Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by gene-based drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002339055241211050131
2024-12-23
2025-04-13
Loading full text...

Full text loading...

References

  1. IsazadehH. OrujiF. ShabaniS. BehrooziJ. NasiriH. IsazadehA. AkbariM. Advances in siRNA delivery approaches in cancer therapy: Challenges and opportunities.Mol. Biol. Rep.202350119529954310.1007/s11033‑023‑08749‑y37741808
    [Google Scholar]
  2. LiangX. YangY. HuangC. YeZ. LaiW. LuoJ. LiX. YiX. FanJ.B. WangY. WangY. cRGD-targeted heparin nanoparticles for effective dual drug treatment of cisplatin-resistant ovarian cancer.J. Cont. Rel.202335635669170110.1016/j.jconrel.2023.03.01736933699
    [Google Scholar]
  3. SubhanM.A. TorchilinV.P. Advances in siRNA drug delivery strategies for targeted tnbc therapy.Bioengineering202411883010.3390/bioengineering1108083039199788
    [Google Scholar]
  4. TatipartiK. SauS. KashawS. IyerA. siRNA delivery strategies: A comprehensive review of recent developments.Nanomaterials2017747710.3390/nano704007728379201
    [Google Scholar]
  5. Ali ZaidiS.S. FatimaF. Ali ZaidiS.A. ZhouD. DengW. LiuS. Engineering siRNA therapeutics: Challenges and strategies.J. Nanobiotechnology202321138110.1186/s12951‑023‑02147‑z37848888
    [Google Scholar]
  6. KohnD.B. BoothC. ShawK.L. Xu-BayfordJ. GarabedianE. TrevisanV. Carbonaro-SarracinoD.A. SoniK. TerrazasD. SnellK. IkedaA. Leon-RicoD. MooreT.B. BucklandK.F. ShahA.J. GilmourK.C. De OliveiraS. RivatC. CrooksG.M. IzotovaN. TseJ. AdamsS. ShupienS. RickettsH. DavilaA. UzowuruC. IcreverziA. BarmanP. Campo FernandezB. HollisR.P. CoronelM. YuA. ChunK.M. CasasC.E. ZhangR. ArduiniS. LynnF. KudariM. SpezziA. ZahnM. HeimkeR. LabikI. ParrottR. BuckleyR.H. ReevesL. CornettaK. SokolicR. HershfieldM. SchmidtM. CandottiF. MalechH.L. ThrasherA.J. GasparH.B. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency.N. Engl. J. Med.2021384212002201310.1056/NEJMoa202767533974366
    [Google Scholar]
  7. SchmidtH.H. WixnerJ. Planté-BordeneuveV. Muñoz-BeamudF. LladóL. GillmoreJ.D. MazzeoA. LiX. ArumS. JayP.Y. AdamsD. Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation.Am. J. Transplant.20222261646165710.1111/ajt.1700935213769
    [Google Scholar]
  8. KhanS. RehmanU. ParveenN. KumarS. BabootaS. AliJ. siRNA therapeutics: Insights, Challenges, Remedies and future prospects.Expert Opin. Drug Deliv.20232091167118710.1080/17425247.2023.225189037642354
    [Google Scholar]
  9. FriedrichM. AignerA. Therapeutic siRNA: State-of-the-art and future perspectives.BioDrugs202236554957110.1007/s40259‑022‑00549‑335997897
    [Google Scholar]
  10. GoyalR. ChopraH. singhI. DuaK. GautamR.K. Insights on prospects of nano-siRNA based approaches in treatment of Cancer.Front. Pharmacol.2022131398567010.3389/fphar.2022.98567036091772
    [Google Scholar]
  11. RussellS. BennettJ. WellmanJ.A. ChungD.C. YuZ.F. TillmanA. WittesJ. PappasJ. ElciO. McCagueS. CrossD. MarshallK.A. WalshireJ. KehoeT.L. ReichertH. DavisM. RaffiniL. GeorgeL.A. HudsonF.P. DingfieldL. ZhuX. HallerJ.A. SohnE.H. MahajanV.B. PfeiferW. WeckmannM. JohnsonC. GewailyD. DrackA. StoneE. WachtelK. SimonelliF. LeroyB.P. WrightJ.F. HighK.A. MaguireA.M. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial.Lancet20173901009784986010.1016/S0140‑6736(17)31868‑828712537
    [Google Scholar]
  12. AronsonS.J. VeronP. CollaudF. HubertA. DelahaisV. HonnetG. de KnegtR.J. JungeN. BaumannU. Di GiorgioA. D’AntigaL. GinocchioV.M. Brunetti-PierriN. LabruneP. BeuersU. BosmaP.J. MingozziF. Prevalence and relevance of pre-existing Anti-adeno-associated virus immunity in the context of gene therapy for crigler–najjar syndrome.Hum. Gene Ther.201930101297130510.1089/hum.2019.14331502485
    [Google Scholar]
  13. BrysonT.E. AnglinC.M. BridgesP.H. CottleR.N. Nuclease-mediated gene therapies for inherited metabolic diseases of the liver.Yale J. Biol. Med.201790455356629259521
    [Google Scholar]
  14. NguyenG.N. EverettJ.K. KafleS. RocheA.M. RaymondH.E. LeibyJ. WoodC. AssenmacherC.A. MerricksE.P. LongC.T. KazazianH.H. NicholsT.C. BushmanF.D. SabatinoD.E. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells.Nat. Biotechnol.2021391475510.1038/s41587‑020‑0741‑733199875
    [Google Scholar]
  15. KontturiL.S. van den DikkenbergJ. UrttiA. HenninkW.E. MastrobattistaE. Light-Triggered cellular delivery of oligonucleotides.Pharmaceutics20191129010.3390/pharmaceutics1102009030795565
    [Google Scholar]
  16. OmarM.M. Laprise-PelletierM. LemayS. LagueuxJ. TuduriL. FortinM.A. A diffusion cell adapted to nuclear imaging instruments for the measurement of molecular release and pharmacokinetics across membranes.J. Cont. Rel.202133733766167510.1016/j.jconrel.2021.07.01334271034
    [Google Scholar]
  17. SwaminathanG. ShignaA. KumarA. ByrojuV.V. DurgempudiV.R. Dinesh KumarL. RNA interference and nanotechnology: A promising alliance for next generation cancer therapeutics.Front. nanotechnol.2021312510.3389/fnano.2021.694838
    [Google Scholar]
  18. GuoC.J. CaoX.L. ZhangY.F. YueK.Y. HanJ. YanH. HanH. ZhengM.H. Exosome-mediated inhibition of microRNA-449a promotes the amplification of mouse retinal progenitor cells and enhances their transplantation in retinal degeneration mouse models.Mol. Ther. Nucleic Acids2023313176377810.1016/j.omtn.2023.02.01536937621
    [Google Scholar]
  19. HuangT. PengL. HanY. WangD. HeX. WangJ. OuC. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects.Front. Immunol.2022131392230110.3389/fimmu.2022.92230136090974
    [Google Scholar]
  20. SettenR.L. RossiJ.J. HanS. The current state and future directions of RNAi-based therapeutics.Nat. Rev. Drug Discov.201918642144610.1038/s41573‑019‑0017‑430846871
    [Google Scholar]
  21. HaoF. LeeR.J. YangC. ZhongL. SunY. DongS. ChengZ. TengL. MengQ. LuJ. XieJ. TengL. Targeted Co-delivery of siRNA and methotrexate for tumor therapy via mixed micelles.Pharmaceutics20191129210.3390/pharmaceutics1102009230795589
    [Google Scholar]
  22. HattoriY. ShimizuS. OzakiK. OnishiH. Effect of cationic lipid type in folate-peg-modified cationic liposomes on folate receptor-mediated sirna transfection in tumor cells.Pharmaceutics201911418110.3390/pharmaceutics1104018130991703
    [Google Scholar]
  23. EgorovaA.A. ShtykalovaS.V. MaretinaM.A. SokolovD.I. SelkovS.A. BaranovV.S. KiselevA.V. Synergistic Anti-angiogenic effects using peptide-based combinatorial delivery of sirnas targeting vegfa, vegfr1, and endoglin genes.Pharmaceutics201911626110.3390/pharmaceutics1106026131174285
    [Google Scholar]
  24. KangH. GaY.J. KimS.H. ChoY.H. KimJ.W. KimC. YehJ.Y. Small interfering RNA (siRNA)-based therapeutic applications against viruses: Principles, potential, and challenges.J. Biomed. Sci.20233018810.1186/s12929‑023‑00981‑937845731
    [Google Scholar]
  25. ChatterjeeK. LakdawalaS. QuadirS.S. PuriD. MishraD.K. JoshiG. SharmaS. ChoudharyD. siRNA-based novel therapeutic strategies to improve effectiveness of antivirals: An insight.AAPS PharmSciTech202324617010.1208/s12249‑023‑02629‑137566146
    [Google Scholar]
  26. DongY. SiegwartD.J. AndersonD.G. Strategies, Design, and chemistry in siRNA delivery systems.Adv. Drug Deliv. Rev.201914414413314710.1016/j.addr.2019.05.00431102606
    [Google Scholar]
  27. FatemianT. MoghimiH.R. ChowdhuryE.H. Intracellular delivery of sirnas targeting akt and erbb2 genes enhances chemosensitization of breast cancer cells in a culture and animal model.Pharmaceutics201911945810.3390/pharmaceutics1109045831484456
    [Google Scholar]
  28. AgrawalA.K. AqilF. JeyabalanJ. SpencerW.A. BeckJ. GachukiB.W. AlhakeemS.S. ObenK. MunagalaR. BondadaS. GuptaR.C. Milk-derived exosomes for oral delivery of paclitaxel.Nanomedicine20171351627163610.1016/j.nano.2017.03.00128300659
    [Google Scholar]
  29. AliH.M. UrbinatiG. RaouaneM. Massaad-MassadeL. Significance and applications of nanoparticles in siRNA delivery for cancer therapy.Expert Rev. Clin. Pharmacol.20125440341210.1586/ecp.12.3322943120
    [Google Scholar]
  30. AlshaerW. HillaireauH. VergnaudJ. MuraS. DeloménieC. SauvageF. IsmailS. FattalE. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model.J. Cont. Rel.20182719810610.1016/j.jconrel.2017.12.02229277682
    [Google Scholar]
  31. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  32. ChenM. DongC. ShiS. Nanoparticle-mediated siRNA delivery and multifunctional modification strategies for effective cancer therapy.Adv. Mater. Technol.2021610200123610.1002/admt.202001236
    [Google Scholar]
  33. RedhwanM.A. MGH. SamaddarS. HardS.A. YadavV. MukherjeeA. KumarR. Small interference (RNAi) technique: Exploring its clinical applications, benefits and limitations.EJCI20235310e14039
    [Google Scholar]
  34. HattabD. GazzaliA.M. BakhtiarA. Clinical advances of siRNA-based nanotherapeutics for cancer treatment.Pharmaceutics2021137100910.3390/pharmaceutics1307100934371702
    [Google Scholar]
  35. ChenY. HuangL. Tumor-targeted delivery of siRNA by non-viral vector: Safe and effective cancer therapy.Expert Opin. Drug Deliv.20085121301131110.1517/1742524080256850519040393
    [Google Scholar]
  36. AkitaH. NoguchiY. HatakeyamaH. SatoY. TangeK. NakaiY. HarashimaH. Molecular tuning of a vitamin E-scaffold pH-sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA delivery.ACS Biomater. Sci. Eng.20151983484410.1021/acsbiomaterials.5b0020333445261
    [Google Scholar]
  37. WuS.Y. Lopez-BeresteinG. CalinG.A. SoodA.K. RNAi therapies: Drugging the undruggable.Sci. Transl. Med.20146240240ps710.1126/scitranslmed.300836224920658
    [Google Scholar]
  38. DavidsonB.L. McCrayP.B.Jr Current prospects for RNA interference-based therapies.Nat. Rev. Genet.201112532934010.1038/nrg296821499294
    [Google Scholar]
  39. FellmannC. LoweS.W. Stable RNA interference rules for silencing.Nat. Cell Biol.2014161101810.1038/ncb289524366030
    [Google Scholar]
  40. KimH.J. KimA. MiyataK. KataokaK. KimH.J. KimA. MiyataK. KataokaK. Recent progress in development of siRNA delivery vehicles for cancer therapy.Adv. Drug Deliv. Rev.2016104617710.1016/j.addr.2016.06.01127352638
    [Google Scholar]
  41. SajidM.I. MoazzamM. KatoS. Yeseom ChoK. TiwariR.K. Tiwari, R.K. Overcoming barriers for siRNA therapeutics: From bench to bedside.Pharmaceuticals2020131029410.3390/ph1310029433036435
    [Google Scholar]
  42. LambertiG. BarbaA.A. Drug delivery of siRNA therapeutics.Pharmaceutics202012217810.3390/pharmaceutics1202017832093141
    [Google Scholar]
  43. QiaoM. ZengC. LiuC. LeiZ. LiuB. XieH. The advancement of siRNA-based nanomedicine for tumor therapy.Nanomedicine20241921-2212210.1080/17435889.2024.237706239145477
    [Google Scholar]
  44. WellsC.M. HarrisM. ChoiL. MuraliV.P. GuerraF.D. JenningsJ.A. Stimuli-responsive drug release from smart polymers.J. Funct. Biomater.20191033410.3390/jfb1003003431370252
    [Google Scholar]
  45. ChungS.L. YeeM.S.L. HiiL.W. LimW.M. HoM.Y. KhiewP.S. LeongC.O. Advances in nanomaterials used in co-delivery of siRNA and small molecule drugs for cancer treatment.Nanomaterials20211110246710.3390/nano1110246734684908
    [Google Scholar]
  46. AdjeiI.M. PeetlaC. LabhasetwarV. Heterogeneity in nanoparticles influences biodistribution and targeting.Nanomedicine20149226727810.2217/nnm.13.7023799984
    [Google Scholar]
  47. AghamiriS. JafarpourA. MalekshahiZ.V. Mahmoudi GomariM. NegahdariB. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view.J. Cell. Physiol.20192349148181482710.1002/jcp.2828130919964
    [Google Scholar]
  48. AkçanR. AydoganH.C. YildirimM.Ş. Taşteki̇nB. SağlamN. Nanotoxicity: A challenge for future medicine.Turk. J. Med. Sci.20205041180119610.3906/sag‑1912‑20932283898
    [Google Scholar]
  49. AkitaH. IshibaR. HatakeyamaH. TanakaH. SatoY. TangeK. AraiM. KuboK. HarashimaH. A neutral envelope-type nanoparticle containing pH-responsive and SS-cleavable lipid-like material as a carrier for plasmid DNA.Adv. Healthc. Mater.2013281120112510.1002/adhm.20120043123386367
    [Google Scholar]
  50. ArranjaA.G. PathakV. LammersT. ShiY. Tumor-targeted nanomedicines for cancer theranostics.Pharmacol. Res.2017115879510.1016/j.phrs.2016.11.01427865762
    [Google Scholar]
  51. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  52. FenskeD.B. CullisP.R. Liposomal nanomedicines.Expert Opin. Drug Deliv.200851254410.1517/17425247.5.1.2518095927
    [Google Scholar]
  53. JahangirianH. Ghasemian lemraskiE. WebsterT.J. Rafiee-MoghaddamR. AbdollahiY. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine.Int. J. Nanomedicine2017122957297810.2147/IJN.S12768328442906
    [Google Scholar]
  54. ArayneM.S. SultanaN. QureshiF. Review: Nanoparticles in delivery of cardiovascular drugs.Pak. J. Pharm. Sci.200720434034817604260
    [Google Scholar]
  55. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.20142014141730510.1155/2014/417305
    [Google Scholar]
  56. MirzaA.Z. SiddiquiF.A. Nanomedicine and drug delivery: A mini review.Int. Nano Lett.2014419410.1007/s40089‑014‑0094‑7
    [Google Scholar]
  57. PipernoA. SciortinoM.T. GiustoE. MontesiM. PanseriS. ScalaA. Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles.Int. J. Nanomedicine2021165981600210.2147/IJN.S32132934511901
    [Google Scholar]
  58. LiH. YangY. HongW. HuangM. WuM. ZhaoX. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects.Signal Transduct. Target. Ther.202051110.1038/s41392‑019‑0089‑y32296011
    [Google Scholar]
  59. SungY.K. KimS.W. Recent advances in the development of gene delivery systems.Biomater. Res.2019231810.1186/s40824‑019‑0156‑z30915230
    [Google Scholar]
  60. JoshiN. siRNA loaded polymeric nanoparticles for targeted therapy in ovarian cancer.SydneyPhD Thesis, The University of New South Wales202210.26190/unsworks/24275
    [Google Scholar]
  61. YadavD.N. AliM.S. ThanekarA.M. PoguS.V. RenganA.K. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy.Mol. Pharm.202219124506452610.1021/acs.molpharmaceut.2c0081136409653
    [Google Scholar]
  62. DongY. DorkinJ.R. WangW. ChangP.H. WebberM.J. TangB.C. YangJ. Abutbul-IonitaI. DaninoD. DeRosaF. HeartleinM. LangerR. AndersonD.G. Poly(glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo.Nano Lett.201616284284810.1021/acs.nanolett.5b0242826727632
    [Google Scholar]
  63. NogueiraS.S. SchlegelA. MaxeinerK. WeberB. BarzM. SchroerM.A. BlanchetC.E. SvergunD.I. RamishettiS. PeerD. LangguthP. SahinU. HaasH. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery.ACS Appl. Nano Mater.2020311106341064510.1021/acsanm.0c01834
    [Google Scholar]
  64. GrecoC.T. MuirV.G. EppsT.H.III SullivanM.O. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling.Acta Biomater.2017505040741610.1016/j.actbio.2017.01.00328063990
    [Google Scholar]
  65. QiuM. TangY. ChenJ. MuriphR. YeZ. HuangC. EvansJ. HenskeE.P. XuQ. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis.Proc. Natl. Acad. Sci. USA20221198e211627111910.1073/pnas.211627111935173043
    [Google Scholar]
  66. SasakiK. SatoY. OkudaK. IwakawaK. HarashimaH. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy.Pharmaceutics2022148157210.3390/pharmaceutics1408157236015198
    [Google Scholar]
  67. OnerE. KotmakciM. BairdA.M. GrayS.G. Debelec ButunerB. BozkurtE. KantarciA.G. FinnS.P. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids.J. Nanobiotechnology20211917110.1186/s12951‑021‑00781‑z33685469
    [Google Scholar]
  68. SatoY. NoteY. MaekiM. KajiN. BabaY. TokeshiM. HarashimaH. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.J. Cont. Rel.2016229485710.1016/j.jconrel.2016.03.01926995758
    [Google Scholar]
  69. CaoZ. XiaoH. LiL. LiuM. LinG. ZhaiP. YongK.T. WangX. XuG. The codelivery of siRNA and QDs by pH-responsive micelle for hepatoma cancer cells.Front. Pharmacol.201910119410.3389/fphar.2019.0119431680969
    [Google Scholar]
  70. MiyazakiT. UchidaS. MiyaharaY. MatsumotoA. CabralH. Development of flexible polycation-based mRNA delivery systems for in vivo applications.Mater. Proc.202041510.3390/IOCN2020‑07857
    [Google Scholar]
  71. UchidaS. ItakaK. UchidaH. HayakawaK. OgataT. IshiiT. FukushimaS. OsadaK. KataokaK. In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle.PLoS One201382e5622010.1371/journal.pone.005622023418537
    [Google Scholar]
  72. WuJ. QuW. WillifordJ.M. RenY. JiangX. JiangX. PanD. MaoH.Q. LuijtenE. Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles.Nanotechnology2017282020400210.1088/1361‑6528/aa651928266928
    [Google Scholar]
  73. ZhangX. WangM. FengJ. QinB. ZhangC. ZhuC. LiuW. WangY. LiuW. HuangL. LuS. WangZ. Multifunctional nanoparticles co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer.J. Nanobiotechnology202220116610.1186/s12951‑022‑01377‑x35346194
    [Google Scholar]
  74. LiS. HuY. LiA. LinJ. HsiehK. SchneidermanZ. ZhangP. ZhuY. QiuC. KokkoliE. WangT.H. MaoH.Q. Payload distribution and capacity of mRNA lipid nanoparticles.Nat. Commun.2022131556110.1038/s41467‑022‑33157‑436151112
    [Google Scholar]
  75. AldrianG. VaissièreA. KonateK. SeiselQ. VivèsE. FernandezF. ViguierV. GenevoisC. CouillaudF. DémènéH. AggadD. CovinhesA. Barrère-LemaireS. DeshayesS. BoisguerinP. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo.J. Cont. Rel.2017256799110.1016/j.jconrel.2017.04.01228411182
    [Google Scholar]
  76. HoljencinC.E. FeinbergC.R. HedrickT. HalseyG. WilliamsR.D. PatelP.V. BilesE. CummingsJ.C. WagnerC. VyavahareN. JakymiwA. Advancing peptide siRNA-carrier designs through L/D-amino acid stereochemical modifications to enhance gene silencing.Mol. Ther. Nucleic Acids20212446247610.1016/j.omtn.2021.03.01333868789
    [Google Scholar]
  77. ZhouY. ZhangQ. WangM. HuangC. YaoX. Effective delivery of siRNA-Loaded nanoparticles for overcoming oxaliplatin resistance in colorectal cancer.Front. Oncol.20221282789110.3389/fonc.2022.82789135265524
    [Google Scholar]
  78. MaiyoF. SinghM. Folate-targeted mRNA delivery using chitosan-functionalized selenium nanoparticles: potential in cancer immunotherapy.Pharmaceuticals201912416410.3390/ph1204016431690043
    [Google Scholar]
  79. WangY. ZhangL. XuZ. MiaoL. HuangL. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma.Mol. Ther.201826242043410.1016/j.ymthe.2017.11.00929249397
    [Google Scholar]
  80. GodinB. TasciottiE. LiuX. SerdaR.E. FerrariM. Multistage nanovectors: From concept to novel imaging contrast agents and therapeutics.Acc. Chem. Res.2011441097998910.1021/ar200077p21902173
    [Google Scholar]
  81. JiangY. HuoS. HardieJ. LiangX.J. RotelloV.M. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems.Expert Opin. Drug Deliv.201613454755910.1517/17425247.2016.113448626735861
    [Google Scholar]
  82. MottaghitalabF. FarokhiM. FatahiY. AtyabiF. DinarvandR. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment.J. Cont. Rel.201929529525026710.1016/j.jconrel.2019.01.00930639691
    [Google Scholar]
  83. AdamsD. TournevI.L. TaylorM.S. CoelhoT. Planté-BordeneuveV. BerkJ.L. González-DuarteA. GillmoreJ.D. LowS.C. SekijimaY. ObiciL. ChenC. BadriP. ArumS.M. VestJ. PolydefkisM. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: A randomized clinical trial.Amyloid2023301182610.1080/13506129.2022.209198535875890
    [Google Scholar]
  84. BaumM.A. LangmanC. CochatP. LieskeJ.C. MoochhalaS.H. HamamotoS. SatohH. MouraniC. AricetaG. TorresA. WolleyM. BelostotskyV. ForbesT.A. GroothoffJ. HayesW. TönshoffB. TakayamaT. RosskampR. RussellK. ZhouJ. AmriteA. HoppeB. PHYOX2: A pivotal randomized study of nedosiran in primary hyperoxaluria type 1 or 2.Kidney Int.2023103120721710.1016/j.kint.2022.07.02536007597
    [Google Scholar]
  85. GarrelfsS.F. FrishbergY. HultonS.A. KorenM.J. O’RiordanW.D. CochatP. DeschênesG. Shasha-LavskyH. SalandJ.M. van’t HoffW.G. FusterD.G. MagenD. MoochhalaS.H. SchalkG. SimkovaE. GroothoffJ.W. SasD.J. MeliambroK.A. LuJ. SweetserM.T. GargP.P. VaishnawA.K. GansnerJ.M. McGregorT.L. LieskeJ.C. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1.N. Engl. J. Med.2021384131216122610.1056/NEJMoa202171233789010
    [Google Scholar]
  86. MajeedC.N. MaC.D. XiaoT. RudnickS. BonkovskyH.L. Spotlight on givosiran as a treatment option for adults with acute hepatic porphyria: design, development, and place in therapy.Drug Des. Devel. Ther.2022161827184510.2147/DDDT.S28163135734365
    [Google Scholar]
  87. MerćepI. FriščićN. StrikićD. ReinerŽ. Advantages and disadvantages of inclisiran: a small interfering ribonucleic acid molecule targeting PCSK9: A narrative review.Cardiovasc. Ther.202220221610.1155/2022/812951335237348
    [Google Scholar]
  88. Alnylam Pharmaceuticals. A study of cemdisiran in adults with immunoglobulin a nephropathy.Patent NCT03841448,2024
  89. SrivastavaA. RangarajanS. KavakliK. KlamrothR. KenetG. KhooL. YouC.W. XuW. MalanN. FrenzelL. BagotC.N. StasyshynO. ChangC.Y. PoloskeyS. QiuZ. AnderssonS. MeiB. PipeS.W. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): A multicentre, open-label, randomised, phase 3 trial.Lancet Haematol.2023105e322e33210.1016/S2352‑3026(23)00037‑637003278
    [Google Scholar]
  90. SuhrO.B. CoelhoT. BuadesJ. PougetJ. ConceicaoI. BerkJ. SchmidtH. Waddington-CruzM. CampistolJ.M. BettencourtB.R. VaishnawA. GollobJ. AdamsD. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: A phase II multi-dose study.Orphanet J. Rare Dis.201510110910.1186/s13023‑015‑0326‑626338094
    [Google Scholar]
  91. ThielmannM. CortevilleD. SzaboG. SwaminathanM. LamyA. LehnerL.J. BrownC.D. NoiseuxN. AttaM.G. SquiersE.C. ErlichS. RothensteinD. MolitorisB. MazerC.D. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study.Circulation2021144141133114410.1161/CIRCULATIONAHA.120.05302934474590
    [Google Scholar]
  92. SylentisS.A. Tivanisiran for dry eye in subjects with sjogren’s syndrome.Patent NCT04819269,2024
/content/journals/cdm/10.2174/0113892002339055241211050131
Loading
/content/journals/cdm/10.2174/0113892002339055241211050131
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cytoplasm; delivery; drug; nano; nanocarrier; siRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test