Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

Type 2 diabetes mellitus (T2DM) is considered a global health challenge with increasing prevalence in recent years. One of the key elements in managing T2DM patients is controlling their lipid profile. Recent studies suggest microbiome-targeted therapy (MTT) as a treatment strategy for enhancing lipid profiles in these patients.

Objective

The current study aimed to investigate the impact of MTT on lipid indices of T2DM patients by performing an umbrella approach.

Methods

Three international databases including PubMed, Scopus, and Web of Science were searched from inception up to April 2023 to find meta-analyses evaluating the impact of MTT (prebiotics, probiotics, and synbiotics) on the lipid profile of T2DM patients. Two independent researchers extracted data from the relevant meta-analyses. To find the source of heterogeneity various subgroup analyses were performed. Comprehensive Meta-Analyses (CMA) software version 3 was utilized for the final analysis.

Results

Based on the results of the current study, MTT had on significant effects total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (ES: -0.092; 95%CI: -0.111, -0.074; 0.001, ES: -0.109; 95%CI: -0.137, -0.081; 0.001, ES: -0.036; 95%CI: -0.068, -0.005; 0.024, ES: 0.109; 95%CI: 0.056, 0.162; 0.000, respectively). In subgroup analysis, probiotics showed the most substantial effect on all lipid biomarkers.

Conclusion

This research has provided promising insights into the potential impact of MTT on lipid levels in patients diagnosed with T2DM. Notably, MTT had the greatest impact on HDL levels, followed by TG, TC, and LDL. As a result of our study, MTT is recommended as an adjunctive therapeutic option for T2DM treatment due to its capability to regulate lipid profiles.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998284844240102110559
2024-01-17
2025-05-31
Loading full text...

Full text loading...

References

  1. Diagnosis and classification of diabetes mellitus.Diabetes Care201437Suppl. 1S81S9010.2337/dc14‑S081 24357215
    [Google Scholar]
  2. Introduction: Standards of medical care in diabetes-2018.Diabetes Care201841Suppl. 1S1S210.2337/dc18‑Sint01 29222369
    [Google Scholar]
  3. SunH. SaeediP. KarurangaS. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  4. OrganizationW.H. Diabetes.2022Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
    [Google Scholar]
  5. SapraA.B.P. Diabetes.2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK551501/
    [Google Scholar]
  6. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends.J. Epidemiol. Glob. Health202010110711110.2991/jegh.k.191028.001 32175717
    [Google Scholar]
  7. BommerC. SagalovaV. HeesemannE. Global economic burden of diabetes in adults: Projections from 2015 to 2030.Diabetes Care201841596397010.2337/dc17‑1962 29475843
    [Google Scholar]
  8. LinX. XuY. PanX. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025.Sci. Rep.20201011479010.1038/s41598‑020‑71908‑9 32901098
    [Google Scholar]
  9. Galicia-GarciaU. Benito-VicenteA. JebariS. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  10. HanJ.L. LinH.L. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective.World J. Gastroenterol.20142047177371774510.3748/wjg.v20.i47.17737 25548472
    [Google Scholar]
  11. FlorezJ.C. UdlerM.S. HansonR.L. Genetics of type 2 diabetes. CowieC.C. CasagrandeS.S. MenkeA. CissellM.A. EberhardtM.S. MeigsJ.B. Diabetes in America Bethesda (MD).USNational Institute of Diabetes and Digestive and Kidney Diseases2018
    [Google Scholar]
  12. KleinS. GastaldelliA. Yki-JärvinenH. SchererP.E. Why does obesity cause diabetes?Cell Metab.2022341112010.1016/j.cmet.2021.12.012 34986330
    [Google Scholar]
  13. MaddatuJ. Anderson-BaucumE. Evans-MolinaC. Smoking and the risk of type 2 diabetes.Transl. Res.201718410110710.1016/j.trsl.2017.02.004 28336465
    [Google Scholar]
  14. BaltiE.V. Echouffo-TcheuguiJ.B. YakoY.Y. KengneA.P. Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis.Diabetes Res. Clin. Pract.2014106216117210.1016/j.diabres.2014.08.010 25262110
    [Google Scholar]
  15. SharmaS. TripathiP. Gut microbiome and type 2 diabetes: Where we are and where to go?J. Nutr. Biochem.20196310110810.1016/j.jnutbio.2018.10.003 30366260
    [Google Scholar]
  16. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ20160510 28512250
    [Google Scholar]
  17. Kaźmierczak-SiedleckaK. DacaA. FicM. van de WeteringT. FolwarskiM. MakarewiczW. Therapeutic methods of gut microbiota modification in colorectal cancer management - fecal microbiota transplantation, prebiotics, probiotics, and synbiotics.Gut Microbes20201161518153010.1080/19490976.2020.1764309 32453670
    [Google Scholar]
  18. Kaźmierczak-SiedleckaK. RovielloG. CatalanoM. PolomK. Gut microbiota modulation in the context of immune-related aspects of lactobacillus spp. and bifidobacterium spp. in gastrointestinal cancers.Nutrients2021138267410.3390/nu13082674 34444834
    [Google Scholar]
  19. IatcuC.O. SteenA. CovasaM. Gut microbiota and complications of type-2 diabetes.Nutrients202114116610.3390/nu14010166 35011044
    [Google Scholar]
  20. HrncirT. HrncirovaL. KverkaM. Gut microbiota and NAFLD: Pathogenetic mechanisms, microbiota signatures, and therapeutic interventions.Microorganisms20219595710.3390/microorganisms9050957 33946843
    [Google Scholar]
  21. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  22. HuangY. WangX. ZhangL. Effect of probiotics therapy on nonalcoholic fatty liver disease.Comput. Math. Methods Med.20222022788807610.1155/2022/7888076 35677177
    [Google Scholar]
  23. MahapatroA. BawnaF. KumarV. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses.Clin. Nutr. ESPEN20235747548610.1016/j.clnesp.2023.07.087 37739694
    [Google Scholar]
  24. PernaS. IlyasZ. GiacosaA. Is probiotic supplementation useful for the management of body weight and other anthropometric measures in adults affected by overweight and obesity with metabolic related diseases? A systematic review and meta-analysis.Nutrients202113266610.3390/nu13020666 33669580
    [Google Scholar]
  25. GuoJ. ShaoJ. YangY. Gut microbiota in patients with polycystic ovary syndrome: A systematic review.Reprod. Sci.2022291698310.1007/s43032‑020‑00430‑0 33409871
    [Google Scholar]
  26. Amini-SalehiE. HassanipourS. KeivanlouM.H. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: An umbrella meta-analysis.Nutr. Rev.2023nuad08610.1093/nutrit/nuad086 37550264
    [Google Scholar]
  27. NaghipourA. Amini-SalehiE. Orang GorabzarmakhiM. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: An umbrella meta-analysis study.Syst. Rev.202312114410.1186/s13643‑023‑02299‑x 37605283
    [Google Scholar]
  28. GoldbergI.J. Clinical review 124: Diabetic dyslipidemia: Causes and consequences.J. Clin. Endocrinol. Metab.200186396597110.1210/jcem.86.3.7304 11238470
    [Google Scholar]
  29. MaC.X. MaX.N. GuanC.H. LiY.D. MauricioD. FuS.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management.Cardiovasc. Diabetol.20222117410.1186/s12933‑022‑01516‑6 35568946
    [Google Scholar]
  30. ZhouH. ZhangX. LuJ. Progress on diabetic cerebrovascular diseases.Bosn. J. Basic Med. Sci.2014144185190 25428668
    [Google Scholar]
  31. PageM.J. McKenzieJ.E. BossuytP.M. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n71 33782057
    [Google Scholar]
  32. SheaBJ ReevesBC WellsG ThukuM HamelC MoranJ AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both.bmj2017358
    [Google Scholar]
  33. HeJ. ZhangF. HanY. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: A meta-analysis of RCTs.Medicine20179651e916610.1097/MD.0000000000009166
    [Google Scholar]
  34. HuY.M. ZhouF. YuanY. XuY.C. Effects of probiotics supplement in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials.Med Clin2017148836237010.1016/j.medcli.2016.11.036 28237613
    [Google Scholar]
  35. LiC. LiX. HanH. CuiH. PengM. WangG. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus.In: Medicine.2016952610.1097/MD.0000000000004088
    [Google Scholar]
  36. LiangT. XieX. WuL. Comparative analysis of the efficacies of probiotic supplementation and glucose-lowering drugs for the treatment of type 2 diabetes: A systematic review and meta-analysis.Front. Nutr.2022982589710.3389/fnut.2022.825897 35923194
    [Google Scholar]
  37. WangC. ZhangC. LiS. Effects of probiotic supplementation on dyslipidemia in type 2 diabetes mellitus: A meta-analysis of randomized controlled trials.Foods2020911154010.3390/foods9111540 33114518
    [Google Scholar]
  38. WangX. JuanQ.F. HeY.W. ZhuangL. FangY.Y. WangY.H. Multiple effects of probiotics on different types of diabetes: A systematic review and meta-analysis of randomized, placebo-controlled trials.J. Pediatr. Endocrinol. Metab.201730661162210.1515/jpem‑2016‑0230 28599375
    [Google Scholar]
  39. YaoK. ZengL. HeQ. WangW. LeiJ. ZouX. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: A meta-analysis of 12 randomized controlled trials.Med. Sci. Monit.2017233044305310.12659/MSM.902600 28638006
    [Google Scholar]
  40. HendijaniF. AkbariV. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis.Clin. Nutr.201837253254110.1016/j.clnu.2017.02.015 28318686
    [Google Scholar]
  41. MahboobiS. RahimiF. JafarnejadS. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: A meta-analysis of randomized controlled trials.Adv. Pharm. Bull.20188456557410.15171/apb.2018.065 30607329
    [Google Scholar]
  42. NaseriK. SaadatiS. YariZ. Beneficial effects of probiotic and synbiotic supplementation on some cardiovascular risk factors among individuals with prediabetes and type 2 diabetes mellitus: A grade-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials.Pharmacol. Res.202218210628810.1016/j.phrs.2022.106288 35680009
    [Google Scholar]
  43. TabriziR. MoosazadehM. LankaraniK.B. The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: A systematic review and meta-analysis of randomized controlled trials.Probiotics Antimicrob. Proteins201810232934210.1007/s12602‑017‑9299‑1 28677046
    [Google Scholar]
  44. Abdel QadirY.H. HamdallahA. SibaeyE.A. Efficacy of probiotic supplementation in patients with diabetic nephropathy: A systematic review and meta-analysis.Clin. Nutr. ESPEN202040576710.1016/j.clnesp.2020.06.019 33183573
    [Google Scholar]
  45. BockP.M. TeloG.H. RamalhoR. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: A systematic review and meta-analysis.Diabetologia2021641264110.1007/s00125‑020‑05295‑1 33047170
    [Google Scholar]
  46. KasińskaM.A. DrzewoskiJ. Effectiveness of probiotics in type 2 diabetes: A meta-analysis.Pol Arch Intern Med20151251180381310.20452/pamw.3156 26431318
    [Google Scholar]
  47. KocsisT. MolnárB. NémethD. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: A meta-analysis of randomized clinical trials.Sci. Rep.20201011178710.1038/s41598‑020‑68440‑1 32678128
    [Google Scholar]
  48. OjoO. OjoO.O. ZandN. WangX. The effect of dietary fibre on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials.Nutrients2021136180510.3390/nu13061805 34073366
    [Google Scholar]
  49. RittiphairojT. PongpirulK. JanchotK. MuellerN.T. LiT. Probiotics contribute to glycemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis.Adv. Nutr.202112372273410.1093/advances/nmaa133 33126241
    [Google Scholar]
  50. SillarsA. SattarN. Management of lipid abnormalities in patients with diabetes.Curr. Cardiol. Rep.2019211114710.1007/s11886‑019‑1246‑1 31758270
    [Google Scholar]
  51. RosenblitP.D. Common medications used by patients with type 2 diabetes mellitus: What are their effects on the lipid profile?Cardiovasc. Diabetol.20161519510.1186/s12933‑016‑0412‑7 27417914
    [Google Scholar]
  52. GhafouriA. HeshmatiJ. HeydariI. Effect of synbiotic bread containing lactic acid on blood lipids and apolipoproteins in patients with type 2 diabetes: A randomized controlled trial.Food Sci. Nutr.202210124419443010.1002/fsn3.3039 36514747
    [Google Scholar]
  53. SabicoS. Al-MashharawiA. Al-DaghriN.M. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20193841561156910.1016/j.clnu.2018.08.009 30170781
    [Google Scholar]
  54. DehghanP. Abbasalizad FarhangiM. TavakoliF. AliasgarzadehA. AkbariA. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: A randomized placebo-controlled Trial.Complement. Ther. Med.201524 26860809
    [Google Scholar]
  55. ShakeriH. HadaeghH. AbediF. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes.Lipids201449769570110.1007/s11745‑014‑3901‑z 24706266
    [Google Scholar]
  56. MorotiC. Souza MagriL.F. de Rezende CostaM. CavalliniD.C.U. SivieriK. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus.Lipids Health Dis.20121112910.1186/1476‑511X‑11‑29 22356933
    [Google Scholar]
  57. BayatA. Azizi-SoleimanF. Heidari-BeniM. Effect of cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in type 2 diabetes.Int. J. Prev. Med.2016713010.4103/2008‑7802.175455 26955460
    [Google Scholar]
  58. MirjaliliM. Salari SharifA. SangouniA.A. EmtiaziH. Mozaffari-KhosraviH. Effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with type 2 diabetes mellitus: A randomized controlled trial.Clin. Nutr. ESPEN20235414414910.1016/j.clnesp.2023.01.014 36963856
    [Google Scholar]
  59. GargariB.P. NamaziN. KhaliliM. SarmadiB. JafarabadiM.A. DehghanP. Is there any place for resistant starch, as alimentary prebiotic, for patients with type 2 diabetes?Complement. Ther. Med.201523681081510.1016/j.ctim.2015.09.005 26645521
    [Google Scholar]
  60. FeizollahzadehS. GhiasvandR. RezaeiA. KhanahmadH. SadeghiA. HaririM. Effect of probiotic soy milk on serum levels of adiponectin, inflammatory mediators, lipid profile, and fasting blood glucose among patients with type II diabetes mellitus.Probiotics Antimicrob. Proteins201791414710.1007/s12602‑016‑9233‑y 27757829
    [Google Scholar]
  61. SalazarJ. AngaritaL. MorilloV. Microbiota and diabetes mellitus: Role of lipid mediators.Nutrients20201210303910.3390/nu12103039 33023000
    [Google Scholar]
  62. GurungM. LiZ. YouH. Role of gut microbiota in type 2 diabetes pathophysiology.EBioMedicine20205110259010.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  63. GhoshS.S. WangJ. YannieP.J. GhoshS. Intestinal barrier dysfunction, LPS translocation, and disease development.J. Endocr. Soc.202042bvz03910.1210/jendso/bvz039 32099951
    [Google Scholar]
  64. MohammadS. ThiemermannC. Role of metabolic endotoxemia in systemic inflammation and potential interventions.Front. Immunol.20211159415010.3389/fimmu.2020.594150 33505393
    [Google Scholar]
  65. StephensM. von der WeidP.Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner.Gut Microbes202011342143210.1080/19490976.2019.1629235 31203717
    [Google Scholar]
  66. RanderiaS.N. ThomsonG.J.A. NellT.A. RobertsT. PretoriusE. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation.Cardiovasc. Diabetol.20191817210.1186/s12933‑019‑0870‑9 31164120
    [Google Scholar]
  67. LiangH. HusseyS.E. Sanchez-AvilaA. TantiwongP. MusiN. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.PLoS One201385e6398310.1371/journal.pone.0063983 23704966
    [Google Scholar]
  68. YoshidaN. EmotoT. YamashitaT. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis.Circulation2018138222486249810.1161/CIRCULATIONAHA.118.033714 30571343
    [Google Scholar]
  69. ZhuC. SongK. ShenZ. Roseburia intestinalis inhibits interleukin 17 excretion and promotes regulatory T cells differentiation in colitis.Mol. Med. Rep.20181767567757410.3892/mmr.2018.8833 29620246
    [Google Scholar]
  70. NogalA. ValdesA.M. MenniC. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health.Gut Microbes202113112410.1080/19490976.2021.1897212 33764858
    [Google Scholar]
  71. Parada VenegasD. De la FuenteM.K. LandskronG. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front. Immunol.20191027710.3389/fimmu.2019.00277 30915065
    [Google Scholar]
  72. MaQ. LiY. WangJ. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing.Biomed. Pharmacother.202012410987310.1016/j.biopha.2020.109873 31986412
    [Google Scholar]
  73. LauW.L. VaziriN.D. Gut microbial short-chain fatty acids and the risk of diabetes.Nat. Rev. Nephrol.201915738939010.1038/s41581‑019‑0142‑7 30918350
    [Google Scholar]
  74. HernándezM.A.G. CanforaE.E. JockenJ.W.E. BlaakE.E. The short-chain fatty acid acetate in body weight control and insulin sensitivity.Nutrients2019118194310.3390/nu11081943 31426593
    [Google Scholar]
  75. LarasatiR.A. HarbuwonoD.S. RahajengE. The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus.Biomedicines2019747410.3390/biomedicines7040074 31554278
    [Google Scholar]
  76. SnelsonM. de PasqualeC. EkinciE.I. CoughlanM.T. Gut microbiome, prebiotics, intestinal permeability and diabetes complications.Best Pract. Res. Clin. Endocrinol. Metab.202135310150710.1016/j.beem.2021.101507 33642218
    [Google Scholar]
  77. IqbalZ AhmedS TabassumN BhattacharyaR BoseD Role of probiotics in prevention and treatment of enteric infections: A comprehensive review.3 Biotech2021115342
    [Google Scholar]
  78. JiangS. XieS. LvD. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression.Antonie van Leeuwenhoek2016109101389139610.1007/s10482‑016‑0737‑y 27431681
    [Google Scholar]
  79. LeeB. MoonK.M. KimC.Y. Tight junction in the intestinal epithelium: Its association with diseases and regulation by phytochemicals.J. Immunol. Res.20182018264546510.1155/2018/2645465 30648119
    [Google Scholar]
  80. ChelakkotC. ChoiY. KimD.K. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions.Exp. Mol. Med.2018502e45010.1038/emm.2017.282 29472701
    [Google Scholar]
  81. WangQ. GuoH. MaoW. QianX. LiuY. The oral delivery system of modified GLP-1 by probiotics for T2DM.Pharmaceutics2023154120210.3390/pharmaceutics15041202 37111687
    [Google Scholar]
  82. YadavH. LeeJ.H. LloydJ. WalterP. RaneS.G. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.J. Biol. Chem.201328835250882509710.1074/jbc.M113.452516 23836895
    [Google Scholar]
  83. MüllerT.D. FinanB. BloomS.R. Glucagon-like peptide 1 (GLP-1).Mol. Metab.2019307213010.1016/j.molmet.2019.09.010 31767182
    [Google Scholar]
  84. ZhangY. ParajuliK.R. FavaG.E. GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner.Diabetes2019681344410.2337/db18‑0317 30389749
    [Google Scholar]
  85. HalimM.A. DegerbladM. SundbomM. Glucagon-like peptide-1 inhibits prandial gastrointestinal motility through myenteric neuronal mechanisms in humans.J. Clin. Endocrinol. Metab.2018103257558510.1210/jc.2017‑02006 29177486
    [Google Scholar]
  86. AldawsariM. AlmadaniF.A. AlmuhammadiN. AlgabsaniS. AlamroY. AldhwayanM. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: systematic review of randomized controlled trials.Diabetes Metab. Syndr. Obes.20231657559510.2147/DMSO.S387116 36890965
    [Google Scholar]
  87. NiiboM. ShirouchiB. UmegataniM. Probiotic Lactobacillus gasseri SBT2055 improves insulin secretion in a diabetic rat model.J. Dairy Sci.20191022997100610.3168/jds.2018‑15203 30471910
    [Google Scholar]
  88. ZhangJ. WangS. ZengZ. QinY. ShenQ. LiP. Anti-diabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model.J. Funct. Foods20206710384310.1016/j.jff.2020.103843
    [Google Scholar]
  89. KhaliliL. AlipourB. Asghari Jafar-AbadiM. The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuina levels in patients with type 2 diabetes mellitus: A randomized controlled trial.Iran. Biomed. J.2019231687710.29252/ibj.23.1.68 29803203
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998284844240102110559
Loading
/content/journals/cdr/10.2174/0115733998284844240102110559
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): Diabetes mellitus; hyperglycemia; lipids; prebiotic; probiotic; synbiotic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test