Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

In light of the escalating global concern surrounding diabetes mellitus, contemporary medical practices predominantly hinge on pharmaceutical interventions, accompanied by inherent side effects and enduring limitations. This investigation accentuates a discernible research void regarding the amalgamation of Ayurvedic principles an age-old traditional medical system with prevalent approaches to diabetes management. Despite Ayurveda's promising potential in furnishing a comprehensive and personalized strategy for diabetes treatment, the imperative for further research and collaboration between Ayurvedic practitioners and contemporary healthcare professionals becomes evident.

Existing scholarly works underscore the potential advantages of Ayurveda in delivering holistic diabetes care, encompassing not only glycemic control but also fostering overall well-being. Nevertheless, a closer examination reveals specific limitations, challenges, and gaps in current research, necessitating targeted efforts to enable a more exhaustive exploration of Ayurvedic interventions within diabetes management. This comprehensive review scrutinizes Ayurvedic recommendations pertaining to dietary practices, lifestyle adjustments, and herbal therapeutics, shedding light on their plausible efficacy. It serves as a clarion call for heightened research endeavors, aiming to bridge existing gaps and carve a pathway toward an integrated, patient-centric paradigm in diabetes care. In summary, as diabetes prevalence continues to rise globally, the study underscores the limitations of current pharmaceutical-centric approaches and highlights the need for extensive research and collaboration to unlock the full potential of Ayurvedic principles in providing a more holistic and personalized framework for diabetes management. The review navigates through Ayurvedic recommendations, emphasizing the urgency for intensified research efforts to fill existing gaps and pave the way for a seamlessly integrated, patient-focused approach to diabetes care.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998284193240227041720
2024-03-11
2024-11-22
Loading full text...

Full text loading...

References

  1. BanerjeeS. DebnathP. RaoP.N. TripathyT.B. AdhikariA. DebnathP.K. Ayurveda in changing scenario of diabetes management for developing safe and effective treatment choices for the future.J. Complement. Integr. Med.201512210111010.1515/jcim‑2014‑001225719345
    [Google Scholar]
  2. ShivashankarM. ManiD. A brief overview of diabetes.Int. J. Pharm. Pharm. Sci.2011342227
    [Google Scholar]
  3. ManyamB.V. Diabetes mellitus, Ayurveda, and yoga.J. Altern. Complement. Med.200410222322510.1089/10755530432306218515165400
    [Google Scholar]
  4. KadV.S. TupeM.B. KoreN.V. Role of Ayurveda in prevention and cure of Madhumeha. World J Pharm Med Res.202065163167
    [Google Scholar]
  5. SahuK. ChandrakarR. Role of the Ayurveda in prevention and management of lifestyle disorder.World J. Pharm. Res.202312415891596
    [Google Scholar]
  6. NagarD. NagarJ. Diabetes mellitus: Prevention and control by dincharya.World J. Pharm. Res.20176311411147
    [Google Scholar]
  7. SeneviratneS.N. RajindrajithS. Fetal programming of obesity and type 2 diabetes.World J. Diabetes202213748249710.4239/wjd.v13.i7.48236051425
    [Google Scholar]
  8. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.202117315016110.1038/s41574‑020‑00443‑433293704
    [Google Scholar]
  9. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  10. GordonA. BuchZ. BauteV. CoeytauxR. Use of ayurveda in the treatment of type 2 diabetes mellitus.Glob. Adv. Health Med.2019810.1177/216495611986109431431828
    [Google Scholar]
  11. ModzelewskiR. Stefanowicz-RutkowskaM.M. MatuszewskiW. Bandurska-StankiewiczE.M. Gestational diabetes mellitus—recent literature review.J. Clin. Med.20221119573610.3390/jcm1119573636233604
    [Google Scholar]
  12. Gestational Diabetes Mellitus (GDM)2019Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/diabetes/gestational-diabetes
  13. ChandlaA. TomerR. GuptaR. Gestational diabetes mellitus management through Ayurveda.World J. Pharm. Pharm. Sci.201761219061919
    [Google Scholar]
  14. BalajiP.A. VarneS.R. Physiological effects of yoga asanas and pranayama on metabolic parameters, maternal, and fetal outcome in gestational diabetes.Natl. J. Physiol. Pharm. Pharmacol.201777724728
    [Google Scholar]
  15. ZakariaH. AbusananaS. MussaB.M. Al DhaheriA.S. StojanovskaL. MohamadM.N. SalehS.T. AliH.I. Cheikh IsmailL. The role of lifestyle interventions in the prevention and treatment of gestational diabetes mellitus.Medicina202359228710.3390/medicina5902028736837488
    [Google Scholar]
  16. BishwalR.K. DhanyaT. SamantarayS. Ayurvedic lifestyle to prevent diabetes mellitus.Int J Creat Res Thought.20186113311339
    [Google Scholar]
  17. MalazaN. MaseteM. AdamS. DiasS. NyawoT. PheifferC. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes.Int. J. Environ. Res. Public Health202219171084610.3390/ijerph19171084636078559
    [Google Scholar]
  18. PrzezakA. BielkaW. PawlikA. Hypertension and type 2 diabetes—the novel treatment possibilities.Int. J. Mol. Sci.20222312650010.3390/ijms2312650035742943
    [Google Scholar]
  19. HuF.B. Globalization of diabetes.Diabetes Care20113461249125710.2337/dc11‑044221617109
    [Google Scholar]
  20. MancusiC. IzzoR. di GioiaG. LosiM.A. BarbatoE. MoriscoC. Insulin resistance the hinge between hypertension and type 2 diabetes.High Blood Press. Cardiovasc. Prev.202027651552610.1007/s40292‑020‑00408‑832964344
    [Google Scholar]
  21. UsuiI. Common metabolic features of hypertension and type 2 diabetes.Hypertens. Res.20234651227123310.1038/s41440‑023‑01233‑x36869145
    [Google Scholar]
  22. MambiyaM. ShangM. WangY. LiQ. LiuS. YangL. ZhangQ. ZhangK. LiuM. NieF. ZengF. LiuW. The play of genes and non-genetic factors on type 2 diabetes.Front. Public Health2019734910.3389/fpubh.2019.0034931803711
    [Google Scholar]
  23. BhardwajR. GangaryS.K. Ayurvedic management of diabetes mellitus type-II: A case study.JAHM202062606210.31254/jahm.2020.6207
    [Google Scholar]
  24. SwatiS. AgarwalP. Diabetes mellitus: An Ayurvedic view.J. Sci. Innov. Res.20154419319610.31254/jsir.2015.4408
    [Google Scholar]
  25. PandeyS. Lifestyle disorders: Health solutions from Ayurveda.Int J Res Med Sci and Tech.20186116118
    [Google Scholar]
  26. GrandyS. FoxK. M. EQ-5D visual analog scale and utility index values in individuals with diabetes and at risk for diabetes: Findings from the Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD).Health Qual Life Out2008617
    [Google Scholar]
  27. JiaG. SowersJ.R. Hypertension in diabetes: An update of basic mechanisms and clinical disease.Hypertension20217851197120510.1161/HYPERTENSIONAHA.121.1798134601960
    [Google Scholar]
  28. LiA. PengQ. ShaoY. FangX. ZhangY. The interaction on hypertension between family history and diabetes and other risk factors.Sci. Rep.2021111471610.1038/s41598‑021‑83589‑z33633182
    [Google Scholar]
  29. TranD.H. WangZ.V. Glucose metabolism in cardiac hypertrophy and heart failure.J. Am. Heart Assoc.2019812e01267310.1161/JAHA.119.01267331185774
    [Google Scholar]
  30. HudishL.I. ReuschJ.E.B. SusselL. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes.J. Clin. Invest.2019129104001400810.1172/JCI12918831424428
    [Google Scholar]
  31. JanssenJ.A.M.J.L. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer.Int. J. Mol. Sci.20212215779710.3390/ijms2215779734360563
    [Google Scholar]
  32. JainC. Ansarullah BilekovaS. LickertH. Targeting pancreatic β cells for diabetes treatment.Nat. Metab.2022491097110810.1038/s42255‑022‑00618‑536131204
    [Google Scholar]
  33. HyunC.K. Molecular and pathophysiological links between metabolic disorders and inflammatory bowel diseases.Int. J. Mol. Sci.20212217913910.3390/ijms2217913934502047
    [Google Scholar]
  34. WangX. AntonyV. WangY. WuG. LiangG. Pattern recognition receptor‐mediated inflammation in diabetic vascular complications.Med. Res. Rev.20204062466248410.1002/med.2171132648967
    [Google Scholar]
  35. EzeaniI.U. ChukwuonyeI.I. OnyeonoroU.U. ChukuA. OgahO.S. Prevalence and risk factors for diabetes mellitus in a state in South East Nigeria: Results of a population-based house-to-house survey.Curr. Diabetes Rev.202016218118710.2174/157339981566619061914270831250762
    [Google Scholar]
  36. LakshmananA.P. ShatatI.F. ZaidanS. JacobS. BangarusamyD.K. Al-AbduljabbarS. Al-KhalafF. PetroviskiG. TerranegraA. Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes mellitus.Biomed. Pharmacother.202114011173610.1016/j.biopha.2021.11173634034069
    [Google Scholar]
  37. RajpalA. RahimiL. Ismail-BeigiF. Factors leading to high morbidity and mortality of COVID ‐19 in patients with type 2 diabetes.J. Diabetes2020121289590810.1111/1753‑0407.1308532671936
    [Google Scholar]
  38. KoshiyamaM. The effects of the dietary and nutrient intake on gynecologic cancers.Healthcare2019738810.3390/healthcare703008831284691
    [Google Scholar]
  39. Charitha KoneruS. SikandG. AgarwalaA. Optimizing dietary patterns and lifestyle to reduce atherosclerotic cardiovascular risk among South Asian individuals.Am. J. Cardiol.202320311312110.1016/j.amjcard.2023.06.07837487405
    [Google Scholar]
  40. KdeissB. Dietary Fatty Acids and the Brain: Mechanisms Behind Neurodegeneration and Neuroprotection.Theses, Dissertations & Projects; Loma Linda University Electronic2022
    [Google Scholar]
  41. SharmaR. AminH. RuknuddinG. PrajapatiP. Efficacy of Ayurvedic remedies in type 2 diabetes: A review through works done at Gujarat Ayurved University, Jamnagar.JMNN201542636910.4103/2278‑019X.151812
    [Google Scholar]
  42. CheungN.W. The management of gestational diabetes.Vas Health Risk ManTaylor & Francis, Routledge20095153164
    [Google Scholar]
  43. WankhedeM. BhamreV. Ayurvedic approach in treatment of Diabetes Mellitus.Aayushi.20218115155
    [Google Scholar]
  44. RaveendranA.V. DeshpandaeA. JoshiS.R. Therapeutic role of yoga in type 2 diabetes.Endocrinol. Metab201833330731710.3803/EnM.2018.33.3.30730112866
    [Google Scholar]
  45. MehtaD.D. MarlewarS.G. GaikwadS.V. DewaikarS.J. Rajswala Paricharya, dincharya, ritucharya- Need of modern era, to avoid menstrual disorders.World J. Pharm. Res.20198721222135
    [Google Scholar]
  46. SarkarP.K. ThakkarJ. ChaudhariS. Ritucharya : Answer to the lifestyle disorders.Ayu201132446647110.4103/0974‑8520.9611722661838
    [Google Scholar]
  47. KapurM. Psychological perspectives on childcare in Indian indigenous health systems.New DelhiSpringer India201610.1007/978‑81‑322‑2428‑0
    [Google Scholar]
  48. JoshiS.V. Ayurveda and panchakarma: The science of healing and rejuvenation.Lotus Press1997
    [Google Scholar]
  49. RushtonE.A. The body balance diet plan: Stop cravings, lose weight and energize your body with the science of ayurveda.Watkins Media Limited2015
    [Google Scholar]
  50. SinghR. KishoreL. KaurN. Diabetic peripheral neuropathy: Current perspective and future directions.Pharmacol. Res.201480213510.1016/j.phrs.2013.12.00524373831
    [Google Scholar]
  51. DeviS. KalaS. Role of yoga-nidra and shirodhara on hypertensive patients.Int J Yoga Allied Sci2015412227
    [Google Scholar]
  52. HegazyG.A. AlnouryA.M. GadH.G. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats.Saudi Med. J.201334772773323860893
    [Google Scholar]
  53. SharmaD. VermaS. KumarS. SinghJ. KumarR. JangraA. KumarD. Hydroethanolic leaf extract of Acacia auriculiformis exhibited antidiabetic and antioxidant activities. Egypt.J. Basic Appl. Sci.20229372382
    [Google Scholar]
  54. WaheedA. MianaG.A. SharafatullahT. AhmadS.I. Clinical investigation of hypoglycemic effect of unripe fruit on Momordica charantia in type-2 (NIDDM) diabetes mellitus.Pak. J. Pharmacol.200825712
    [Google Scholar]
  55. YadavN.P. ChanotiaC.S. Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn.Pharm. Rev.200911144150
    [Google Scholar]
  56. NigamV. NambiarV.S. Therapeutic potential of Aegle marmelos (L.) Correa leaves as an antioxidant and anti-diabetic agent: A review.Int. J. Pharm. Sci. Res.201563611621
    [Google Scholar]
  57. AhmadW. AmirM. AhmadA. AliA. AliA. WahabS. BarkatH.A. AnsariM.A. SarafrozM. AhmadA. BarkatM.A. AlamP. Aegle marmelos leaf extract phytochemical analysis, cytotoxicity, in vitro antioxidant and antidiabetic activities.Plants20211012257310.3390/plants1012257334961044
    [Google Scholar]
  58. AugustiK.T. Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.).Indian J. Exp. Biol.19963476346408979497
    [Google Scholar]
  59. KumariK AugustiKT Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats.Indian J Exp Biol200240910051009
    [Google Scholar]
  60. MrinalP. UttamR. SubinayD. TapasG. ShanwerH. LekhaB. Onion peel extracts ameliorate oxidative stress in streptozotocin-induced diabetic rats.Serb. J. Exp. Clin. Res.201314310110810.5937/sjecr14‑4346
    [Google Scholar]
  61. SabiuS. MadendeM. AjaoA.A.N. AladodoR.A. NurainI.O. AhmadJ.B. The Genus Allium (Amaryllidaceae: Alloideae): Features, phytoconstituents, and mechanisms of antidiabetic potential of Allium cepa and Allium sativum. Bioactive Food as Dietary Interventions for DiabetesAcademic Press201913715410.1016/B978‑0‑12‑813822‑9.00009‑6
    [Google Scholar]
  62. EidiA. EidiM. EsmaeiliE. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats.Phytomedicine2006139-1062462910.1016/j.phymed.2005.09.01017085291
    [Google Scholar]
  63. MostofaM. ChoudhuryM.E. HossainM.A. IslamM.Z. IslamM.S. SumonM.H. Antidiabetic effects of Catharanthus roseus, Azadirachta indica, Allium sativum and glimepride in experimentally diabetic induced rat.Bangladesh J. Vet. Med.20075199102
    [Google Scholar]
  64. ElkayamA. MirelmanD. PelegE. WilchekM. MironT. RabinkovA. Oron-HermanM. RosenthalT. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats.Am. J. Hypertens.200316121053105610.1016/j.amjhyper.2003.07.01114643581
    [Google Scholar]
  65. SharmaS. TandonS. SemwalB.C. SinghK. Momordica charantia Linn: A comprehensive Revie on Bitter Remedy.J. Pharm. Res.201114247
    [Google Scholar]
  66. SubramoniamA. PushpangadanP. RajasekharanS. EvansD.A. LathaP.G. ValsarajR. Effects of Artemisia pallens Wall. on blood glucose levels in normal and alloxan-induced diabetic rats.J. Ethnopharmacol.1996501131710.1016/0378‑8741(95)01329‑68778502
    [Google Scholar]
  67. GhazanfarK. GanaiB.A. AkbarS. MubashirK. DarS.A. DarM.Y. TantryM.A. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats.BioMed Res. Int.2014201411010.1155/2014/18567624967338
    [Google Scholar]
  68. VictorM. AbbeyP.A. JosephY. JonathanZ. BobaiY.K. MariaO. An underexploited tropical plant with promising economic value and the window of opportunities for researchers: Cnidoscolus aconitifolius. Am J Food Sci Nutr Res.201636177
    [Google Scholar]
  69. ShenX.L. DuanL.L. Advances in chemical constituents and pharmacology of areca.J Yichun Coll.2009319597
    [Google Scholar]
  70. MondalS. BhattacharyaS. BiswasM. Antidiabetic activity of Areca catechu leaf extracts against streptozotocin induced diabetic rats.J. Adv. Pharm. Educ. Res.2012211017
    [Google Scholar]
  71. ShwethaU.R. LathaM.S. Rajith KumarC.R. KiranM.S. BetageriV.S. Facile synthesis of zinc oxide nanoparticles using novel Areca catechu leaves extract and their in vitro antidiabetic and anticancer studies.J. Inorg. Organomet. Polym. Mater.202030124876488310.1007/s10904‑020‑01575‑w
    [Google Scholar]
  72. SoniaB. SrinivasanB.P. Investigations into the anti-diabetic activity of Azadirachta indica. Indian J. Pharm.1999312138
    [Google Scholar]
  73. PatilP. PatilS. ManeA. VermaS. Antidiabetic activity of alcoholic extract of Neem (Azadirachta Indica) root bark.Natl. J. Physiol. Pharm. Pharmacol.20133214214610.5455/njppp.2013.3.134‑138
    [Google Scholar]
  74. SatyanarayanaK. SravanthiK. ShakerI.A. PonnulakshmiR. Molecular approach to identify antidiabetic potential of Azadirachta indica. J. Ayurveda Integr. Med.20156316517410.4103/0975‑9476.15795026604551
    [Google Scholar]
  75. RamadanB.K. SchaalanM.F. TolbaA.M. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats.BMC Complement. Altern. Med.20171713710.1186/s12906‑016‑1530‑128077129
    [Google Scholar]
  76. BolkentŞ. YanardağR. Tabakoğlu-OğuzA. Özsoy-SaçanÖ. Effects of chard (Beta vulgaris L. var. cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: A morphological and biochemical study.J. Ethnopharmacol.2000731-225125910.1016/S0378‑8741(00)00328‑711025163
    [Google Scholar]
  77. HashemA.N. SolimanM.S. HamedM.A. SwilamN.F. LindequistU. NawwarM.A. Beta vulgaris subspecies cicla var. flavescens (Swiss chard): Flavonoids, hepatoprotective and hypolipidemic activities.Pharmazie201671422723227209705
    [Google Scholar]
  78. ChempakamB. Hypoglycemic activity of arecoline in betel nut Areca catechu L.Indian J Exp Biol.1993315474475
    [Google Scholar]
  79. KanagavalliU. BhuvaneshwariB. SadiqM.A. Anti-diabetic activity of Boerhaavia diffusa against alloxan-induced diabetic rats.Int. J. Pharma Bio Sci.20156512151219
    [Google Scholar]
  80. PatelS.S. VermaN.K. RathoreB. NayakG. SinghaiA.K. SinghP. Cardioprotective effect of Bombax ceiba flowers against acute adriamycin-induced myocardial infarction in rats.Rev. Bras. Farmacogn.201121470470910.1590/S0102‑695X2011005000090
    [Google Scholar]
  81. ElhakiA.M.M. El-BA.N. EldiK.E. AbdelhalimA. ShaE.S. Protective and curative effects of Bombax ceiba flower and Ziziphus spina christi fruit extracts on gastric ulcer.J. Biol. Sci.201919216117210.3923/jbs.2019.161.172
    [Google Scholar]
  82. LinoC.S. DiógenesJ.P.L. PereiraB.A. FariaR.A.P.G. NetoA.M. AlvesR.S. QueirozM.G.R. SousaF.C.F. VianaG.S.B. Antidiabetic activity of Bauhinia forficata extracts in alloxan-diabetic rats.Biol. Pharm. Bull.200427112512710.1248/bpb.27.12514709915
    [Google Scholar]
  83. KaleemM. AsifM. AhmedQ.U. BanoB. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats.Singapore Med. J.200647867067516865205
    [Google Scholar]
  84. AgyemangK. HanL. LiuE. ZhangY. WangT. GaoX. Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/65464324348714
    [Google Scholar]
  85. EzikeA.C. AkahP.A. OkoliC.C. OkpalaC.B. Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats.J. Basic Clin. Pharm.201012818424825970
    [Google Scholar]
  86. Zia-Ul-HaqM. ĆavarS. QayumM. ImranI. FeoV. Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew.Int. J. Mol. Sci.201112128846886110.3390/ijms1212884622272107
    [Google Scholar]
  87. NmilaR. GrossR. RchidH. RoyeM. ManteghettiM. PetitP. TijaneM. RibesG. SauvaireY. Insulinotropic effect of Citrullus colocynthis fruit extracts.Planta Med.200066541842310.1055/s‑2000‑858610909260
    [Google Scholar]
  88. MubeenB. RasoolM.G. UllahI. RasoolR. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. NadeemM.S. KazmiI. Phytochemicals mediated synthesis of AuNPs from Citrullus colocynthis and their characterization.Molecules2022274130010.3390/molecules2704130035209086
    [Google Scholar]
  89. SinghR. RajasreeP.H. SankarC. Screening for anti-diabetic activity of the ethanolic extract of Bryonia alba roots.Int. J. Pharm. Biol. Sci.201223210215
    [Google Scholar]
  90. PatraA. JhaS. SahuA.N. Antidiabetic activity of aqueous extract of eucalyptus citriodora hook. in alloxan induced diabetic rats.Pharmacogn. Mag.20095195154
    [Google Scholar]
  91. ChauhanA. SharmaP.K. SrivastavaP. KumarN. DudheR. Plants having potential antidiabetic activity: A review.Pharm. Lett.201023369387
    [Google Scholar]
  92. AraiI. AmagayaS. KomatsuY. OkadaM. HayashiT. KasaiM. ArisawaM. MomoseY. Improving effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice.J. Ethnopharmacol.1999681-330731410.1016/S0378‑8741(99)00066‑510624893
    [Google Scholar]
  93. GuptaV. GuptaM. SharmaS.J. J. Med. Plants Res.2011515821588
    [Google Scholar]
  94. PothurajuR. SharmaR.K. ChagalamarriJ. JangraS. Kumar KavadiP. A systematic review of Gymnema sylvestre in obesity and diabetes management.J. Sci. Food Agric.201494583484010.1002/jsfa.645824166097
    [Google Scholar]
  95. PetheM. YelwatkarS. ManchalwarS. GujarV. Evaluation of biological effects of hydroalcoholic extract of Hibiscus rosa sinensis flowers on alloxan induced diabetes in rats.Drug Res.201767848549210.1055/s‑0043‑10943428521371
    [Google Scholar]
  96. LinaH.Z. SamyM.M. SamirA.E.B. FatmaA.M. KawtherM.T. AbdelaatyA.S. Hypoglycemic and antioxidant effects of Hibiscus rosa-sinensis L. leaves extract on liver and kidney damage in streptozotocin induced diabetic rats.Afr. J. Pharm. Pharmacol.2017111316116910.5897/AJPP2017.4764
    [Google Scholar]
  97. Al-SnafiA.E. Chemical constituents, pharmacological effects and therapeutic importance of Hibiscus rosa-sinensis-A review.IOSR J. Pharm.201887101119
    [Google Scholar]
  98. AkhtarN. AkramM. DaniyalM. AhmadS. Evaluation of antidiabetic activity of Ipomoea batatas L. extract in alloxan-induced diabetic rats.Int. J. Immunopathol. Pharmacol.20183210.1177/205873841881467830477357
    [Google Scholar]
  99. IjeomaN. ObinnaA. ElvisN.I. UchennaE. In vitro hypoglycemic effect and antimicrobial activity of methanol extract of underutilized leafy vegetable (Ipomoea batatas leaf).SJMPS20239529730210.36348/sjmps.2023.v09i05.004
    [Google Scholar]
  100. AlamM.K. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits.Trends Food Sci. Technol.202111551252910.1016/j.tifs.2021.07.001
    [Google Scholar]
  101. KapaliJ. SharmaK.R. Estimation of phytochemicals, antioxidant, antidiabetic and brine shrimp lethality activities of some medicinal plants growing in Nepal.Faslnamah-i Giyahan-i Daruyi2021208010211610.52547/jmp.20.80.102
    [Google Scholar]
  102. EtuhM.A. OhemuL.T. PamD.D. Lantana camara ethanolic leaves extracts exhibit anti-aging properties in Drosophila melanogaster : Survival-rate and life span studies.Toxicol. Res.2021101798310.1093/toxres/tfaa09833613975
    [Google Scholar]
  103. BaltiT. CharradiK. MahmoudiM. OueslatiN. LimamF. AouaniE. Paradoxical anti-diabetic effect of Lantana camara leaf extract and pancreatic oxidative stress relieved by grape seed and skin extract.Pharm. Chem. J.202255111219122810.1007/s11094‑022‑02561‑x
    [Google Scholar]
  104. SunilV. ShreeN. VenkatarangannaM.V. BhondeR.R. MajumdarM. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice.Biomed. Pharmacother.20178988088610.1016/j.biopha.2017.01.18228282790
    [Google Scholar]
  105. Ramya SreeP.R. ThoppilJ.E. Comparative seed morphology, pharmacognostic, phytochemical, and antioxidant potential of Memecylon L. fruits.Turk J Pharm Sci202118221322210.4274/tjps.galenos.2020.8295633902263
    [Google Scholar]
  106. ElangovanA. SubramanianA. DurairajS. RamachandranJ. LakshmananD.K. RavichandranG. NambirajanG. ThilagarS. Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats.J. Ethnopharmacol.201924111198910.1016/j.jep.2019.11198931150795
    [Google Scholar]
  107. GopalasatheeskumarK. An Updated Pharmacological Overview on Momordica cymbalaria (Athalakkai).Int. J. Sci.2018512831
    [Google Scholar]
  108. MahmoudM.F. El AshryF.E.Z.Z. El MaraghyN.N. FahmyA. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats.Pharm. Biol.201755175876510.1080/13880209.2016.127502628064559
    [Google Scholar]
  109. JiaS. ShenM. ZhangF. XieJ. Recent advances in Momordica charantia: Functional components and biological activities.Int. J. Mol. Sci.20171812255510.3390/ijms1812255529182587
    [Google Scholar]
  110. HussainF. RanaZ. ShafiqueH. MalikA. HussainZ. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review.Asian Pac. J. Trop. Biomed.201771095095610.1016/j.apjtb.2017.09.015
    [Google Scholar]
  111. BhagourK. AryaD. GuptaR.S. A review: Antihyperglycemic plant medicines in management of diabetes.ACU20164471610.1016/j.arthe.2016.11.001
    [Google Scholar]
  112. Evaluation of phytochemical and antibacterial properties of white mulberry (Morus alba).Malays. Appl. Biol.202049410711210.55230/mabjournal.v49i4.1599
    [Google Scholar]
  113. DeviB. SharmaN. KumarD. JeetK. Morus alba Linn: A phytopharmacological review.Int. J. Pharm. Pharm. Sci.2013521418
    [Google Scholar]
  114. BhingeS.D. BhutkarM.A. RandiveD.S. WadkarG.H. HasabeT.S. In vitro hypoglycemic effects of unripe and ripe fruits of Musa sapientum. Braz. J. Pharm. Sci.20185345310.1590/s2175‑97902017000400159
    [Google Scholar]
  115. AfuyeO.O. AlabiN.O. OmoyeniO.C. The hypoglycemic effect of musa sapientum in alloxan induced diabetic albino wistar rat.FEPI-JOPAS2022421519
    [Google Scholar]
  116. SiddiqueS. NawazS. MuhammadF. AkhtarB. AslamB. Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit.Nat. Prod. Res.201832111333133610.1080/14786419.2017.134208928627245
    [Google Scholar]
  117. MajekodunmiS.O. OyagbemiA.A. UmukoroS. OdekuO.A. Evaluation of the anti–diabetic properties of Mucuna pruriens seed extract.Asian Pac. J. Trop. Med.20114863263610.1016/S1995‑7645(11)60161‑221914541
    [Google Scholar]
  118. NjemuwaN.N. DicksonN.U. ElizabethA.E. UchennaR.M. OgbonnayaC.N. Evaluation of the antioxidant and anti-diabetic effect of mucuna puriens extract.European J. Med. Plants20192721910.9734/ejmp/2019/v27i230110
    [Google Scholar]
  119. BhonsleA.S. PriyadharshiniR. KumarR. SindujaP. BrundhaM.P. Antidiabetic and cytotoxic effect of hexane extract in mucuna pruriens. HIV Nursing202222240424047
    [Google Scholar]
  120. ShanmugavelG. KrishnamoorthyG. Nutraceutical and phytochemical investigation of Mucuna pruriens seed.Pharma Innov.20187273278
    [Google Scholar]
  121. HusnaF. SuyatnaF. ArozalW. PoerwaningsihE. Anti-diabetic potential of Murraya koenigii (L.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats.Drug Res.2018681163163610.1055/a‑0620‑821029801176
    [Google Scholar]
  122. Al-AniI.M. SantosaR.I. YankuzoM.H. SaxenaA.K. AlazzawiK.S. The antidiabetic activity of curry leaves “Murraya Koenigii” on the glucose levels, kidneys, and islets of Langerhans of rats with Streptozotocin induced diabetes.Makara J. Health Res.2017212546010.7454/msk.v21i2.7393
    [Google Scholar]
  123. AbeysingheD.T. KumaraK.A.H. KaushalyaK.A.D. ChandrikaU.G. AlwisD.D.D.H. Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves.Heliyon202177e0744910.1016/j.heliyon.2021.e0744934286127
    [Google Scholar]
  124. Laoung-onJ. JaikangC. SaenphetK. SudwanP. Phytochemical screening, antioxidant and sperm viability of Nelumbo nucifera petal extracts.Plants2021107137510.3390/plants1007137534371577
    [Google Scholar]
  125. RumantiR.M. NainggolanM. HarahapU. Phytochemical screening and antidiabetic activity of different leaf extracts from lotus (Nelumbo nucifera gaertn.) in streptozotocin induced mice.Asian J. Pharm. Clin. Res.2017101219019210.22159/ajpcr.2017.v10i12.20888
    [Google Scholar]
  126. MaqboolS. UllahN. ZamanA. AkbarA. SaeedS. NawazH. SamadN. UllahR. ParthibanA.B. AliS.S. Phytochemical screening, in-vitro and in-vivo anti-diabetic activity of Nelumbo nucifera leaves against alloxan-induced diabetic rabbits.Indian J. Anim. Res.201954of1610.18805/ijar.B‑1181
    [Google Scholar]
  127. AhmedS.K. SunilM. CheekavoluC. SampathD. SharanyaM. Evaluation of antidiabetic activity of ethanolic extract of Ocimum sanctum Linn. leaves in alloxan induced diabetic albino rats.Pharma Innov.20176115
    [Google Scholar]
  128. LokhandeV.Y. YadavA.V. In vitro antioxidant and antidiabetic activity of supercritical fluid extract of leaves ocimum sanctum L.Res. J. Pharma. Technol.201811125373537510.5958/0974‑360X.2018.00980.0
    [Google Scholar]
  129. IbrahimM. ParveenB. ZahiruddinS. ParveenR. KhanM.A. GuptaA. AhmadS. UPLC/MS based phytochemical screening and antidiabetic properties of Picrorhiza kurroa in mitigating glucose-induced metabolic dysregulation and oxidative stress.Farmacia202169474975510.31925/farmacia.2021.4.16
    [Google Scholar]
  130. Najari BeidokhtiM. AndersenM.V. EidH.M. Sanchez VillavicencioM.L. StaerkD. HaddadP.S. JägerA.K. Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for α-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis.Biochem. Biophys. Res. Commun.2017493186987410.1016/j.bbrc.2017.09.08028928090
    [Google Scholar]
  131. KaurN. KaurB. SirhindiG. Phytochemistry and pharmacology of Phyllanthus niruri L.: a review.Phytother. Res.2017317980100410.1002/ptr.582528512988
    [Google Scholar]
  132. MekalaS. MchengaS. S. Antidiabetic effect of Pterocarpus marsupium seed extract in gabapentin induced diabetic rats.IJBCP202093
    [Google Scholar]
  133. MishraA. SrivastavaR. SrivastavaS. P. GautamS. TamrakarA. K. MauryaR. SrivastavaA. K. Antidiabetic activity of heart wood of Pterocarpus marsupium Roxb. and analysis of phytoconstituents.Indian J Exp Biol2013515363374
    [Google Scholar]
  134. PantD. PantN. SaruD. YadavU. KhanalD. Phytochemical screening and study of anti-oxidant, anti-microbial, anti-diabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh.J. Intercult. Ethnopharmacol.201762110.5455/jice.2017040309405528512598
    [Google Scholar]
  135. GharibE. KouhsariM.S. Study of the antidiabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats.Iran. J. Pharm. Res.201918135836831089370
    [Google Scholar]
  136. PottathilS. NainP. MorsyM.A. KaurJ. Al-DhubiabB.E. JaiswalS. NairA.B. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats.Plants2020911160910.3390/plants911160933228177
    [Google Scholar]
  137. TrabelsiA. El KaibiM.A. AbbassiA. HorchaniA. Chekir-GhediraL. GhediraK. Phytochemical study and antibacterial and antibiotic modulation activity of Punica granatum (pomegranate) leaves.Scientifica202020201710.1155/2020/827120332318311
    [Google Scholar]
  138. NimbekarT. JainA. MohantyP.K. Effects of Salacia reticulata root bark on blood glucose levels of normal and alloxan-monohydrate induced diabetic mice.J. Cardiovasc. Dis. Res.2021123854860
    [Google Scholar]
  139. ChelladuraiG.R.M. ChinnachamyC. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis.Brazil J Pharm Sci20185454
    [Google Scholar]
  140. RajeshC.S. HollaR. PatilV. AnandA.S. PrasadK.H. Anti-hyperglycemic effect of Swertia chirata root extract on indinavir treated rats.Natl. J. Physiol. Pharm. Pharmacol.201776569
    [Google Scholar]
  141. SwatiK. BhattV. SendriN. BhattP. BhandariP. Swertia chirayita: A comprehensive review on traditional uses, phytochemistry, quality assessment and pharmacology.J. Ethnopharmacol.202330011571410.1016/j.jep.2022.11571436113678
    [Google Scholar]
  142. PrabakaranK. ShanmugavelG. Antidiabetic activity and phytochemical constituents of Syzygium cumini seeds in Puducherry region, South India.Int J Pharmacog Phytochem Res201797985989
    [Google Scholar]
  143. GeberemeskelG.A. DebebeY.G. NguseN.A. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients.J. Diabetes Res.201920191810.1155/2019/850745331583253
    [Google Scholar]
  144. SinghN. YadavS.S. KumarS. NarashimanB. Ethnopharmacological, phytochemical and clinical studies on Fenugreek (Trigonella foenum-graecum L.).Food Biosci.20224610154610.1016/j.fbio.2022.101546
    [Google Scholar]
  145. SharmaB.R. ParkC.M. KimH.A. KimH.J. RhyuD.Y. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats.Phytother. Res.201933102765277410.1002/ptr.646231385371
    [Google Scholar]
  146. SinkuR. SinhaM.R. Preliminary phytochemical screening and physiochemical analysis of Tinospora cordifolia Miers.J Med Plant Stud201861177180
    [Google Scholar]
  147. AltaeeE.H. KarimA.J. DakheelM.M. Assessment of anti-diabetic activity of Vinca rosea extract on induced diabetic mice.Indian J Forensic Med Tox202014423112318
    [Google Scholar]
  148. QamarA. Antidiabetic activity, polyphenols-based characterization and molecular interaction of extract of un-ripe pods of Vinca rosea cv. Pink.Jordan J. Pharm. Sci.202215215817210.35516/jjps.v15i2.303
    [Google Scholar]
  149. JayarajA.J. UchimahaliJ. GnanasundaramT. ThirumalS. Evaluation of antimicrobial activity and phytochemicals analysis of whole plant extract of Vinca rosea. Evaluation201912132136
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998284193240227041720
Loading
/content/journals/cdr/10.2174/0115733998284193240227041720
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Ayurveda; diabetes; diet; ethnopharmacology; lifestyle; panchakarma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test