Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Several epidemiological studies have appreciated the impact of “duration” and “level” of hyperglycemia on the initiation and development of chronic complications of diabetes. However, glycemic profiles could not fully explain the presence/absence and severity of diabetic complications. Genetic issues and concepts of “hyperglycemic memory” have been introduced as additional influential factors involved in the pathobiology of late complications of diabetes. In the extended phase of significant diabetes randomized, controlled clinical trials, including DCCT/EDIC and UKPDS, studies have concluded that the quality of glycemic or metabolic control at the early time around the diabetes onset could maintain its protective or detrimental impact throughout the following diabetes course.

There is no reliable indication of the mechanism by which the transient exposure to a given glucose concentration level could evoke a consistent cellular response at target tissues at the molecular levels. Some biological phenomena, such as the production and the concentration of advanced glycation end products (AGEs), reactive oxygen species (ROS) and protein kinase C (PKC) pathway activations, epigenetic changes, and finally, the miRNAs-mediated pathways, may be accountable for the development of hyperglycemic memory. This work summarizes evidence from previous experiments that may substantiate the hyperglycemic memory soundness by its justification in molecular terms.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998279869231227091944
2024-01-25
2024-11-22
Loading full text...

Full text loading...

References

  1. EdgarL. AkbarN. BraithwaiteA.T. KrausgruberT. Gallart-AyalaH. BaileyJ. CorbinA.L. KhoyrattyT.E. ChaiJ.T. AlkhalilM. RendeiroA.F. ZibernaK. AryaR. CahillT.J. BockC. LaurencikieneJ. CrabtreeM.J. LemieuxM.E. RiksenN.P. NeteaM.G. WheelockC.E. ChannonK.M. RydénM. UdalovaI.A. CarnicerR. ChoudhuryR.P. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis.Circulation20211441296198210.1161/CIRCULATIONAHA.120.04646434255973
    [Google Scholar]
  2. NathanD.M. GenuthS. LachinJ. ClearyP. CroffordO. DavisM. RandL. SiebertC. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.N. Engl. J. Med.19933291497798610.1056/NEJM1993093032914018366922
    [Google Scholar]
  3. SeaquistE.R. GoetzF.C. RichS. BarbosaJ. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy.N. Engl. J. Med.1989320181161116510.1056/NEJM1989050432018012710189
    [Google Scholar]
  4. Tavakkoly-BazzazJ. AmiriP. Tajmir-RiahiM. JavidiD. Khojasteh-FardM. TaheriZ. TabriziA. KeramatipourM. AmoliM.M. RANTES gene mRNA expression and its −403 G/A promoter polymorphism in coronary artery disease.Gene2011487110310610.1016/j.gene.2011.07.01921839152
    [Google Scholar]
  5. RajasekarP. O’NeillC.L. EelesL. StittA.W. MedinaR.J. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications.J. Diabetes Res.2015201511710.1155/2015/43687926106624
    [Google Scholar]
  6. Reversal of the renal hyperglycemic memory by targeting sustained tubular21bioRxivInternethttps://www.biorxiv.org/content/10.1101/2021.07.05.450846v1
    [Google Scholar]
  7. InouyeB.M. HughesF.M.Jr JinH. LütolfR. PotnisK.C. RouthJ.C. RouseD.C. FooW.C. PurvesJ.T. Diabetic bladder dysfunction is associated with bladder inflammation triggered through hyperglycemia, not polyuria.Res. Rep. Urol.20181021922510.2147/RRU.S17763330533402
    [Google Scholar]
  8. BackeströmA. PapadopoulosK. ErikssonS. OlssonT. AnderssonM. BlennowK. ZetterbergH. NybergL. RolandssonO. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes.PLoS One2021163e024775310.1371/journal.pone.024775333739980
    [Google Scholar]
  9. MardenJ.R. MayedaE.R. Tchetgen TchetgenE.J. KawachiI. GlymourM.M. High hemoglobin A1c and diabetes predict memory decline in the health and retirement study.Alzheimer Dis. Assoc. Disord.2017311485410.1097/WAD.000000000000018228225507
    [Google Scholar]
  10. JanaB. AgniesM. GeorgA. Glycilated hemoglobin and cognitive impairment.Int. J. Neurol. Neurother.20174210.23937/2378‑3001/1410069
    [Google Scholar]
  11. HaghighatpanahM. NejadA.S.M. HaghighatpanahM. ThungaG. MallayasamyS. Factors that correlate with poor glycemic control in type 2 diabetes mellitus patients with complications.Osong Public Health Res. Perspect.20189416717410.24171/j.phrp.2018.9.4.0530159222
    [Google Scholar]
  12. ZhaoW. KatzmarzykP.T. HorswellR. WangY. JohnsonJ. HuG. HbA1c and coronary heart disease risk among diabetic patients.Diabetes Care201437242843510.2337/dc13‑152524130365
    [Google Scholar]
  13. NathanD.M. ClearyP.A. BacklundJ.Y. GenuthS.M. LachinJ.M. OrchardT.J. RaskinP. ZinmanB. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.N. Engl. J. Med.2005353252643265310.1056/NEJMoa05218716371630
    [Google Scholar]
  14. Mazarello PaesV. BarrettJ.K. Taylor-RobinsonD.C. ChestersH. CharalampopoulosD. DungerD.B. VinerR.M. StephensonT.J. Effect of early glycemic control on HbA1c tracking and development of vascular complications after 5 years of childhood onset type 1 diabetes: Systematic review and meta‐analysis.Pediatr. Diabetes2019205pedi.1285010.1111/pedi.1285030932298
    [Google Scholar]
  15. LaiteerapongN. HamS.A. GaoY. MoffetH.H. LiuJ.Y. HuangE.S. KarterA.J. The legacy effect in type 2 diabetes: Impact of early glycemic control on future complications (The Diabetes & Aging Study).Diabetes Care201942341642610.2337/dc17‑114430104301
    [Google Scholar]
  16. BazzazJ.T. AmoliM.M. TaheriZ. LarijaniB. PravicaV. HutchinsonI.V.IV TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications.J. Diabetes Metab. Disord.20141314510.1186/2251‑6581‑13‑4524690397
    [Google Scholar]
  17. MobbsC.V. Glucose-induced transcriptional hysteresis: Role in obesity, metabolic memory, diabetes, and aging.Front. Endocrinol.2018923210.3389/fendo.2018.0023229892261
    [Google Scholar]
  18. SongG. LinD. BaoL. JiangQ. ZhangY. ZhengH. GaoQ. Effects of high glucose on the expression of LAMA1 and biological behavior of choroid retinal endothelial cells.J. Diabetes Res.2018201811010.1155/2018/750461429967796
    [Google Scholar]
  19. HudspethB. The burden of cardiovascular disease in patients with diabetes.Am. J. Manag. Care201824S13S268S27230160393
    [Google Scholar]
  20. TecceN. MasulliM. LupoliR. Della PepaG. BozzettoL. PalmisanoL. RivelleseA.A. RiccardiG. CapaldoB. Evaluation of cardiovascular risk in adults with type 1 diabetes: Poor concordance between the 2019 ESC risk classification and 10-year cardiovascular risk prediction according to the Steno Type 1 Risk Engine.Cardiovasc. Diabetol.202019116610.1186/s12933‑020‑01137‑x33010807
    [Google Scholar]
  21. ColomC. RullA. Sanchez-QuesadaJ.L. PérezA. Cardiovascular disease in type 1 diabetes mellitus: Epidemiology and management of cardiovascular risk.J. Clin. Med.2021108179810.3390/jcm1008179833924265
    [Google Scholar]
  22. RaghavanS. VassyJ.L. HoY.L. SongR.J. GagnonD.R. ChoK. WilsonP.W.F. PhillipsL.S. Diabetes mellitus–related all‐cause and cardiovascular mortality in a national cohort of adults.J. Am. Heart Assoc.201984e01129510.1161/JAHA.118.01129530776949
    [Google Scholar]
  23. Tavakkoly-BazzazJ. MahsaM.A. VeraP VEGF gene polymorphism association with diabetic neuropathy.Mol Biol Rep201037736253630
    [Google Scholar]
  24. DokkenB.B. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids.Diabetes Spectr.200821316016510.2337/diaspect.21.3.160
    [Google Scholar]
  25. DaviesM.J. D’AlessioD.A. FradkinJ. KernanW.N. MathieuC. MingroneG. RossingP. TsapasA. WexlerD.J. BuseJ.B. Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the study of Diabetes (EASD).Diabetes Care201841122669270110.2337/dci18‑003330291106
    [Google Scholar]
  26. PasquelF.J. LansangM.C. DhatariyaK. UmpierrezG.E. Management of diabetes and hyperglycaemia in the hospital.Lancet Diabetes Endocrinol.20219317418810.1016/S2213‑8587(20)30381‑833515493
    [Google Scholar]
  27. BraffettB.H. Dagogo-JackS. BebuI. SivitzW.I. LarkinM. KoltermanO. LachinJ.M. Association of insulin dose, cardiometabolic risk factors, and cardiovascular disease in type 1 diabetes during 30 years of follow-up in the DCCT/EDIC study.Diabetes Care201942465766410.2337/dc18‑157430728218
    [Google Scholar]
  28. DingQ. SpatzE.S. LipskaK.J. LinH. SpertusJ.A. DreyerR.P. WhittemoreR. FunkM. BuenoH. KrumholzH.M. Newly diagnosed diabetes and outcomes after acute myocardial infarction in young adults.Heart2021107865766610.1136/heartjnl‑2020‑31710133082173
    [Google Scholar]
  29. The absence of a glycemic threshold for the development of long-term complications: The perspective of the Diabetes Control and Complications Trial.Diabetes199645101289129810.2337/diab.45.10.12898826962
    [Google Scholar]
  30. JarrettR.J. McCartneyP. KeenH. The bedford survey: Ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics.Diabetologia1982222798410.1007/BF002548337060853
    [Google Scholar]
  31. KabootariM. HasheminiaM. AziziF. MirboloukM. HadaeghF. Change in glucose intolerance status and risk of incident cardiovascular disease: Tehran Lipid and Glucose Study.Cardiovasc. Diabetol.20201914110.1186/s12933‑020‑01017‑432228577
    [Google Scholar]
  32. KhanR. ChuaZ. TanJ. YangY. LiaoZ. ZhaoY. From pre-diabetes to diabetes: Diagnosis, treatments and translational research.Medicina201955954610.3390/medicina5509054631470636
    [Google Scholar]
  33. Exploration the Standard diagnosis and treatment in patients with type 2 diabetes in a tertiary first-class hospital in Fujian Province.medRxiv2010
    [Google Scholar]
  34. HainsworthD.P. BebuI. AielloL.P. SivitzW. Gubitosi-KlugR. MaloneJ. WhiteN.H. DanisR. WalliaA. GaoX. BarkmeierA.J. DasA. PatelS. GardnerT.W. LachinJ.M. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study.Diabetes Care201942587588210.2337/dc18‑230830833368
    [Google Scholar]
  35. de BoerI.H. RueT.C. HallY.N. HeagertyP.J. WeissN.S. HimmelfarbJ. Temporal trends in the prevalence of diabetic kidney disease in the United States.JAMA2011305242532253910.1001/jama.2011.86121693741
    [Google Scholar]
  36. WhiteN.H. SunW. ClearyP.A. DanisR.P. DavisM.D. HainsworthD.P. HubbardL.D. LachinJ.M. NathanD.M. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial.Arch. Ophthalmol.2008126121707171510.1001/archopht.126.12.170719064853
    [Google Scholar]
  37. RuryR.H. SanjoyK.P. BethelM.A. 10-year follow-up of intensive glucose control in type 2 diabetes.N Engl J Med200835915771589
    [Google Scholar]
  38. LindM. ImbergH. ColemanR.L. NermanO. HolmanR.R. Historical HbA1c values may explain the type 2 diabetes legacy effect: UKPDS 88.Diabetes Care202144102231223710.2337/dc20‑243934244332
    [Google Scholar]
  39. ZhouJ.J. SchwenkeD.C. BahnG. ReavenP. Glycemic variation and cardiovascular risk in the veterans affairs diabetes trial.Diabetes Care201841102187219410.2337/dc18‑054830082325
    [Google Scholar]
  40. HirakawaY. ArimaH. ZoungasS. NinomiyaT. CooperM. HametP. ManciaG. PoulterN. HarrapS. WoodwardM. ChalmersJ. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: The ADVANCE trial.Diabetes Care20143782359236510.2337/dc14‑019924812434
    [Google Scholar]
  41. HaffnerS.M. The scandinavian simvastatin survival study (4S) subgroup analysis of diabetic subjects: Implications for the prevention of coronary heart disease.Diabetes Care199720446947110.2337/diacare.20.4.4699096961
    [Google Scholar]
  42. JermendyG. WittmannI. NagyL. KissZ. RokszinG. Abonyi-TóthZ. KatonaL. ParaghG. KarádiI. MerkelyB. Persistence of initial oral antidiabetic treatment in patients with type 2 diabetes mellitus.Med. Sci. Monit.2012182CR72CR7710.12659/MSM.88245922293880
    [Google Scholar]
  43. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial.Ophthalmology1995102464766110.1016/S0161‑6420(95)30973‑67724182
    [Google Scholar]
  44. McMillanD.E. Development of vascular complications in diabetes.Vasc. Med.19972213214210.1177/1358863X97002002099546955
    [Google Scholar]
  45. EpsteinF.H. MerimeeT.J. Diabetic retinopathy.N. Engl. J. Med.19903221497898310.1056/NEJM1990040532214062179725
    [Google Scholar]
  46. KrolewskiM. EggersP.W. WarramJ.H. Magnitude of end-stage renal disease in IDDM: A 35 year follow-up study.Kidney Int.19965062041204610.1038/ki.1996.5278943488
    [Google Scholar]
  47. SkupienJ. SmilesA.M. ValoE. AhluwaliaT.S. GyorgyB. SandholmN. CroallS. LajerM. McDonnellK. ForsblomC. HarjutsaloV. MarreM. GaleckiA.T. TregouetD.A. WuC.Y. MychaleckyjJ.C. NickersonH. PragnellM. RichS.S. PezzolesiM.G. HadjadjS. RossingP. GroopP.H. KrolewskiA.S. Variations in risk of end-stage renal disease and risk of mortality in an international study of patients with type 1 diabetes and advanced nephropathy.Diabetes Care20194219310110.2337/dc18‑136930455333
    [Google Scholar]
  48. YuanT. YangT. ChenH. FuD. HuY. WangJ. YuanQ. YuH. XuW. XieX. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis.Redox Biol.20192024726010.1016/j.redox.2018.09.02530384259
    [Google Scholar]
  49. LienC.F. ChenS.J. TsaiM.C. LinC.S. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis.Front. Pharmacol.20211271633210.3389/fphar.2021.71633234276388
    [Google Scholar]
  50. VolpeC.M.O. Villar-DelfinoP.H. dos AnjosP.M.F. Nogueira-MachadoJ.A. Cellular death, reactive oxygen species (ROS) and diabetic complications.Cell Death Dis.20189211910.1038/s41419‑017‑0135‑z29371661
    [Google Scholar]
  51. DeragonM.A. McCaigW.D. PatelP.S. HaluskaR.J. HodgesA.L. SosunovS.A. MurphyM.P. TenV.S. LaRoccaT.J. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis.Cell Death Discov.20206113210.1038/s41420‑020‑00370‑333298902
    [Google Scholar]
  52. Root-BernsteinR. BusikJ. HenryD.N. Are diabetic neuropathy, retinopathy and nephropathy caused by hyperglycemic exclusion of dehydroascorbate uptake by glucose transporters?J. Theor. Biol.2002216334535910.1006/jtbi.2002.253512183123
    [Google Scholar]
  53. WaysD.K. SheetzM.J. The role of protein kinase C in the development of the complications of diabetes.Vitam. Horm.20006014919310.1016/S0083‑6729(00)60019‑511037624
    [Google Scholar]
  54. FlierJ.S. UnderhillL.H. BrownleeM. CeramiA. VlassaraH. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.N. Engl. J. Med.1988318201315132110.1056/NEJM1988051931820073283558
    [Google Scholar]
  55. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.05830245465
    [Google Scholar]
  56. Sho-IchiY. TakanoriM. Shin-IchiroU. KazuoN. TsutomuI. Advanced glycation end products (AGEs) and cardiovascular disease (CVD) in diabetes.Cardiovasc. Hematol. Agents Med. Chem.20075323624010.2174/18715250778105868117630950
    [Google Scholar]
  57. KopytekM. ZąbczykM. MazurP. UndasA. NatorskaJ. Accumulation of advanced glycation end products (AGEs) is associated with the severity of aortic stenosis in patients with concomitant type 2 diabetes.Cardiovasc. Diabetol.20201919210.1186/s12933‑020‑01068‑732552684
    [Google Scholar]
  58. BucalaR. TraceyK.J. CeramiA. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes.J. Clin. Invest.199187243243810.1172/JCI1150141991829
    [Google Scholar]
  59. RheeS.Y. KimY.S. The role of advanced glycation end products in diabetic vascular complications.Diabetes Metab. J.201842318819510.4093/dmj.2017.010529885110
    [Google Scholar]
  60. IndykD. Bronowicka-SzydełkoA. GamianA. KuzanA. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes.Sci. Rep.20211111326410.1038/s41598‑021‑92630‑034168187
    [Google Scholar]
  61. Simó-ServatO. PlanasA. CiudinA. SimóR. HernándezC. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes.Endocrinología, Diabetes y Nutrición201865954054510.1016/j.endien.2018.06.00330077632
    [Google Scholar]
  62. DyerD.G. BlackledgeJ.A. ThorpeS.R. BaynesJ.W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo.J. Biol. Chem.199126618116541166010.1016/S0021‑9258(18)99007‑11904867
    [Google Scholar]
  63. SimardE. SöllradlT. MaltaisJ.S. BoucherJ. D’Orléans-JusteP. GrandboisM. Receptor for advanced glycation end-products signaling interferes with the vascular smooth muscle cell contractile phenotype and function.PLoS One2015108e012888110.1371/journal.pone.012888126248341
    [Google Scholar]
  64. CalviñoJ. CigarranS. Gonzalez-TabaresL. MenendezN. LatorreJ. CilleroS. MillanB. CobeloC. Sanjurjo-AmadoA. QuispeJ. Garcia-EnriquezA. CarreroJ.J. Advanced glycation end products (AGEs) estimated by skin autofluorescence are related with cardiovascular risk in renal transplant.PLoS One2018138e020111810.1371/journal.pone.020111830067789
    [Google Scholar]
  65. ShenC.Y. LuC.H. WuC.H. LiK.J. KuoY.M. HsiehS.C. YuC.L. The development of maillard reaction, and advanced glycation end product (AGE)-Receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases.Molecules20202523559110.3390/molecules2523559133261212
    [Google Scholar]
  66. IhnatM.A. ThorpeJ.E. CerielloA. Hypothesis: the ‘metabolic memory’, the new challenge of diabetes.Diabet. Med.200724658258610.1111/j.1464‑5491.2007.02138.x17490424
    [Google Scholar]
  67. NishikawaT. EdelsteinD. BrownleeM. The missing link: A single unifying mechanism for diabetic complications.Kidney Int.200058S26S3010.1046/j.1523‑1755.2000.07705.x10997687
    [Google Scholar]
  68. BazzazJ.T. AmoliM.M. PravicaV. ChandrasecaranR. BoultonA.J. LarijaniB. HutchinsonI.V. eNOS gene polymorphism association with retinopathy in type 1 diabetes.Ophthalmic Genet.201031310310710.3109/13816810.2010.48255320565248
    [Google Scholar]
  69. JonesM.L. BuhimschiI.A. ZhaoG. BartholomewA. Smith-TimmsJ. RoodK.M. BuhimschiC.S. Acute glucose load, inflammation, oxidative stress, nonenzymatic glycation, and screening for gestational diabetes.Reprod. Sci.20202781587159410.1007/s43032‑020‑00188‑532430709
    [Google Scholar]
  70. PatelT. PatelV. SinghR. JayaramanS. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice.Immunol. Cell Biol.201189564064910.1038/icb.2010.14421321581
    [Google Scholar]
  71. KumarS. PamulapatiH. TikooK. Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3.Mol. Cell. Endocrinol.201642223324210.1016/j.mce.2015.12.01926747726
    [Google Scholar]
  72. VigorelliV. RestaJ. BianchessiV. LauriA. BassettiB. AgrifoglioM. PesceM. PolvaniG. BonalumiG. CavallottiL. AlamanniF. GenoveseS. PompilioG. VinciM.C. Abnormal DNA methylation induced by hyperglycemia reduces CXCR4 gene expression in CD34 + stem cells.J. Am. Heart Assoc.201989e01001210.1161/JAHA.118.01001231018749
    [Google Scholar]
  73. KeatingS.T. PlutzkyJ. El-OstaA. Epigenetic changes in diabetes and cardiovascular risk.Circ. Res.2016118111706172210.1161/CIRCRESAHA.116.30681927230637
    [Google Scholar]
  74. El-OstaA. Glycemic memory.Curr. Opin. Lipidol.2012231242910.1097/MOL.0b013e32834f319d22186662
    [Google Scholar]
  75. MishraM. KowluruR.A. DNA methylation—a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy.Mol. Neurobiol.20195618810110.1007/s12035‑018‑1086‑929679259
    [Google Scholar]
  76. ZhongQ. KowluruR.A. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.Diabetes20116041304131310.2337/db10‑013321357467
    [Google Scholar]
  77. VilleneuveL.M. ReddyM.A. LantingL.L. WangM. MengL. NatarajanR. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes.Proc. Natl. Acad. Sci. USA2008105269047905210.1073/pnas.080362310518579779
    [Google Scholar]
  78. PirolaL. BalcerczykA. TothillR.W. HavivI. KaspiA. LunkeS. ZiemannM. KaragiannisT. TonnaS. KowalczykA. Beresford-SmithB. MacintyreG. KelongM. HongyuZ. ZhuJ. El-OstaA. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells.Genome Res.201121101601161510.1101/gr.116095.11021890681
    [Google Scholar]
  79. PatelH. ChenJ. DasK.C. KavdiaM. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC.Cardiovasc. Diabetol.201312114210.1186/1475‑2840‑12‑14224093550
    [Google Scholar]
  80. GuoK. EidS.A. ElzingaS.E. PacutC. FeldmanE.L. HurJ. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy.Clin. Epigenetics202012112310.1186/s13148‑020‑00913‑632787975
    [Google Scholar]
  81. LiuC.C. HuJ. TsaiC.W. YueM. MelroseH.L. KanekiyoT. BuG. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.J. Neurosci.201535145851585910.1523/JNEUROSCI.5180‑14.201525855193
    [Google Scholar]
  82. ZhaoM. WangS. ZuoA. ZhangJ. WenW. JiangW. ChenH. LiangD. SunJ. WangM. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury.Cell. Mol. Biol. Lett.20212614010.1186/s11658‑021‑00283‑8
    [Google Scholar]
  83. DaiJ. ShenJ. ChaiY. ChenH. IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway.Mediators Inflamm.2021202111010.1155/2021/664576634054346
    [Google Scholar]
  84. ZhangJ. YangP. LiuD. GaoM. WangJ. WangX. LiuY. ZhangX. c-Myc upregulated by high glucose inhibits HaCaT differentiation by S100A6 transcriptional activation.Front. Endocrinol.20211267640310.3389/fendo.2021.67640334060533
    [Google Scholar]
  85. ZhangC.H. LvX. DuW. ChengM.J. LiuY.P. ZhuL. HaoJ. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy.Exp. Cell Res.2019383111150210.1016/j.yexcr.2019.11150231323191
    [Google Scholar]
  86. TakematsuE. SpencerA. AusterJ. ChenP.C. GrahamA. MartinP. BakerA.B. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes.PLoS One2020152e022526710.1371/journal.pone.022526732084158
    [Google Scholar]
  87. CorbiS.C.T. BastosA.S. NepomucenoR. CirelliT. SantosR.A. TakahashiC.S. RochaC.S. OrricoS.R.P. Maurer-MorelliC.V. Scarel-CaminagaR.M. Expression profile of genes potentially associated with adequate glycemic control in patients with type 2 diabetes mellitus.J. Diabetes Res.201720171910.1155/2017/218081928812028
    [Google Scholar]
  88. MullerY.L. HansonR.L. BianL. MackJ. ShiX. PakyzR. ShuldinerA.R. KnowlerW.C. BogardusC. BaierL.J. Functional variants in MBL2 are associated with type 2 diabetes and pre-diabetes traits in Pima Indians and the old order Amish.Diabetes20105982080208510.2337/db09‑159320522590
    [Google Scholar]
  89. DasU.N. RaoA.A. Gene expression profile in obesity and type 2 diabetes mellitus.Lipids Health Dis.2007613510.1186/1476‑511X‑6‑3518078524
    [Google Scholar]
  90. Ramírez-AlarcónK. VictorianoM. MardonesL. VillagranM. Al-HarrasiA. Al-RawahiA. Cruz-MartinsN. Sharifi-RadJ. MartorellM. Phytochemicals as potential epidrugs in type 2 diabetes mellitus.Front. Endocrinol.20211265697810.3389/fendo.2021.65697834140928
    [Google Scholar]
  91. RosenE.D. KaestnerK.H. NatarajanR. PattiM.E. SallariR. SanderM. SusztakK. Epigenetics and epigenomics: Implications for diabetes and obesity.Diabetes201867101923193110.2337/db18‑053730237160
    [Google Scholar]
  92. YangD.M. MengyinC. PradeepB. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney.Kidney Int2016892342353
    [Google Scholar]
  93. PerroneL. DeviT.S. HosoyaK. TerasakiT. SinghL.P. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions.J. Cell. Physiol.2009221126227210.1002/jcp.2185219562690
    [Google Scholar]
  94. PerroneL. DeviT.S. HosoyaK-I. TerasakiT. SinghL.P. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy.Cell Death Dis.201018e6510.1038/cddis.2010.4221364670
    [Google Scholar]
  95. FiorentinoT. PriolettaA. ZuoP. FolliF. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases.Curr. Pharm. Des.201319325695570310.2174/138161281131932000523448484
    [Google Scholar]
  96. MatsumotoN. OmagariD. Ushikoshi-NakayamaR. YamazakiT. InoueH. SaitoI. Hyperglycemia induces generation of reactive oxygen species and accelerates apoptotic cell death in salivary gland cells.Pathobiology202188323424110.1159/00051263933556940
    [Google Scholar]
  97. PaneniF. VolpeM. LüscherT.F. CosentinoF. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together.Diabetes20136261800180710.2337/db12‑164823704521
    [Google Scholar]
  98. El-OstaA. BrasacchioD. YaoD. PocaiA. JonesP.L. RoederR.G. CooperM.E. BrownleeM. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.J. Exp. Med.2008205102409241710.1084/jem.2008118818809715
    [Google Scholar]
  99. ZhouS. ChenH.Z. WanY. ZhangQ.J. WeiY.S. HuangS. LiuJ.J. LuY.B. ZhangZ.Q. YangR.F. ZhangR. CaiH. LiuD.P. LiangC.C. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction.Circ. Res.2011109663964810.1161/CIRCRESAHA.111.24359221778425
    [Google Scholar]
  100. WangQ. SongF. DongJ. QiaoL. Transient exposure to elevated glucose levels causes persistent changes in dermal microvascular endothelial cell responses to injury.Ann. Transl. Med.20219975875810.21037/atm‑20‑761734268371
    [Google Scholar]
  101. KongY.W. CannellI.G. de MoorC.H. HillK. GarsideP.G. HamiltonT.L. MeijerH.A. DobbynH.C. StoneleyM. SpriggsK.A. WillisA.E. BushellM. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene.Proc. Natl. Acad. Sci. USA2008105268866887110.1073/pnas.080065010518579786
    [Google Scholar]
  102. MendellJ.T. MicroRNAs: Critical regulators of development, cellular physiology and malignancy.Cell Cycle2005491179118410.4161/cc.4.9.203216096373
    [Google Scholar]
  103. FengB. ChenS. McArthurK. WuY. SenS. DingQ. FeldmanR.D. ChakrabartiS. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications.Diabetes201160112975298410.2337/db11‑047821885871
    [Google Scholar]
  104. KongL. ZhuJ. HanW. JiangX. XuM. ZhaoY. DongQ. PangZ. GuanQ. GaoL. ZhaoJ. ZhaoL. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study.Acta Diabetol.2011481616910.1007/s00592‑010‑0226‑020857148
    [Google Scholar]
  105. HoffmannA. LeungT.H. BaltimoreD. Genetic analysis of NF- B/Rel transcription factors defines functional specificities.EMBO J.200322205530553910.1093/emboj/cdg53414532125
    [Google Scholar]
  106. BrasacchioD. OkabeJ. TikellisC. BalcerczykA. GeorgeP. BakerE.K. CalkinA.C. BrownleeM. CooperM.E. El-OstaA. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.Diabetes20095851229123610.2337/db08‑166619208907
    [Google Scholar]
  107. KimS.W. RamasamyK. BouamarH. LinA.P. JiangD. AguiarR.C.T. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 ( TNFAIP3, A20 ).Proc. Natl. Acad. Sci.2012109207865787010.1073/pnas.120008110922550173
    [Google Scholar]
  108. HuangJ-F. ChengK-P. WangS-J. HuangH-M. WangZ-J. MicroRNA-125b protects hyperglycemia-induced, human retinal pigment epithelial cells (RPE) from death by targeting hexokinase 2.Int. J. Clin. Exp. Pathol.20181163111311831938439
    [Google Scholar]
  109. BhaumikD. ScottG.K. SchokrpurS. PatilC.K. CampisiJ. BenzC.C. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells.Oncogene200827425643564710.1038/onc.2008.17118504431
    [Google Scholar]
  110. ZhongX. LiaoY. ChenL. LiuG. FengY. ZengT. ZhangJ. The MicroRNAs in the pathogenesis of metabolic memory.Endocrinology201515693157316810.1210/en.2015‑106326083874
    [Google Scholar]
  111. LuoA. YanH. LiangJ. DuC. ZhaoX. SunL. ChenY. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1.Gene201762719420110.1016/j.gene.2017.06.02428627440
    [Google Scholar]
  112. LinX. QinY. JiaJ. LinT. LinX. ChenL. ZengH. HanY. WuL. HuangS. WangM. HuangS. XieR. LiangL. LiuY. LiuR. ZhangT. LiJ. WangS. SunP. HuangW. YaoK. XuK. DuT. XiaoD. MiR-155 enhances insulin sensitivity by coordinated regulation of multiple genes in mice.PLoS Genet.20161210e100630810.1371/journal.pgen.100630827711113
    [Google Scholar]
  113. EliassonL. The small RNA miR-375 – a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function.Mol. Cell. Endocrinol.20174569510110.1016/j.mce.2017.02.04328254488
    [Google Scholar]
  114. SadeghzadehS. Dehghani AshkezariM. SeifatiS.M. Vahidi MehrjardiM.Y. Dehghan TezerjaniM. SadeghzadehS. LadanS.A.B. Circulating miR-15a and miR-222 as potential biomarkers of type 2 diabetes.Diabetes Metab. Syndr. Obes.2020133461346910.2147/DMSO.S26388333061506
    [Google Scholar]
  115. ZhangT. LvC. LiL. ChenS. LiuS. WangC. SuB. Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals.BioMed Res. Int.201320131610.1155/2013/76161724455723
    [Google Scholar]
  116. WuX. LiY. ManB. LiD. Assessing MicroRNA-375 levels in type 2 diabetes mellitus (T2DM) patients and their first-degree relatives with T2DM.Diabetes Metab. Syndr. Obes.2021141445145110.2147/DMSO.S29873533824598
    [Google Scholar]
  117. LinW. TangY. ZhaoY. ZhaoJ. ZhangL. WeiW. ChenJ. MiR-144-3p targets FoxO1 to reduce its regulation of adiponectin and promote adipogenesis.Front. Genet.20201160314410.3389/fgene.2020.60314433381152
    [Google Scholar]
  118. XuG. ThielenL.A. ChenJ. GraysonT.B. GrimesT. BridgesS.L.Jr TseH.M. SmithB. PatelR. LiP. Evans-MolinaC. OvalleF. ShalevA. Serum miR-204 is an early biomarker of type 1 diabetes-associated pancreatic beta-cell loss.Am. J. Physiol. Endocrinol. Metab.20193174E723E73010.1152/ajpendo.00122.201931408375
    [Google Scholar]
  119. YangZ. ChenH. SiH. LiX. DingX. ShengQ. ChenP. ZhangH. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes.Acta Diabetol.201451582383110.1007/s00592‑014‑0617‑824981880
    [Google Scholar]
  120. XuX. ChenB. ZhuS. ZhangJ. HeX. CaoG. ChenB. Hyperglycemia promotes Snail-induced epithelial–mesenchymal transition of gastric cancer via activating ENO1 expression.Cancer Cell Int.201919134410.1186/s12935‑019‑1075‑831889896
    [Google Scholar]
  121. BallotariP. VicentiniM. ManicardiV. GalloM. Chiatamone RanieriS. GreciM. Giorgi RossiP. Diabetes and risk of cancer incidence: Results from a population-based cohort study in northern Italy.BMC Cancer201717170310.1186/s12885‑017‑3696‑429070034
    [Google Scholar]
  122. ShlomaiG. NeelB. LeRoithD. GallagherE.J. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy.J. Clin. Oncol.201634354261426910.1200/JCO.2016.67.404427903154
    [Google Scholar]
  123. WangM. HuR.Y. WuH.B. PanJ. GongW.W. GuoL.H. ZhongJ.M. FeiF.R. YuM. Cancer risk among patients with type 2 diabetes mellitus: a population-based prospective study in China.Sci. Rep.2015511150310.1038/srep1150326082067
    [Google Scholar]
  124. RamtekeP. DebA. ShepalV. BhatM.K. Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality.Cancers2019119140210.3390/cancers1109140231546918
    [Google Scholar]
  125. LuoJ. XiangY. XuX. FangD. LiD. NiF. ZhuX. ChenB. ZhouM. High glucose-induced ros production stimulates proliferation of pancreatic cancer via inactivating the JNK pathway.Oxid. Med. Cell. Longev.2018201811010.1155/2018/691720630584464
    [Google Scholar]
  126. SadaK. NishikawaT. KukidomeD. YoshinagaT. KajiharaN. SonodaK. SenokuchiT. MotoshimaH. MatsumuraT. ArakiE. Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1.PLoS One2016117e015861910.1371/journal.pone.015861927383386
    [Google Scholar]
  127. ZhangD. LvF-L. WangG-H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression.Eur. Rev. Med. Pharmacol. Sci.201822165071507630178824
    [Google Scholar]
  128. ZhaoW. ChenR. ZhaoM. LiL. FanL. CheX.M. High glucose promotes gastric cancer chemoresistance in vivo and in vitro. Mol. Med. Rep.201512184385010.3892/mmr.2015.352225815791
    [Google Scholar]
  129. LinC.Y. LeeC.H. HuangC.C. LeeS.T. GuoH.R. SuS.B. Impact of high glucose on metastasis of colon cancer cells.World J. Gastroenterol.20152172047205710.3748/wjg.v21.i7.204725717237
    [Google Scholar]
  130. Flores-LópezL.A. Martínez-HernándezM.G. Viedma-RodríguezR. Díaz-FloresM. Baiza-GutmanL.A. High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells.Cell Oncol.201639436537810.1007/s13402‑016‑0282‑827106722
    [Google Scholar]
  131. CareyI.M. CritchleyJ.A. DeWildeS. HarrisT. HoskingF.J. CookD.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study.Diabetes Care201841351352110.2337/dc17‑213129330152
    [Google Scholar]
  132. Chávez-ReyesJ. Escárcega-GonzálezC.E. Chavira-SuárezE. León-BuitimeaA. Vázquez-LeónP. Morones-RamírezJ.R. VillalónC.M. Quintanar-StephanoA. Marichal-CancinoB.A. Susceptibility for some infectious diseases in patients with diabetes: The key role of glycemia.Front. Public Health2021955959510.3389/fpubh.2021.55959533665182
    [Google Scholar]
  133. XiongX. WeiL. XiaoY. HanY.C. YangJ. ZhaoH. YangM. SunL. Family history of diabetes is associated with diabetic foot complications in type 2 diabetes.Sci. Rep.20201011705610.1038/s41598‑020‑74071‑333051498
    [Google Scholar]
  134. VuorlaaksoM. KiiskiJ. SalonenT. KarppelinM. HelminenM. KaartinenI. Major amputation profoundly increases mortality in patients with diabetic foot infection.Front. Surg.2021865590210.3389/fsurg.2021.65590233996886
    [Google Scholar]
  135. BakerE.H. WoodD.M. BrennanA.L. ClarkN. BainesD.L. PhilipsB.J. Hyperglycaemia and pulmonary infection.Proc. Nutr. Soc.200665322723510.1079/PNS200649916923307
    [Google Scholar]
  136. MuellerA.L. McNamaraM.S. SinclairD.A. Why does COVID-19 disproportionately affect older people?Aging202012109959998110.18632/aging.10334432470948
    [Google Scholar]
  137. NiW. YangX. YangD. BaoJ. LiR. XiaoY. HouC. WangH. LiuJ. YangD. XuY. CaoZ. GaoZ. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19.Crit. Care202024142210.1186/s13054‑020‑03120‑032660650
    [Google Scholar]
  138. SethumadhavanD.V. JabeenaC.A. GovindarajuG. SomanA. RajaveluA. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives.Current Research in Microbial Sciences2021210007910.1016/j.crmicr.2021.10007934725650
    [Google Scholar]
  139. DeraviN. FathiM. VakiliK. YaghoobpoorS. PirzadehM. MokhtariM. FazelT. AhsanE. GhaffariS. SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: A systematic review.Rev. Cardiovasc. Med.202021338539710.31083/j.rcm.2020.03.7833070543
    [Google Scholar]
  140. PalR. BhansaliA. COVID-19, diabetes mellitus and ACE2: The conundrum.Diabetes Res. Clin. Pract.202016210813210.1016/j.diabres.2020.10813232234504
    [Google Scholar]
  141. MendoncaP. SolimanK.F.A. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity.Antioxidants20209865910.3390/antiox908065932722164
    [Google Scholar]
  142. RonconL. ZuinM. RigatelliG. ZulianiG. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome.J. Clin. Virol.202012710435410.1016/j.jcv.2020.10435432305882
    [Google Scholar]
  143. ValenciaI. PeiróC. LorenzoÓ. Sánchez-FerrerC.F. EckelJ. RomachoT. DPP4 and ACE2 in diabetes and COVID-19: Therapeutic targets for cardiovascular complications?Front. Pharmacol.202011116110.3389/fphar.2020.0116132848769
    [Google Scholar]
  144. ChenY. YangD. ChengB. ChenJ. PengA. YangC. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication.Diabetes Care20204313991407
    [Google Scholar]
  145. StrolloR. PozzilliP. DPP4 inhibition: Preventing SARS‐COV‐2 infection and/or progression of COVID-19?Diabetes Metab. Res. Rev.2020368e333010.1002/dmrr.333032336007
    [Google Scholar]
  146. YangY. CaiZ. ZhangJ. Insulin treatment may increase adverse outcomes in patients with COVID-19 and diabetes: A systematic review and meta-analysis.Front. Endocrinol.20211269608710.3389/fendo.2021.69608734367067
    [Google Scholar]
  147. PalR. BhadadaS.K. MisraA. COVID-19 vaccination in patients with diabetes mellitus: Current concepts, uncertainties and challenges.Diabetes Metab. Syndr.202115250550810.1016/j.dsx.2021.02.02633662837
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998279869231227091944
Loading
/content/journals/cdr/10.2174/0115733998279869231227091944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test