanderR.J. WenM.C. AuW.L. SitohY.Y. TanL. KandiahN. Influence of diabetes mellitus on longitudinal atrophy and cognition in Parkinson’s disease.J. Neurol. Sci.201737712212610.1016/j.jns.2017.04.01028477681
    [Google Scholar]
  82. De Pablo-FernandezE. GoldacreR. PakpoorJ. NoyceA.J. WarnerT.T. Association between diabetes and subsequent Parkinson disease.Neurology2018912e139e14210.1212/WNL.000000000000577129898968
    [Google Scholar]
  83. BiosaA. OuteiroT.F. BubaccoL. BisagliaM. Diabetes mellitus as a risk factor for Parkinson’s disease: a molecular point of view.Mol. Neurobiol.201855118754876310.1007/s12035‑018‑1025‑929594935
    [Google Scholar]
  84. KomiciK. FemminellaG.D. BencivengaL. RengoG. PaganoG. Diabetes mellitus and Parkinson’s disease: a systematic review and meta-analyses.J. Parkinsons Dis.20211141585159610.3233/JPD‑21272534486987
    [Google Scholar]
  85. LiuW. TangJ. Association between diabetes mellitus and risk of Parkinson’s disease: A prisma‐compliant meta‐analysis.Brain Behav.2021118e0208210.1002/brb3.208234291588
    [Google Scholar]
  86. LuL. FuD. LiH. LiuA. LiJ. ZhengG. Diabetes and risk of Parkinson’s disease: an updated meta-analysis of case-control studies.PLoS One201491e8578110.1371/journal.pone.008578124465703
    [Google Scholar]
  87. XuJ. GongD.D. ManC.F. FanY. Parkinson’s disease and risk of mortality: meta-analysis and systematic review.Acta Neurol. Scand.20141292717910.1111/ane.1220124256347
    [Google Scholar]
  88. YueX. LiH. YanH. ZhangP. ChangL. LiT. Risk of Parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies.Medicine (Baltimore)20169518e354910.1097/MD.000000000000354927149468
    [Google Scholar]
  89. ChohanH. SenkevichK. PatelR.K. BestwickJ.P. JacobsB.M. Bandres CigaS. Gan-OrZ. NoyceA.J. Type 2 diabetes as a determinant of Parkinson’s disease risk and progression.Mov. Disord.20213661420142910.1002/mds.2855133682937
    [Google Scholar]
  90. Sánchez-GómezA. DíazY. Duarte-SallesT. ComptaY. MartíM.J. Prediabetes, type 2 diabetes mellitus and risk of Parkinson’s disease: A population-based cohort study.Parkinsonism Relat. Disord.202189222710.1016/j.parkreldis.2021.06.00234216937
    [Google Scholar]
  91. RheeS.Y. HanK.D. KwonH. ParkS.E. ParkY.G. KimY.H. YooS.J. RheeE.J. LeeW.Y. Association between glycemic status and the risk of Parkinson disease: a nationwide population-based study.Diabetes Care20204392169217510.2337/dc19‑076032611610
    [Google Scholar]
  92. LiuS. BorglandS.L. Insulin actions in the mesolimbic dopamine system.Exp. Neurol.201932011300610.1016/j.expneurol.2019.11300631279911
    [Google Scholar]
  93. YanM.H. WangX. ZhuX. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic. Biol. Med.2013629010110.1016/j.freeradbiomed.2012.11.01423200807
    [Google Scholar]
  94. KimD.S. ChoiH.I. WangY. LuoY. HofferB.J. GreigN.H. A new treatment strategy for Parkinson’s disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway.Cell Transplant.20172691560157110.1177/096368971772123429113464
    [Google Scholar]
  95. HorvathI. Wittung-StafshedeP. Cross-talk between amyloidogenic proteins in type-2 diabetes and Parkinson’s disease.Proc. Natl. Acad. Sci. USA201611344124731247710.1073/pnas.161037111327791129
    [Google Scholar]
  96. BéraudD. Maguire-ZeissK.A. Misfolded α-synuclein and toll-like receptors: therapeutic targets for Parkinson’s disease.Parkinsonism Relat. Disord.2012180 1Suppl. 1S17S2010.1016/S1353‑8020(11)70008‑622166424
    [Google Scholar]
  97. RansohoffR.M. How neuroinflammation contributes to neurodegeneration.Science2016353630177778310.1126/science.aag259027540165
    [Google Scholar]
  98. Heras-SandovalD. Pérez-RojasJ.M. Hernández-DamiánJ. Pedraza-ChaverriJ. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration.Cell. Signal.201426122694270110.1016/j.cellsig.2014.08.01925173700
    [Google Scholar]
  99. TokutakeT. KasugaK. YajimaR. SekineY. TezukaT. NishizawaM. IkeuchiT. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway.J. Biol. Chem.201228742352223523310.1074/jbc.M112.34830022910909
    [Google Scholar]
  100. SharmaS.K. ChorellE. StenebergP. Vernersson-LindahlE. EdlundH. Wittung-StafshedeP. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner.Sci. Rep.2015511253110.1038/srep1253126228656
    [Google Scholar]
  101. ChengZ. TsengY. WhiteM.F. Insulin signaling meets mitochondria in metabolism.Trends Endocrinol. Metab.2010211058959810.1016/j.tem.2010.06.00520638297
    [Google Scholar]
  102. AghanooriM.R. SmithD.R. Roy ChowdhuryS. SabbirM.G. CalcuttN.A. FernyhoughP. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats.Exp. Neurol.201729714815710.1016/j.expneurol.2017.08.00528803751
    [Google Scholar]
  103. GaoS. DuanC. GaoG. WangX. YangH. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling.Int. J. Biochem. Cell Biol.201564253310.1016/j.biocel.2015.03.00625813876
    [Google Scholar]
  104. DeS. KuoY.C. Nanocarriers to mediate the pathways from diabetes toward Parkinson’s disease.J. Taiwan Inst. Chem. Eng.202415710540110.1016/j.jtice.2024.105401
    [Google Scholar]
  105. HöppenerJ.W.M. AhrénB. LipsC.J.M. Islet amyloid and type 2 diabetes mellitus.N. Engl. J. Med.2000343641141910.1056/NEJM20000810343060710933741
    [Google Scholar]
  106. SpillantiniM.G. SchmidtM.L. LeeV.M.Y. TrojanowskiJ.Q. JakesR. GoedertM. α-Synuclein in Lewy bodies.Nature1997388664583984010.1038/421669278044
    [Google Scholar]
  107. HaeuslerR.A. McGrawT.E. AcciliD. Biochemical and cellular properties of insulin receptor signalling.Nat. Rev. Mol. Cell Biol.2018191314410.1038/nrm.2017.8928974775
    [Google Scholar]
  108. KimB. FeldmanE.L. Insulin resistance in the nervous system.Trends Endocrinol. Metab.201223313314110.1016/j.tem.2011.12.00422245457
    [Google Scholar]
  109. UngerJ. LivingstonJ. MossA. Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects.Prog. Neurobiol.199136534336210.1016/0301‑0082(91)90015‑S1887067
    [Google Scholar]
  110. BaskinD.G. PorteD.Jr GuestK. DorsaD.M. Regional concentrations of insulin in the rat brain.Endocrinology1983112389890310.1210/endo‑112‑3‑8986337049
    [Google Scholar]
  111. WertherG.A. HoggA. OldfieldB.J. McKINLEYM.J. FigdorR. AllenA.M. MendelsohnF.A.O. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry.Endocrinology198712141562157010.1210/endo‑121‑4‑15623653038
    [Google Scholar]
  112. SchapiraA.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease.Lancet Neurol.2008719710910.1016/S1474‑4422(07)70327‑718093566
    [Google Scholar]
  113. DzamkoN. GeczyC.L. HallidayG.M. Inflammation is genetically implicated in Parkinson’s disease.Neuroscience20153028910210.1016/j.neuroscience.2014.10.02825450953
    [Google Scholar]
  114. MullinS. SchapiraA. α-Synuclein and mitochondrial dysfunction in Parkinson’s disease.Mol. Neurobiol.201347258759710.1007/s12035‑013‑8394‑x23361255
    [Google Scholar]
  115. Saez-AtienzarS. Bonet-PonceL. BlesaJ.R. RomeroF.J. MurphyM.P. JordanJ. GalindoM.F. The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling.Cell Death Dis.201458e1368e136810.1038/cddis.2014.32025118928
    [Google Scholar]
  116. ClarkI.E. DodsonM.W. JiangC. CaoJ.H. HuhJ.R. SeolJ.H. YooS.J. HayB.A. GuoM. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.Nature200644170971162116610.1038/nature0477916672981
    [Google Scholar]
  117. GeggM.E. SchapiraA.H.V. PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis.Autophagy20117224324510.4161/auto.7.2.1433221139416
    [Google Scholar]
  118. BonifatiV. RizzuP. van BarenM.J. SchaapO. BreedveldG.J. KriegerE. DekkerM.C.J. SquitieriF. IbanezP. JoosseM. van DongenJ.W. VanacoreN. van SwietenJ.C. BriceA. MecoG. van DuijnC.M. OostraB.A. HeutinkP. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.Science2003299560425625910.1126/science.107720912446870
    [Google Scholar]
  119. GuzmanJ.N. Sanchez-PadillaJ. WokosinD. KondapalliJ. IlijicE. SchumackerP.T. SurmeierD.J. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1.Nature2010468732469670010.1038/nature0953621068725
    [Google Scholar]
  120. PrasadE.M. HungS.Y. Behavioral tests in neurotoxin-induced animal models of Parkinson’s disease.Antioxidants2020910100710.3390/antiox910100733081318
    [Google Scholar]
  121. WallaceD.C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine.Annu. Rev. Biochem.200776178182110.1146/annurev.biochem.76.081205.15095517506638
    [Google Scholar]
  122. MorinoK. PetersenK.F. DufourS. BefroyD. FrattiniJ. ShatzkesN. NeschenS. WhiteM.F. BilzS. SonoS. PypaertM. ShulmanG.I. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.J. Clin. Invest.2005115123587359310.1172/JCI2515116284649
    [Google Scholar]
  123. Rovira-LlopisS. ApostolovaN. BañulsC. MuntanéJ. RochaM. VictorV.M. Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: new therapeutic targets.Antioxid. Redox Signal.201829874979110.1089/ars.2017.731329256638
    [Google Scholar]
  124. KleinriddersA. CaiW. CappellucciL. GhazarianA. CollinsW.R. VienbergS.G. PothosE.N. KahnC.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders.Proc. Natl. Acad. Sci. USA2015112113463346810.1073/pnas.150087711225733901
    [Google Scholar]
  125. RochaM. ApostolovaN. Diaz-RuaR. MuntaneJ. VictorV.M. Mitochondria and T2D: role of autophagy, ER stress, and inflammasome.Trends Endocrinol. Metab.2020311072574110.1016/j.tem.2020.03.00432265079
    [Google Scholar]
  126. ChenL. LiuC. GaoJ. XieZ. ChanL.W.C. KeatingD.J. YangY. SunJ. ZhouF. WeiY. MenX. YangS. Inhibition of Miro1 disturbs mitophagy and pancreatic β-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes.Oncotarget2017853906939070510.18632/oncotarget.2096329207597
    [Google Scholar]
  127. BhansaliS. BhansaliA. WaliaR. SaikiaU.N. DhawanV. Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus.Front. Endocrinol. (Lausanne)2017834710.3389/fendo.2017.0034729326655
    [Google Scholar]
  128. CastanerO GodayA ParkY-M The gut microbiome profile in obesity: a systematic review.Int J Endocrinol.201820184095789.10.1155/2018/4095789
    [Google Scholar]
  129. HaikalC. ChenQ.Q. LiJ.Y. Microbiome changes: an indicator of Parkinson’s disease?Transl. Neurodegener.2019813810.1186/s40035‑019‑0175‑731890161
    [Google Scholar]
  130. RinninellaE. RaoulP. CintoniM. FranceschiF. MiggianoG. GasbarriniA. MeleM. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.Microorganisms2019711410.3390/microorganisms701001430634578
    [Google Scholar]
  131. ZakyA. GlastrasS.J. WongM.Y.W. PollockC.A. SaadS. The role of the gut microbiome in diabetes and obesity-related kidney disease.Int. J. Mol. Sci.20212217964110.3390/ijms2217964134502562
    [Google Scholar]
  132. DemirciM. Bahar TokmanH. TanerZ. KeskinF.E. ÇağatayP. Ozturk BakarY. ÖzyazarM. KirazN. KocazeybekB.S. Bacteroidetes and Firmicutes levels in gut microbiota and effects of hosts TLR2/TLR4 gene expression levels in adult type 1 diabetes patients in Istanbul, Turkey.J. Diabetes Complications202034210744910.1016/j.jdiacomp.2019.10744931677982
    [Google Scholar]
  133. DoumateyA.P. AdeyemoA. ZhouJ. LeiL. AdebamowoS.N. AdebamowoC. RotimiC.N. Gut microbiome profiles are associated with type 2 diabetes in urban Africans.Front. Cell. Infect. Microbiol.2020106310.3389/fcimb.2020.0006332158702
    [Google Scholar]
  134. BalversM. DeschasauxM. van den BornB.J. ZwindermanK. NieuwdorpM. LevinE. Analyzing type 2 diabetes associations with the gut microbiome in individuals from two ethnic backgrounds living in the same geographic area.Nutrients2021139328910.3390/nu1309328934579166
    [Google Scholar]
  135. LiQ. ChangY. ZhangK. ChenH. TaoS. ZhangZ. Implication of the gut microbiome composition of type 2 diabetic patients from northern China.Sci. Rep.2020101545010.1038/s41598‑020‑62224‑332214153
    [Google Scholar]
  136. CirsteaM.S. YuA.C. GolzE. SundvickK. KligerD. RadisavljevicN. FoulgerL.H. MackenzieM. HuanT. FinlayB.B. Appel-CresswellS. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease.Mov. Disord.20203571208121710.1002/mds.2805232357258
    [Google Scholar]
  137. KeshavarzianA. GreenS.J. EngenP.A. VoigtR.M. NaqibA. ForsythC.B. MutluE. ShannonK.M. Colonic bacterial composition in Parkinson’s disease.Mov. Disord.201530101351136010.1002/mds.2630726179554
    [Google Scholar]
  138. YanY RenS DuanY Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. NPJ Biofilms Microbiomes.20217169
    [Google Scholar]
  139. RowlandI. GibsonG. HeinkenA. ScottK. SwannJ. ThieleI. TuohyK. Gut microbiota functions: metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑828393285
    [Google Scholar]
  140. VamanuE. RaiS.N. The link between obesity, microbiota dysbiosis, and neurodegenerative pathogenesis.Diseases2021934510.3390/diseases903004534201465
    [Google Scholar]
  141. KellD.B. PretoriusE. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death.Integr. Biol.20157111339137710.1039/c5ib00158g26345428
    [Google Scholar]
  142. LoffredoL EttorreE ZicariAM Oxidative stress and gut-derived lipopolysaccharides in neurodegenerative disease: role of NOX2. Oxid Med Cell Longev.20202020863027510.1155/2020/8630275
    [Google Scholar]
  143. YangD. ZhaoD. Ali ShahS.Z. WuW. LaiM. ZhangX. LiJ. GuanZ. ZhaoH. LiW. GaoH. ZhouX. YangL. Corrigendum: The Role of the Gut Microbiota in the Pathogenesis of Parkinson’s Disease.Front. Neurol.202010141210.3389/fneur.2019.0141232116985
    [Google Scholar]
  144. DuttaS.K. VermaS. JainV. SurapaneniB.K. VinayekR. PhillipsL. NairP.P. Parkinson’s disease: the emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation.J. Neurogastroenterol. Motil.201925336337610.5056/jnm1904431327219
    [Google Scholar]
  145. LiH.Y. ZhouD.D. GanR.Y. HuangS.Y. ZhaoC.N. ShangA. XuX.Y. LiH.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review.Nutrients2021139321110.3390/nu1309321134579087
    [Google Scholar]
  146. LiptakR. GromovaB. GardlikR. Fecal microbiota transplantation as a tool for therapeutic modulation of non-gastrointestinal disorders.Front. Med. (Lausanne)2021866552010.3389/fmed.2021.66552034557498
    [Google Scholar]
  147. SnigdhaS. HaK. TsaiP. DinanT.G. BartosJ.D. ShahidM. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan.Pharmacol. Ther.202223110797810.1016/j.pharmthera.2021.10797834492236
    [Google Scholar]
  148. SalcedoI. TweedieD. LiY. GreigN.H. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders.Br. J. Pharmacol.201216651586159910.1111/j.1476‑5381.2012.01971.x22519295
    [Google Scholar]
  149. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.01326851597
    [Google Scholar]
  150. NauckM.A. MeierJ.J. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions.Lancet Diabetes Endocrinol.20164652553610.1016/S2213‑8587(15)00482‑926876794
    [Google Scholar]
  151. HölscherC. Brain insulin resistance: role in neurodegenerative disease and potential for targeting.Expert Opin. Investig. Drugs202029433334810.1080/13543784.2020.173838332175781
    [Google Scholar]
  152. HarkavyiA. AbuirmeilehA. LeverR. KingsburyA.E. BiggsC.S. WhittonP.S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease.J. Neuroinflammation2008511910.1186/1742‑2094‑5‑1918492290
    [Google Scholar]
  153. LiY. PerryT. KindyM.S. HarveyB.K. TweedieD. HollowayH.W. PowersK. ShenH. EganJ.M. SambamurtiK. BrossiA. LahiriD.K. MattsonM.P. HofferB.J. WangY. GreigN.H. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.Proc. Natl. Acad. Sci. USA200910641285129010.1073/pnas.080672010619164583
    [Google Scholar]
  154. LiuW. JalewaJ. SharmaM. LiG. LiL. HölscherC. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease.Neuroscience2015303425010.1016/j.neuroscience.2015.06.05426141845
    [Google Scholar]
  155. ErbilD. ErenC.Y. DemirelC. KüçükerM.U. SolaroğluI. EserH.Y. GLP-1’s role in neuroprotection: a systematic review.Brain Inj.201933673481910.1080/02699052.2019.158700030938196
    [Google Scholar]
  156. MuscogiuriG. DeFronzoR.A. GastaldelliA. HolstJ.J. Glucagon-like peptide-1 and the central/peripheral nervous system: crosstalk in diabetes.Trends Endocrinol. Metab.20172828810310.1016/j.tem.2016.10.00127871675
    [Google Scholar]
  157. MulvaneyC.A. DuarteG.S. HandleyJ. EvansD.J. MenonS. WyseR. EmsleyH.C. GLP-1 receptor agonists for Parkinson’s disease.Cochrane Database Syst. Rev.202077CD01299032700772
    [Google Scholar]
  158. Aviles-OlmosI. DicksonJ. KefalopoulouZ. DjamshidianA. EllP. SoderlundT. WhittonP. WyseR. IsaacsT. LeesA. LimousinP. FoltynieT. Exenatide and the treatment of patients with Parkinson’s disease.J. Clin. Invest.201312362730273610.1172/JCI6829523728174
    [Google Scholar]
  159. FoltynieT. Aviles-OlmosI. Exenatide as a potential treatment for patients with Parkinson’s disease: First steps into the clinic.Alzheimers Dement.2014101SSuppl.S38S4610.1016/j.jalz.2013.12.00524529524
    [Google Scholar]
  160. AthaudaD. GulyaniS. KarnatiH. LiY. TweedieD. MustapicM. ChawlaS. ChowdhuryK. SkeneS.S. GreigN.H. KapogiannisD. FoltynieT. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial.JAMA Neurol.201976442042910.1001/jamaneurol.2018.430430640362
    [Google Scholar]
  161. AthaudaD. MaclaganK. SkeneS.S. Bajwa-JosephM. LetchfordD. ChowdhuryK. HibbertS. BudnikN. ZampedriL. DicksonJ. LiY. Aviles-OlmosI. WarnerT.T. LimousinP. LeesA.J. GreigN.H. TebbsS. FoltynieT. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial.Lancet2017390101031664167510.1016/S0140‑6736(17)31585‑428781108
    [Google Scholar]
  162. CampbellJ.E. DruckerD.J. Pharmacology, physiology, and mechanisms of incretin hormone action.Cell Metab.201317681983710.1016/j.cmet.2013.04.00823684623
    [Google Scholar]
  163. MatteucciE. GiampietroO. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors.Curr. Med. Chem.201522131573158110.2174/092986732266615022715330825723507
    [Google Scholar]
  164. AbdelsalamR.M. SafarM.M. Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE ‐ NF κB and Nrf2‐antioxidant signaling pathways.J. Neurochem.2015133570070710.1111/jnc.1308725752913
    [Google Scholar]
  165. NassarN.N. Al-ShorbagyM.Y. ArabH.H. AbdallahD.M. Saxagliptin: A novel antiparkinsonian approach.Neuropharmacology20158930831710.1016/j.neuropharm.2014.10.00725446674
    [Google Scholar]
  166. ShiQ. LiuS. FonsecaV.A. ThethiT.K. ShiL. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus.BMJ Open201997e02495410.1136/bmjopen‑2018‑02495431366635
    [Google Scholar]
  167. Pérez-RevueltaB.I. HettichM.M. CiociaroA. RotermundC. KahleP.J. KraussS. Di MonteD.A. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation.Cell Death Dis.201455e1209e120910.1038/cddis.2014.17524810045
    [Google Scholar]
  168. RabchevskyA. PatelS. SullivanP. Targeting mitoNEET with pioglitazone for therapeutic neuroprotection after spinal cord injury.Neural Regen. Res.201712111807180810.4103/1673‑5374.21904029239323
    [Google Scholar]
  169. BaileyC.J. TurnerR.C. Metformin.N. Engl. J. Med.1996334957457910.1056/NEJM1996022933409068569826
    [Google Scholar]
  170. Martin-MontalvoA. MerckenE.M. MitchellS.J. PalaciosH.H. MoteP.L. Scheibye-KnudsenM. GomesA.P. WardT.M. MinorR.K. BlouinM.J. SchwabM. PollakM. ZhangY. YuY. BeckerK.G. BohrV.A. IngramD.K. SinclairD.A. WolfN.S. SpindlerS.R. BernierM. de CaboR. Metformin improves healthspan and lifespan in mice.Nat. Commun.201341219210.1038/ncomms319223900241
    [Google Scholar]
  171. MengS. CaoJ. HeQ. XiongL. ChangE. RadovickS. WondisfordF.E. HeL. Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex.J. Biol. Chem.201529063793380210.1074/jbc.M114.60442125538235
    [Google Scholar]
  172. WangJ. GallagherD. DeVitoL.M. CancinoG.I. TsuiD. HeL. KellerG.M. FranklandP.W. KaplanD.R. MillerF.D. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation.Cell Stem Cell2012111233510.1016/j.stem.2012.03.01622770240
    [Google Scholar]
  173. AshcroftF.M. RorsmanP. KATP channels and islet hormone secretion: new insights and controversies.Nat. Rev. Endocrinol.201391166066910.1038/nrendo.2013.16624042324
    [Google Scholar]
  174. DulovicM. JovanovicM. XilouriM. StefanisL. Harhaji-TrajkovicL. Kravic-StevovicT. PaunovicV. ArdahM.T. El-AgnafO.M.A. KosticV. MarkovicI. TrajkovicV. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro.Neurobiol. Dis.20146311110.1016/j.nbd.2013.11.00224269733
    [Google Scholar]
  175. GehlertD.R. RobertsonD.W. ATP sensitive potassium channels: Potential drug targets in neuropsychopharmacology.Prog. Neuropsychopharmacol. Biol. Psychiatry19941871093110210.1016/0278‑5846(94)90113‑97846282
    [Google Scholar]
  176. WangS. HuL. YangY. DingJ. HuG. Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: Implications for treating Parkinson’s disease?Neuropharmacology200548798499210.1016/j.neuropharm.2005.01.00915857625
    [Google Scholar]
  177. ColcaJ.R. McDonaldW.G. WaldonD.J. LeoneJ.W. LullJ.M. BannowC.A. LundE.T. MathewsW.R. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe.Am. J. Physiol. Endocrinol. Metab.20042862E252E26010.1152/ajpendo.00424.200314570702
    [Google Scholar]
  178. CrestanelloJ.A. DolibaN.M. BabskyA.M. DolibaN.M. NiiboriK. OsbakkenM.D. WhitmanG.J.R. Opening of potassium channels protects mitochondrial function from calcium overload.J. Surg. Res.200094211612310.1006/jsre.2000.597911104651
    [Google Scholar]
  179. HevenerA.L. OlefskyJ.M. ReichartD. NguyenM.T.A. BandyopadyhayG. LeungH.Y. WattM.J. BennerC. FebbraioM.A. NguyenA.K. FolianB. SubramaniamS. GonzalezF.J. GlassC.K. RicoteM. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones.J. Clin. Invest.200711761658166910.1172/JCI3156117525798
    [Google Scholar]
  180. PaddockM.L. WileyS.E. AxelrodH.L. CohenA.E. RoyM. AbreschE.C. CapraroD. MurphyA.N. NechushtaiR. DixonJ.E. JenningsP.A. MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone.Proc. Natl. Acad. Sci. USA200710436143421434710.1073/pnas.070718910417766440
    [Google Scholar]
  181. WileyS.E. PaddockM.L. AbreschE.C. GrossL. van der GeerP. NechushtaiR. MurphyA.N. JenningsP.A. DixonJ.E. The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster.J. Biol. Chem.200728233237452374910.1074/jbc.C70010720017584744
    [Google Scholar]
  182. LabandeiraC. Fraga-BauA. Arias RonD. Alvarez-RodriguezE. Vicente-AlbaP. Lago-GarmaJ. Rodriguez-PerezA. Parkinson’s disease and diabetes mellitus: common mechanisms and treatment repurposing.Neural Regen. Res.20221781652165810.4103/1673‑5374.33212235017411
    [Google Scholar]
  183. PangY. LinS. WrightC. ShenJ. CarterK. BhattA. FanL.W. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.Neuroscience201631815716510.1016/j.neuroscience.2016.01.02026777890
    [Google Scholar]
  184. NovakP. Pimentel MaldonadoD.A. NovakV. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study.PLoS One2019144e021436410.1371/journal.pone.021436431022213
    [Google Scholar]
  185. KatilaN. BhurtelS. ShadfarS. SrivastavS. NeupaneS. OjhaU. JeongG.S. ChoiD.Y. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease.Neuropharmacology201712539640710.1016/j.neuropharm.2017.08.01528807678
    [Google Scholar]
  186. TayaraK. Espinosa-OlivaA.M. García-DomínguezI. IsmaielA.A. Boza-SerranoA. DeierborgT. MachadoA. HerreraA.J. VeneroJ.L. de PablosR.M. Divergent effects of metformin on an inflammatory model of Parkinson’s disease.Front. Cell. Neurosci.20181244010.3389/fncel.2018.0044030519161
    [Google Scholar]
  187. LeeE.Y. LeeJ.E. ParkJ.H. ShinI.C. KohH.C. Rosiglitazone, a PPAR-γ agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats.Toxicol. Lett.2012213333234410.1016/j.toxlet.2012.07.01622842585
    [Google Scholar]
  188. NeurolL. NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial.Lancet Neurol.201514879580310.1016/S1474‑4422(15)00144‑126116315
    [Google Scholar]
  189. YuH. SunT. HeX. WangZ. ZhaoK. AnJ. WenL. LiJ.Y. LiW. FengJ. Association between Parkinson’s disease and diabetes mellitus: From epidemiology, pathophysiology and prevention to treatment.Aging Dis.20221361591160510.14336/AD.2022.032536465171
    [Google Scholar]
  190. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.0036030177965
    [Google Scholar]
  191. XiaY. MathamM.V. SuH. PadmanabhanP. GulyásB. Nanoparticulate contrast agents for multimodality molecular imaging.J. Biomed. Nanotechnol.20161281553158410.1166/jbn.2016.225829341579
    [Google Scholar]
  192. NaqviS.M. McNamaraL.M. Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration.Front. Bioeng. Biotechnol.2020859766110.3389/fbioe.2020.59766133381498
    [Google Scholar]
  193. Pérez-MartínezF.C. CarriónB. CeñaV. The use of nanoparticles for gene therapy in the nervous system.J. Alzheimers Dis.201231469771010.3233/JAD‑2012‑12066122695620
    [Google Scholar]
  194. ZhaoN. C WoodleM. MixsonA.J. Advances in delivery systems for doxorubicin.J. Nanomed. Nanotechnol.201895910.4172/2157‑7439.100051930613436
    [Google Scholar]
  195. Sadigh-EteghadS. TalebiM. FarhoudiM. MahmoudiJ. ReyhaniB. Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells.Neurosciences (Riyadh)201318328128323887222
    [Google Scholar]
  196. GarbayoE. AnsorenaE. Blanco-PrietoM.J. Drug development in Parkinson’s disease: From emerging molecules to innovative drug delivery systems.Maturitas201376327227810.1016/j.maturitas.2013.05.01923827471
    [Google Scholar]
  197. De GiglioE. TrapaniA. CafagnaD. SabbatiniL. CometaS. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization.Anal. Bioanal. Chem.201140071997200210.1007/s00216‑011‑4962‑y21523332
    [Google Scholar]
  198. NaskarS. KuotsuK. SharmaS. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research.J. Drug Target.201927437939310.1080/1061186X.2018.151211230103626
    [Google Scholar]
  199. Di GioiaS. TrapaniA. MandracchiaD. De GiglioE. CometaS. ManginiV. ArnesanoF. BelgiovineG. CastellaniS. PaceL. LavecchiaM.A. TrapaniG. ConeseM. PuglisiG. CassanoT. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles.Eur. J. Pharm. Biopharm.20159418019310.1016/j.ejpb.2015.05.01926032293
    [Google Scholar]
  200. MalhotraM. Tomaro-DuchesneauC. PrakashS. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases.Biomaterials20133441270128010.1016/j.biomaterials.2012.10.01323140978
    [Google Scholar]
  201. MdS. KhanR.A. MustafaG. ChuttaniK. BabootaS. SahniJ.K. AliJ. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model.Eur. J. Pharm. Sci.201348339340510.1016/j.ejps.2012.12.00723266466
    [Google Scholar]
  202. MustafaG. BabootaS. AhujaA. AliJ. Formulation development of chitosan coated intra nasal ropinirole nanoemulsion for better management option of Parkinson: an in vitro ex vivo evaluation.Curr. Nanosci.20128334836010.2174/157341312800620331
    [Google Scholar]
  203. RassuG. SodduE. CossuM. BrunduA. CerriG. MarchettiN. FerraroL. ReganR.F. GiunchediP. GaviniE. DalpiazA. Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate.J. Control. Release2015201687710.1016/j.jconrel.2015.01.02525620068
    [Google Scholar]
  204. LouwA.M. KolarM.K. NovikovaL.N. KinghamP.J. WibergM. KjemsJ. NovikovL.N. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury.Nanomedicine201612364365310.1016/j.nano.2015.10.01126582736
    [Google Scholar]
  205. RajeshR. RavichandranY.D. KuoY-C. Alginate in bone tissue engineering.Seaweed polysaccharides.Elsevier201734936810.1016/B978‑0‑12‑809816‑5.00019‑0
    [Google Scholar]
  206. Rodríguez-NogalesC. GarbayoE. Carmona-AbellánM.M. LuquinM.R. Blanco-PrietoM.J. Brain aging and Parkinson’s disease: New therapeutic approaches using drug delivery systems.Maturitas201684253110.1016/j.maturitas.2015.11.00926653838
    [Google Scholar]
  207. MatyashM. DespangF. MandalR. FioreD. GelinskyM. IkonomidouC. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress.Tissue Eng. Part A2012181-2556610.1089/ten.tea.2011.009721770866
    [Google Scholar]
  208. PillayS. PillayV. ChoonaraY.E. NaidooD. KhanR.A. du ToitL.C. NdesendoV.M.K. ModiG. DanckwertsM.P. IyukeS.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.Int. J. Pharm.20093821-227729010.1016/j.ijpharm.2009.08.02119703530
    [Google Scholar]
  209. KondaveetiS. SemeanoA.T.S. CornejoD.R. UlrichH. PetriD.F.S. Magnetic hydrogels for levodopa release and cell stimulation triggered by external magnetic field.Colloids Surf. B Biointerfaces201816741542410.1016/j.colsurfb.2018.04.04029704742
    [Google Scholar]
  210. SiddiqueY.H. KhanW. SinghB.R. NaqviA.H. Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease.ISRN Pharmacol.201320131810.1155/2013/79458224171120
    [Google Scholar]
  211. SiddiqueY.H. KhanW. FatimaA. JyotiS. KhanamS. NazF. Rahul AliF. SinghB.R. NaqviA.H. Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson’s disease.Dis. Model. Mech.201691636826542705
    [Google Scholar]
  212. ChenC.C. FangC.L. Al-SuwayehS.A. LeuY.L. FangJ.Y. Transdermal delivery of selegiline from alginate–Pluronic composite thermogels.Int. J. Pharm.20114151-211912810.1016/j.ijpharm.2011.05.06021645593
    [Google Scholar]
  213. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.00119782542
    [Google Scholar]
  214. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym303137722577513
    [Google Scholar]
  215. SionkowskaA. Current research on the blends of natural and synthetic polymers as new biomaterials: Review.Prog. Polym. Sci.20113691254127610.1016/j.progpolymsci.2011.05.003
    [Google Scholar]
  216. KnopK. HoogenboomR. FischerD. SchubertU.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives.Angew. Chem. Int. Ed.201049366288630810.1002/anie.20090267220648499
    [Google Scholar]
  217. AndersonJ.M. ShiveM.S. Biodegradation and biocompatibility of PLA and PLGA microspheres.Adv. Drug Deliv. Rev.199728152410.1016/S0169‑409X(97)00048‑310837562
    [Google Scholar]
  218. SinghV TiwariM Structure-Processing-Property Relationship of Poly(Glycolic Acid) for Drug Delivery Systems 1: Synthesis and CatalysisInt J Poly Sci.20102010652719
    [Google Scholar]
  219. SahooS. SasmalA. NandaR. PhaniA.R. NayakP.L. Synthesis of chitosan–polycaprolactone blend for control delivery of ofloxacin drug.Carbohydr. Polym.201079110611310.1016/j.carbpol.2009.07.042
    [Google Scholar]
  220. AlconcelS.N.S. BaasA.S. MaynardH.D. FDA-approved poly(ethylene glycol)–protein conjugate drugs.Polym. Chem.2011271442144810.1039/c1py00034a
    [Google Scholar]
  221. BjugstadK.B. LampeK. KernD.S. MahoneyM. Biocompatibility of poly(ethylene glycol)‐based hydrogels in the brain: An analysis of the glial response across space and time.J. Biomed. Mater. Res. A201095A1799110.1002/jbm.a.3280920740603
    [Google Scholar]
  222. JalaliN. MoztarzadehF. MozafariM. AsgariS. MotevalianM. AlhosseiniS.N. Surface modification of poly(lactide-co-glycolide) nanoparticles by d-α-tocopheryl polyethylene glycol 1000 succinate as potential carrier for the delivery of drugs to the brain.Colloids Surf. A Physicochem. Eng. Asp.2011392133534210.1016/j.colsurfa.2011.10.012
    [Google Scholar]
  223. GambaryanP.Y. KondrashevaI.G. SeverinE.S. GusevaA.A. KamenskyA.A. Increasing the Effciency of Parkinson’s Disease Treatment Using a poly(lactic-co-glycolic acid) (PLGA) Based L-DOPA Delivery System.Exp. Neurobiol.201423324625210.5607/en.2014.23.3.24625258572
    [Google Scholar]
  224. ShinM. KimH.K. LeeH. Dopamine‐loaded poly( d, l ‐lactic‐ co ‐glycolic acid) microspheres: New strategy for encapsulating small hydrophilic drugs with high efficiency.Biotechnol. Prog.201430121522310.1002/btpr.183524281843
    [Google Scholar]
  225. LiuQ. ShaoX. ChenJ. ShenY. FengC. GaoX. ZhaoY. LiJ. ZhangQ. JiangX. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain.Toxicol. Appl. Pharmacol.20112511798410.1016/j.taap.2010.12.00321163285
    [Google Scholar]
  226. HuK. ShiY. JiangW. HanJ. HuangS. JiangX. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease.Int. J. Pharm.20114151-227328310.1016/j.ijpharm.2011.05.06221651967
    [Google Scholar]
  227. WenZ. YanZ. HuK. PangZ. ChengX. GuoL. ZhangQ. JiangX. FangL. LaiR. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration.J. Control. Release2011151213113810.1016/j.jconrel.2011.02.02221362449
    [Google Scholar]
  228. HuangR. KeW. LiuY. WuD. FengL. JiangC. PeiY. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model.J. Neurol. Sci.20102901-212313010.1016/j.jns.2009.09.03219909981
    [Google Scholar]
  229. HuangR. MaH. GuoY. LiuS. KuangY. ShaoK. LiJ. LiuY. HanL. HuangS. AnS. YeL. LouJ. JiangC. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease.Pharm. Res.201330102549255910.1007/s11095‑013‑1005‑823703371
    [Google Scholar]
  230. XinH. ShaX. JiangX. ChenL. LawK. GuJ. ChenY. WangX. FangX. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ɛ-caprolactone) nanoparticles.Biomaterials20123351673168110.1016/j.biomaterials.2011.11.01822133551
    [Google Scholar]
  231. LiuY.Y. YangX.Y. LiZ. LiuZ.L. ChengD. WangY. WenX.J. HuJ.Y. LiuJ. WangL.M. WangH.J. Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease.CNS Neurosci. Ther.2014201768510.1111/cns.1217624279586
    [Google Scholar]
  232. KanazawaT. AkiyamaF. KakizakiS. TakashimaY. SetaY. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles.Biomaterials201334369220922610.1016/j.biomaterials.2013.08.03623992922
    [Google Scholar]
  233. ChenH. TangL. QinY. YinY. TangJ. TangW. SunX. ZhangZ. LiuJ. HeQ. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery.Eur. J. Pharm. Sci.20104029410210.1016/j.ejps.2010.03.00720298779
    [Google Scholar]
  234. HuangF.Y. ChenW.J. LeeW.Y. LoS.T. LeeT.W. LoJ.M. In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery.Int. J. Mol. Sci.20131422862287410.3390/ijms1402286223434652
    [Google Scholar]
  235. NolanY. MartinD. CampbellV.A. LynchM.A. Evidence of a protective effect of phosphatidylserine-containing liposomes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus.J. Neuroimmunol.20041511-2122310.1016/j.jneuroim.2004.02.00115145599
    [Google Scholar]
  236. GunayM.S. OzerA.Y. ErdoganS. BodardS. BaysalI. GulhanZ. GuilloteauD. ChalonS. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease.J. Nanosci. Nanotechnol.20171785155516710.1166/jnn.2017.13799
    [Google Scholar]
  237. Antwi-BaahR. WangY. ChenX. YuK. Metal‐Based Nanoparticle Magnetic Resonance Imaging Contrast Agents: Classifications, Issues, and Countermeasures toward their Clinical Translation.Adv. Mater. Interfaces202299210171010.1002/admi.202101710
    [Google Scholar]
  238. DingC. LiZ. A review of drug release mechanisms from nanocarrier systems.Mater. Sci. Eng. C2017761440145310.1016/j.msec.2017.03.13028482511
    [Google Scholar]
  239. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  240. KesharwaniP. GorainB. LowS.Y. TanS.A. LingE.C.S. LimY.K. ChinC.M. LeeP.Y. LeeC.M. OoiC.H. ChoudhuryH. PandeyM. Nanotechnology based approaches for anti-diabetic drugs delivery.Diabetes Res. Clin. Pract.2018136527710.1016/j.diabres.2017.11.01829196152
    [Google Scholar]
  241. MorosM. MitchellS. GrazúV. FuenteJ.M. The fate of nanocarriers as nanomedicines in vivo: important considerations and biological barriers to overcome.Curr. Med. Chem.201320222759277810.2174/092986731132022000323627938
    [Google Scholar]
  242. SuC. LiuY. LiR. WuW. FawcettJ.P. GuJ. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems.Adv. Drug Deliv. Rev.20191439711410.1016/j.addr.2019.06.00831255595
    [Google Scholar]
  243. LiX. WangX. ItoA. Tailoring inorganic nanoadjuvants towards next-generation vaccines.Chem. Soc. Rev.201847134954498010.1039/C8CS00028J29911725
    [Google Scholar]
  244. López-DávilaV. SeifalianA.M. LoizidouM. Organic nanocarriers for cancer drug delivery.Curr. Opin. Pharmacol.201212441441910.1016/j.coph.2012.02.01122465543
    [Google Scholar]
  245. VeisehO. TangB.C. WhiteheadK.A. AndersonD.G. LangerR. Managing diabetes with nanomedicine: challenges and opportunities.Nat. Rev. Drug Discov.2015141455710.1038/nrd447725430866
    [Google Scholar]
  246. XingH. HwangK. LuY. Recent developments of liposomes as nanocarriers for theranostic applications.Theranostics2016691336135210.7150/thno.1546427375783
    [Google Scholar]
  247. FangX. YangT. WangL. YuJ. WeiX. ZhouY. WangC. LiangW. Nano-cage-mediated refolding of insulin by PEG-PE micelle.Biomaterials20167713914810.1016/j.biomaterials.2015.11.00726595505
    [Google Scholar]
  248. AlbertiK.G.M.M. ZimmetP.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation.Diabet. Med.199815753955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S9686693
    [Google Scholar]
  249. FangX. YousafM. HuangQ. YangY. WangC. Dual effect of PEG-PE micelle over the oligomerization and fibrillation of human islet amyloid polypeptide.Sci. Rep.201881446310.1038/s41598‑018‑22820‑w29535385
    [Google Scholar]
  250. National Diabetes Data GroupClassification and diagnosis of diabetes mellitus and other categories of glucose intolerance.diabetes19792810391057
    [Google Scholar]
  251. WitikaB.A. PokaM.S. DemanaP.H. MatafwaliS.K. MelamaneS. Malungelo KhamangaS.M. MakoniP.A. Lipid-based nanocarriers for neurological disorders: a review of the state-of-the-art and therapeutic success to date.Pharmaceutics202214483610.3390/pharmaceutics1404083635456669
    [Google Scholar]
  252. IarkovA. BarretoG.E. GrizzellJ.A. EcheverriaV. Strategies for the treatment of Parkinson’s disease: beyond dopamine.Front. Aging Neurosci.202012410.3389/fnagi.2020.0000432076403
    [Google Scholar]
  253. GoodC.H. HoffmanA.F. HofferB.J. CheferV.I. ShippenbergT.S. BäckmanC.M. LarssonN.G. OlsonL. GellhaarS. GalterD. LupicaC.R. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson’s disease.FASEB J.20112541333134410.1096/fj.10‑17362521233488
    [Google Scholar]
  254. MarsiliL. RizzoG. ColosimoC. Diagnostic criteria for Parkinson’s disease: from James Parkinson to the concept of prodromal disease.Front. Neurol.2018915610.3389/fneur.2018.0015629628907
    [Google Scholar]
  255. KuoY.C. RajeshR. Current development of nanocarrier delivery systems for Parkinson’s disease pharmacotherapy.J. Taiwan Inst. Chem. Eng.201887152510.1016/j.jtice.2018.03.028
    [Google Scholar]
  256. KuoY.C. WangI.H. RajeshR. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson’s disease therapy.Acta Biomater.202111936037410.1016/j.actbio.2020.11.01533189953
    [Google Scholar]
  257. MagrinelliF. PicelliA. ToccoP. FedericoA. RoncariL. SmaniaN. ZanetteG. TamburinS. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation.Parkinsons Dis.2016201611810.1155/2016/983283927366343
    [Google Scholar]
  258. PoeweW. SeppiK. TannerC.M. HallidayG.M. BrundinP. VolkmannJ. SchragA.E. LangA.E. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.1328332488
    [Google Scholar]
  259. FieldsC.R. Bengoa-VergnioryN. Wade-MartinsR. Targeting alpha-synuclein as a therapy for Parkinson’s disease.Front. Mol. Neurosci.20191229910.3389/fnmol.2019.0029931866823
    [Google Scholar]
  260. PadmanabhanS. LanzT.A. GormanD. WolfeM. JoyceA. CabreraC. Lawrence-HendersonR. LeversN. JoshiN. MaT.C. LiongC. NarayanS. AlcalayR.N. HuttenS.J. BaptistaM.A.S. MerchantK. An assessment of LRRK2 serine 935 phosphorylation in human peripheral blood mononuclear cells in idiopathic Parkinson’s disease and G2019S LRRK2 cohorts.J. Parkinsons Dis.202010262362910.3233/JPD‑19178632007961
    [Google Scholar]
  261. LópezT. Bata-GarcíaJ.L. EsquivelD. Ortiz-IslasE. GonzalezR. AscencioJ. QuintanaP. OskamG. Alvarez-CerveraF.J. Heredia-LópezF.J. Góngora-AlfaroJ.L. Treatment of Parkinson’s disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system.Int. J. Nanomedicine20106193110.2147/IJN.S1322321289978
    [Google Scholar]
  262. D’AurizioE. SozioP. CerasaL.S. VaccaM. BrunettiL. OrlandoG. ChiavaroliA. KokR.J. HenninkW.E. Di StefanoA. Biodegradable microspheres loaded with an anti-Parkinson prodrug: an in vivo pharmacokinetic study.Mol. Pharm.2011862408241510.1021/mp200337h22014118
    [Google Scholar]
  263. OkadaH ToguchiH Biodegradable microspheres in drug delivery.Crit Rev Ther Drug Carrier Syst.199512119910.1615/CritRevTherDrugCarrierSyst.v12.i1.10
    [Google Scholar]
  264. Di StefanoA. SozioP. IannitelliA. CerasaL.S. New drug delivery strategies for improved Parkinson’s disease therapy.Expert Opin. Drug Deliv.20096438940410.1517/1742524090287040519382882
    [Google Scholar]
  265. RenT. YangX. WuN. CaiY. LiuZ. YuanW. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats.Neurosci. Lett.2011502211712210.1016/j.neulet.2011.07.04221835223
    [Google Scholar]
  266. YangX. ZhengR. CaiY. LiaoM. YuanW. LiuZ. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats.Int. J. Nanomedicine201272077208622619544
    [Google Scholar]
  267. WangA. WangL. SunK. LiuW. ShaC. LiY. Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats.Pharm. Res.20122992367237610.1007/s11095‑012‑0762‑022549738
    [Google Scholar]
  268. TianJ. DuG. YeL. YuX. ZhangJ. WangH. YuP. FuF. LiuW. LiY. CenX. GuanX. Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in Cynomolgus monkeys.Food Chem. Toxicol.20135214315210.1016/j.fct.2012.11.01023165154
    [Google Scholar]
  269. YeL. GuanX. TianJ. ZhangJ. DuG. YuX. YuP. CenX. LiuW. LiY. Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in SD rats.Food Chem. Toxicol.201356819210.1016/j.fct.2013.02.01523454207
    [Google Scholar]
  270. AzeemA. TalegaonkarS. NegiL.M. AhmadF.J. KharR.K. IqbalZ. Oil based nanocarrier system for transdermal delivery of ropinirole: A mechanistic, pharmacokinetic and biochemical investigation.Int. J. Pharm.20124221-243644410.1016/j.ijpharm.2011.10.03922057087
    [Google Scholar]
  271. PardeshiC.V. RajputP.V. BelgamwarV.S. TekadeA.R. SuranaS.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach.Drug Deliv.2013201475610.3109/10717544.2012.75242123311653
    [Google Scholar]
  272. TsaiM.J. HuangY.B. WuP.C. FuY.S. KaoY.R. FangJ.Y. TsaiY.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations.J. Pharm. Sci.2011100254755710.1002/jps.2228520740670
    [Google Scholar]
  273. EspositoE. FantinM. MartiM. DrechslerM. PaccamiccioL. MarianiP. SivieriE. LainF. MenegattiE. MorariM. CortesiR. Solid lipid nanoparticles as delivery systems for bromocriptine.Pharm. Res.20082571521153010.1007/s11095‑007‑9514‑y18172580
    [Google Scholar]
  274. JollivetC. Aubert-PouesselA. ClavreulA. Venier-JulienneM.C. Montero-MeneiC.N. BenoitJ.P. MeneiP. Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease.Neurosci. Lett.2004356320721010.1016/j.neulet.2003.11.05115036631
    [Google Scholar]
  275. GarbayoE. Montero-MeneiC.N. AnsorenaE. LanciegoJ.L. AymerichM.S. Blanco-PrietoM.J. Effective GDNF brain delivery using microspheres—A promising strategy for Parkinson’s disease.J. Control. Release2009135211912610.1016/j.jconrel.2008.12.01019154763
    [Google Scholar]
  276. GujralC. MinagawaY. FujimotoK. KitanoH. Nakaji-HirabayashiT. Biodegradable microparticles for strictly regulating the release of neurotrophic factors.J. Control. Release2013168330731610.1016/j.jconrel.2013.03.03123578846
    [Google Scholar]
  277. SaraivaC. PaivaJ. SantosT. FerreiraL. BernardinoL. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease.J. Control. Release201623529130510.1016/j.jconrel.2016.06.00527269730
    [Google Scholar]
  278. MetkarS.K. GirigoswamiK. Diagnostic biosensors in medicine – A review.Biocatal. Agric. Biotechnol.20191727128310.1016/j.bcab.2018.11.029
    [Google Scholar]
  279. AldewachiH. ChalatiT. WoodroofeM.N. BricklebankN. SharrackB. GardinerP. Gold nanoparticle-based colorimetric biosensors.Nanoscale2018101183310.1039/C7NR06367A29211091
    [Google Scholar]
  280. JiangP. WangY. ZhaoL. JiC. ChenD. NieL. Applications of gold nanoparticles in non-optical biosensors.Nanomaterials (Basel)201881297710.3390/nano812097730486293
    [Google Scholar]
  281. YouX GopinathSC LakshmipriyaT LiD High-affinity detection of alpha-synuclein by aptamer-gold conjugates on an amine-modified dielectric surface.J Anal Meth Chem.201920191810.1155/2019/6526850
    [Google Scholar]
  282. Sonuç KaraboğaM.N. ŞimşekÇ.S. SezgintürkM.K. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70.Biosens. Bioelectron.201684222910.1016/j.bios.2015.08.04426318579
    [Google Scholar]
  283. TaoD. GuY. SongS. NguyenE.P. ChengJ. YuanQ. PanH. Jaffrezic-RenaultN. GuoZ. Ultrasensitive detection of alpha-synuclein oligomer using a PolyD-glucosamine/gold nanoparticle/carbon-based nanomaterials modified electrochemical immunosensor in human plasma.Microchem. J.202015810519510.1016/j.microc.2020.105195
    [Google Scholar]
  284. KhatriA. PunjabiN. GhoshD. MajiS.K. MukherjiS. Detection and differentiation of α-Synuclein monomer and fibril by chitosan film coated nanogold array on optical sensor platform.Sens. Actuators B Chem.201825569270010.1016/j.snb.2017.08.051
    [Google Scholar]
  285. YinZ. ChengX. WangG. ChenJ. JinY. TuQ. XiangJ. SPR immunosensor combined with Ti4+@TiP nanoparticles for the evaluation of phosphorylated alpha-synuclein level.Mikrochim. Acta2020187950910.1007/s00604‑020‑04507‑032833087
    [Google Scholar]
  286. KarampetsouM. ArdahM.T. SemitekolouM. PolissidisA. SamiotakiM. KalomoiriM. MajbourN. XanthouG. El-AgnafO.M.A. VekrellisK. Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice.Sci. Rep.2017711653310.1038/s41598‑017‑15813‑829184069
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998291968240429111357
Loading
/content/journals/cdr/10.2174/0115733998291968240429111357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test