Skip to content
2000
image of Clinical Pharmacology and Side Effects of Venetoclax in Hematologic Malignancies

Abstract

Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies.

Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002338926241114080504
2024-11-29
2025-01-24
Loading full text...

Full text loading...

References

  1. Zhao A. Zhou H. Yang J. Li M. Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct. Target. Ther. 2023 8 1 71 10.1038/s41392‑023‑01342‑6 36797244
    [Google Scholar]
  2. Taylor J. Xiao W. Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017 130 4 410 423 10.1182/blood‑2017‑02‑734541 28600336
    [Google Scholar]
  3. Pattingre S. Levine B. Bcl-2 inhibition of autophagy: A new route to cancer? Cancer Res. 2006 66 6 2885 2888 10.1158/0008‑5472.CAN‑05‑4412 16540632
    [Google Scholar]
  4. Ebrahim A.S. Sabbagh H. Liddane A. Raufi A. Kandouz M. Al-Katib A. Hematologic malignancies: Newer strategies to counter the BCL-2 protein. J. Cancer Res. Clin. Oncol. 2016 142 9 2013 2022 10.1007/s00432‑016‑2144‑1 27043233
    [Google Scholar]
  5. Dhakal P. Bates M. Tomasson M.H. Sutamtewagul G. Dupuy A. Bhatt V.R. Acute myeloid leukemia resistant to venetoclax-based therapy: What does the future hold? Blood Rev. 2023 59 101036 10.1016/j.blre.2022.101036 36549969
    [Google Scholar]
  6. Lasica M. Anderson M.A. Review of venetoclax in CLL, AML and multiple myeloma. J. Pers. Med. 2021 11 6 463 10.3390/jpm11060463 34073976
    [Google Scholar]
  7. Gupta V.A. Barwick B.G. Matulis S.M. Shirasaki R. Jaye D.L. Keats J.J. Oberlton B. Joseph N.S. Hofmeister C.C. Heffner L.T. Dhodapkar M.V. Nooka A.K. Lonial S. Mitsiades C.S. Kaufman J.L. Boise L.H. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood 2021 137 26 3604 3615 10.1182/blood.2020007899 33649772
    [Google Scholar]
  8. Bazinet A. Darbaniyan F. Jabbour E. Montalban-Bravo G. Ohanian M. Chien K. Kadia T. Takahashi K. Masarova L. Short N. Alvarado Y. Yilmaz M. Ravandi F. Andreeff M. Kanagal-Shamanna R. Ganan-Gomez I. Colla S. Qiao W. Huang X. McCue D. Mirabella B. Kantarjian H. Garcia-Manero G. Azacitidine plus venetoclax in patients with high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: Phase 1 results of a single-centre, dose-escalation, dose-expansion, phase 1–2 study. Lancet Haematol. 2022 9 10 e756 e765 10.1016/S2352‑3026(22)00216‑2 36063832
    [Google Scholar]
  9. Morschhauser F. Feugier P. Flinn I.W. Gasiorowski R. Greil R. Illés Á. Johnson N.A. Larouche J.F. Lugtenburg P.J. Patti C. Salles G.A. Trněný M. de Vos S. Mir F. Samineni D. Kim S.Y. Jiang Y. Punnoose E. Sinha A. Clark E. Spielewoy N. Humphrey K. Bazeos A. Zelenetz A.D. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood 2021 137 5 600 609 10.1182/blood.2020006578 33538797
    [Google Scholar]
  10. Tam C.S. Anderson M.A. Pott C. Agarwal R. Handunnetti S. Hicks R.J. Burbury K. Turner G. Di Iulio J. Bressel M. Westerman D. Lade S. Dreyling M. Dawson S.J. Dawson M.A. Seymour J.F. Roberts A.W. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N. Engl. J. Med. 2018 378 13 1211 1223 10.1056/NEJMoa1715519 29590547
    [Google Scholar]
  11. Zinzani P.L. Flinn I.W. Yuen S.L.S. Topp M.S. Rusconi C. Fleury I. Le Dû K. Arthur C. Pro B. Gritti G. Crump M. Petrich A. Samineni D. Sinha A. Punnoose E.A. Szafer-Glusman E. Spielewoy N. Mobasher M. Humphrey K. Kornacker M. Hiddemann W. Venetoclax-rituximab with or without bendamustine vs bendamustine-rituximab in relapsed/refractory follicular lymphoma. Blood 2020 136 23 2628 2637 [J]. 32785666
    [Google Scholar]
  12. Agarwal S. Gopalakrishnan S. Mensing S. Potluri J. Hayslip J. Kirschbrown W. Friedel A. Menon R Salem H. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis. Hematol. Oncol. 2019 37 4 464 473 10.1002/hon.2646 31251400
    [Google Scholar]
  13. Agarwal S.K. DiNardo C.D. Potluri J. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: Evaluation of dose adjustments. Clin. Ther. 2017 39 2 359 367 10.1016/j.clinthera.2017.01.003 28161120
    [Google Scholar]
  14. Korycka-Wolowiec A. Wolowiec D. Kubiak-Mlonka A. Robak T. Venetoclax in the treatment of chronic lymphocytic leukemia. Expert Opin. Drug Metab. Toxicol. 2019 15 5 353 366 10.1080/17425255.2019.1606211 30969139
    [Google Scholar]
  15. Czabotar P.E. Garcia-Saez A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 2023 24 10 732 748 10.1038/s41580‑023‑00629‑4 37438560
    [Google Scholar]
  16. Lagadinou E.D. Sach A. Callahan K. Rossi R.M. Neering S.J. Minhajuddin M. Ashton J.M. Pei S. Grose V. O’Dwyer K.M. Liesveld J.L. Brookes P.S. Becker M.W. Jordan C.T. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013 12 3 329 341 10.1016/j.stem.2012.12.013 23333149
    [Google Scholar]
  17. Ong F. Kim K. Konopleva M.Y. Venetoclax resistance: Mechanistic insights and future strategies. Cancer Drug Resist. 2022 5 2 380 400 10.20517/cdr.2021.125 35800373
    [Google Scholar]
  18. Seymour J.F. Davids M.S. Pagel J.M. Kahl B.S. Wierda W.G. Miller T.P. Gerecitano J.F. Kipps T.J. Anderson M.A. Huang D.C.S. Darden D.E. Gressick L.A. Nolan C.E. Yang J. Busman T.A. Graham A.M. Cerri E. Enschede S.H. Humerickhouse R.A. Roberts A.W. Updated results of a phase I first-in-human study of the BCL-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 2013 31 Suppl 15 7018 10.1200/jco.2013.31.15_suppl.7018
    [Google Scholar]
  19. Pan R. Hogdal L.J. Benito J.M. Bucci D. Han L. Borthakur G. Cortes J. DeAngelo D.J. Debose L. Mu H. Döhner H. Gaidzik V.I. Galinsky I. Golfman L.S. Haferlach T. Harutyunyan K.G. Hu J. Leverson J.D. Marcucci G. Müschen M. Newman R. Park E. Ruvolo P.P. Ruvolo V. Ryan J. Schindela S. Zweidler-McKay P. Stone R.M. Kantarjian H. Andreeff M. Konopleva M. Letai A.G. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014 4 3 362 375 10.1158/2159‑8290.CD‑13‑0609 24346116
    [Google Scholar]
  20. Weng G. Zhang Y. Yu G. Luo T. Yu S. Xu N. Sun Z. Lin D. Deng L. Liang X. Xiao J. Zhang H. Guo Z. Shao R. Du X. Jin H. Liu Q. Genetic characteristics predict response to venetoclax plus hypomethylating agents in relapsed or refractory acute myeloid leukemia. J. Intern. Med. 2023 293 3 329 339 10.1111/joim.13581 36284445
    [Google Scholar]
  21. Aldoss I. Yang D. Pillai R. Sanchez J.F. Mei M. Aribi A. Ali H. Sandhu K. Malki M.M.A. Salhotra A. Khaled S. Association of leukemia genetics with response to venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Am. J. Hematol. 2019 94 10 E253 E255 10.1002/ajh.25567 31259427
    [Google Scholar]
  22. Wang Y.W. Tsai C.H. Lin C.C. Tien F.M. Chen Y.W. Lin H.Y. Yao M. Lin Y.C. Lin C.T. Cheng C.L. Tang J.L. Chou W.C. Hou H.A. Tien H.F. Cytogenetics and mutations could predict outcome in relapsed and refractory acute myeloid leukemia patients receiving BCL-2 inhibitor venetoclax. Ann. Hematol. 2020 99 3 501 511 10.1007/s00277‑020‑03911‑z 31965269
    [Google Scholar]
  23. Courtois L. Cabannes-Hamy A. Kim R. Delecourt M. Pinton A. Charbonnier G. Feroul M. Smith C. Tueur G. Pivert C. Balducci E. Simonin M. Angel L.H. Spicuglia S. Boissel N. Andrieu G.P. Asnafi V. Rousselot P. Lhermitte L. IL-7 receptor expression is frequent in T-cell acute lymphoblastic leukemia and predicts sensitivity to JAK inhibition. Blood 2023 142 2 158 171 37023368
    [Google Scholar]
  24. Kontro M. Kumar A. Majumder M.M. Eldfors S. Parsons A. Pemovska T. Saarela J. Yadav B. Malani D. Fløisand Y. Höglund M. Remes K. Gjertsen B.T. Kallioniemi O. Wennerberg K. Heckman C.A. Porkka K. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia 2017 31 2 301 309 10.1038/leu.2016.222 27499136
    [Google Scholar]
  25. Chan S.M. Thomas D. Corces-Zimmerman M.R. Xavy S. Rastogi S. Hong W.J. Zhao F. Medeiros B.C. Tyvoll D.A. Majeti R. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 2015 21 2 178 184 10.1038/nm.3788 25599133
    [Google Scholar]
  26. Chyla B. Daver N. Doyle K. McKeegan E. Huang X. Ruvolo V. Wang Z. Chen K. Souers A. Leverson J. Potluri J. Boghaert E. Bhathena A. Konopleva M. Popovic R. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. Am. J. Hematol. 2018 93 8 E202 E205 10.1002/ajh.25146 29770480
    [Google Scholar]
  27. Ye S. Xiong F. He X. Yuan Y. Li D. Ye D. Shi L. Lin Z. Zhao M. Feng S. Zhou B. Weng H. Hong L. Ye H. Gao S. DNA hypermethylation-induced miR-182 silence targets BCL2 and HOXA9 to facilitate the self-renewal of leukemia stem cell, accelerate acute myeloid leukemia progression, and determine the sensitivity of BCL2 inhibitor venetoclax. Theranostics 2023 13 1 77 94 10.7150/thno.77404 36593968
    [Google Scholar]
  28. Lima K. Pereira-Martins D.A. de Miranda L.B.L. Coelho-Silva J.L. Leandro G.S. Weinhäuser I. Cavaglieri R.C. Leal A.M. da Silva W.F. Lange A.P.A.L. Velloso E.D.R.P. Griessinger E. Hilberink J.R. Ammatuna E. Huls G. Schuringa J.J. Rego E.M. Machado-Neto J.A. The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J. 2022 12 11 151 10.1038/s41408‑022‑00747‑w 36347832
    [Google Scholar]
  29. Thus Y.J. De Rooij M.F.M. Swier N. Beijersbergen R.L. Guikema J.E.J. Kersten M.J. Eldering E. Pals S.T. Kater A.P. Spaargaren M. Inhibition of casein kinase 2 sensitizes mantle cell lymphoma to venetoclax through MCL-1 downregulation. Haematologica 2022 108 3 797 810 10.3324/haematol.2022.281668 36226498
    [Google Scholar]
  30. Coccaro N. Tota G. Anelli L. Zagaria A. Specchia G. Albano F. Digital PCR: A reliable tool for analyzing and monitoring hematologic malignancies. Int. J. Mol. Sci. 2020 21 9 3141 10.3390/ijms21093141 32365599
    [Google Scholar]
  31. Hehir-Kwa J.Y. Koudijs M.J. Verwiel E.T.P. Kester L.A. van Tuil M. Strengman E. Buijs A. Kranendonk M.E.G. Hiemcke-Jiwa L.S. de Haas V. van de Geer E. de Leng W. van der Lugt J. Lijnzaad P. Holstege F.C.P. Kemmeren P. Tops B.B.J. Improved gene fusion detection in childhood cancer diagnostics using RNA sequencing. JCO Precis. Oncol. 2022 6 6 e2000504 10.1200/PO.20.00504 35085008
    [Google Scholar]
  32. Janssen M. Schmidt C. Bruch P.M. Blank M.F. Rohde C. Waclawiczek A. Heid D. Renders S. Göllner S. Vierbaum L. Besenbeck B. Herbst S.A. Knoll M. Kolb C. Przybylla A. Weidenauer K. Ludwig A.K. Fabre M. Gu M. Schlenk R.F. Stölzel F. Bornhäuser M. Röllig C. Platzbecker U. Baldus C. Serve H. Sauer T. Raffel S. Pabst C. Vassiliou G. Vick B. Jeremias I. Trumpp A. Krijgsveld J. Müller-Tidow C. Dietrich S. Venetoclax synergizes with gilteritinib in FLT3 wild-type high-risk acute myeloid leukemia by suppressing MCL-1. Blood 2022 140 24 2594 2610 10.1182/blood.2021014241 35857899
    [Google Scholar]
  33. Marei H.E. Althani A. Afifi N. Hasan A. Caceci T. Pozzoli G. Morrione A. Giordano A. Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021 21 1 703 10.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  34. Daver N.G. Iqbal S. Renard C. Chan R.J. Hasegawa K. Hu H. Tse P. Yan J. Zoratti M.J. Xie F. Ramsingh G. Treatment outcomes for newly diagnosed, treatment-naïve TP53-mutated acute myeloid leukemia: A systematic review and meta-analysis. J. Hematol. Oncol. 2023 16 1 19 10.1186/s13045‑023‑01417‑5 36879351
    [Google Scholar]
  35. Thijssen R. Diepstraten S.T. Moujalled D. Chew E. Flensburg C. Shi M.X. Dengler M.A. Litalien V. MacRaild S. Chen M. Anstee N.S. Reljić B. Gabriel S.S. Djajawi T.M. Riffkin C.D. Aubrey B.J. Chang C. Tai L. Xu Z. Morley T. Pomilio G. Bruedigam C. Kallies A. Stroud D.A. Bajel A. Kluck R.M. Lane S.W. Schoumacher M. Banquet S. Majewski I.J. Strasser A. Roberts A.W. Huang D.C.S. Brown F.C. Kelly G.L. Wei A.H. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood 2021 137 20 2721 2735 10.1182/blood.2020010167 33824975
    [Google Scholar]
  36. Culp-Hill R. Stevens B.M. Jones C.L. Pei S. Dzieciatkowska M. Minhajuddin M. Jordan C.T. D’Alessandro A. Therapy-resistant acute myeloid leukemia stem cells are resensitized to venetoclax + azacitidine by targeting fatty acid desaturases 1 and 2. Metabolites 2023 13 4 467 10.3390/metabo13040467 37110126
    [Google Scholar]
  37. Jiang J. Wang Y. Liu D. Wang X. Zhu Y. Tong J. Chen E. Xue L. Zhao N. Liang T. Zheng C. Selinexor synergistically promotes the antileukemia activity of venetoclax in acute myeloid leukemia by inhibiting glycolytic function and downregulating the expression of DNA replication genes. ImmunoTargets Ther. 2023 12 135 147 10.2147/ITT.S429402 38026089
    [Google Scholar]
  38. Salem A.H. Agarwal S.K. Dunbar M. Enschede S.L.H. Humerickhouse R.A. Wong S.L. Pharmacokinetics of venetoclax, a novel BCL‐2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non‐hodgkin lymphoma. J. Clin. Pharmacol. 2017 57 4 484 492 10.1002/jcph.821 27558232
    [Google Scholar]
  39. Salem A.H. Dunbar M. Agarwal S.K. Pharmacokinetics of venetoclax in patients with 17p deletion chronic lymphocytic leukemia. Anticancer Drugs 2017 28 8 911 914 10.1097/CAD.0000000000000522 28562380
    [Google Scholar]
  40. Salem A.H. Agarwal S.K. Dunbar M. Nuthalapati S. Chien D. Freise K.J. Wong S.L. Effect of lowand high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J. Clin. Pharmacol. 2016 56 11 1355 1361 10.1002/jcph.741 27029823
    [Google Scholar]
  41. Cheung T.T. Salem A.H. Menon R.M. Munasinghe W.P. Bueno O.F. Agarwal S.K. Pharmacokinetics of the BCL‐2 inhibitor venetoclax in healthy Chinese subjects. Clin. Pharmacol. Drug Dev. 2018 7 4 435 440 10.1002/cpdd.395 29058801
    [Google Scholar]
  42. Jones A.K. Freise K.J. Agarwal S.K. Humerickhouse R.A. Wong S.L. Salem A.H. Clinical Predictors of Venetoclax Pharmacokinetics in Chronic Lymphocytic Leukemia and Non-Hodgkin’s Lymphoma Patients: A Pooled Population Pharmacokinetic Analysis. AAPS J. 2016 18 5 1192 1202 10.1208/s12248‑016‑9927‑9 27233802
    [Google Scholar]
  43. Meibohm B. Beierle I. Derendorf H. How important are gender differences in pharmacokinetics? Clin. Pharmacokinet. 2002 41 5 329 342 10.2165/00003088‑200241050‑00002 12036391
    [Google Scholar]
  44. Zucker I. Prendergast B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020 11 1 32 10.1186/s13293‑020‑00308‑5 32503637
    [Google Scholar]
  45. Badawi M. Menon R. Place A.E. Palenski T. Sunkersett G. Arrendale R. Deng R. Federico S.M. Cooper T.M. Salem A.H. Venetoclax penetrates the blood brain barrier: A pharmacokinetic analysis in pediatric leukemia patients. J. Cancer 2023 14 7 1151 1156 10.7150/jca.81795 37215448
    [Google Scholar]
  46. Jian Y. Han F. Zhu Y. Geng C. Zhang Y. Wu Y. Leng Y. Chen W. An Z. Zhu H.H. Paired comparisons of venetoclax concentration in cerebrospinal fluid, bone marrow, and plasma in acute leukemia patients. Clin. Transl. Sci. 2024 17 9 e70006 10.1111/cts.70006 39286959
    [Google Scholar]
  47. Liu H. Michmerhuizen M.J. Lao Y. Wan K. Salem A.H. Sawicki J. Serby M. Vaidyanathan S. Wong S.L. Agarwal S. Dunbar M. Sydor J. de Morais S.M. Lee A.J. Metabolism and disposition of a novel B-cell lymphoma-2 inhibitor venetoclax in humans and characterization of its unusual metabolites. Drug Metab. Dispos. 2017 45 3 294 305 10.1124/dmd.116.071613 27993930
    [Google Scholar]
  48. Salem A.H. Dave N. Marbury T. Hu B. Miles D. Agarwal S.K. Bueno O.F. Menon R.M. Pharmacokinetics of the BCL-2 inhibitor venetoclax in subjects with hepatic impairment. Clin. Pharmacokinet. 2019 58 8 1091 1100 10.1007/s40262‑019‑00746‑4 30949874
    [Google Scholar]
  49. Krens S.D. Lassche G. Jansman F.G.A. Desar I.M.E. Lankheet N.A.G. Burger D.M. van Herpen C.M.L. van Erp N.P. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment. Lancet Oncol. 2019 20 4 e200 e207 10.1016/S1470‑2045(19)30145‑7 30942181
    [Google Scholar]
  50. Noorani B. Menon R.M. Chen X. Venetoclax pharmacokinetics in participants with end-stage renal disease undergoing haemodialysis. Br. J. Clin. Pharmacol. 2023 ••• 1 11 [J]. 37855131
    [Google Scholar]
  51. Megías-Vericat J.E. Solana-Altabella A. Ballesta-López O. Martínez-Cuadrón D. Montesinos P. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol. 2020 99 9 1989 2007 10.1007/s00277‑020‑04186‑0 32683457
    [Google Scholar]
  52. Salem A.H. Hu B. Freise K.J. Agarwal S.K. Sidhu D.S. Wong S.L. Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 inhibitor, and warfarin in healthy volunteers. Clin. Drug Investig. 2017 37 3 303 309 10.1007/s40261‑016‑0485‑9 27910036
    [Google Scholar]
  53. Dong J. Liu S. Rasheduzzaman J.M. Huang C. Miao L. Development of physiology based pharmacokinetic model to predict the drug interactions of voriconazole and venetoclax. Pharm. Res. 2022 39 8 1921 1933 10.1007/s11095‑022‑03289‑9 35725843
    [Google Scholar]
  54. Agarwal S.K. Salem A.H. Danilov A.V. Hu B. Puvvada S. Gutierrez M. Chien D. Lewis L.D. Wong S.L. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL‐2 inhibitor, in patients with non‐Hodgkin lymphoma. Br. J. Clin. Pharmacol. 2017 83 4 846 854 10.1111/bcp.13175 27859472
    [Google Scholar]
  55. Freise K.J. Hu B. Salem A.H. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur. J. Clin. Pharmacol. 2018 74 4 413 421 10.1007/s00228‑017‑2403‑3 29302721
    [Google Scholar]
  56. Agarwal S.K. Hu B. Chien D. Wong S.L. Salem A.H. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: Results of a single- and multiple-dose study. J. Clin. Pharmacol. 2016 56 11 1335 1343 10.1002/jcph.730 26953185
    [Google Scholar]
  57. Freise K.J. Shebley M. Salem A.H. Quantitative Prediction of the Effect of CYP3A Inhibitors and Inducers on Venetoclax Pharmacokinetics Using a Physiologically Based Pharmacokinetic Model. J. Clin. Pharmacol. 2017 57 6 796 804 10.1002/jcph.858 28052338
    [Google Scholar]
  58. Mukherjee D. Brackman D.J. Suleiman A.A. Zha J. Menon R.M. Salem A.H. Impact of multiple concomitant CYP3A inhibitors on venetoclax pharmacokinetics: A PBPK and population PK‐informed analysis. J. Clin. Pharmacol. 2023 63 1 119 125 10.1002/jcph.2140 35996877
    [Google Scholar]
  59. Chiney M.S. Menon R.M. Bueno O.F. Tong B. Salem A.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin. Xenobiotica 2018 48 9 904 910 10.1080/00498254.2017.1381779 29027832
    [Google Scholar]
  60. Alhadab A.A. Salem A.H. Freise K.J. Semimechanistic modeling to guide venetoclax coadministration with ritonavir and digoxin. Clin. Transl. Sci. 2020 13 3 555 562 10.1111/cts.12739 31961475
    [Google Scholar]
  61. Agarwal S.K. Tong B. Bueno O.F. Menon R.M. Salem A.H. Effect of azithromycin on venetoclax pharmacokinetics in healthy volunteers: Implications for dosing venetoclax with P-gp Inhibitors. Adv. Ther. 2018 35 11 2015 2023 10.1007/s12325‑018‑0793‑y 30264382
    [Google Scholar]
  62. Brackman D. Eckert D. Menon R. Salem A.H. Potluri J. Smith B.D. Wei A.H. Hayslip J. Miles D. Mensing S. Gopalakrishnan S. Zha J. Venetoclax exposure‐efficacy and exposure‐safety relationships in patients with treatment‐naïve acute myeloid leukemia who are ineligible for intensive chemotherapy. Hematol. Oncol. 2022 40 2 269 279 10.1002/hon.2964 35043428
    [Google Scholar]
  63. Samineni D. Gibiansky L. Wang B. Vadhavkar S. Rajwanshi R. Tandon M. Sinha A. Al-Sawaf O. Fischer K. Hallek M. Salem A.H. Li C. Miles D. Pharmacokinetics and exposure-response analysis of venetoclax + obinutuzumab in chronic lymphocytic leukemia: Phase 1b study and phase 3 CLL14 trial. Adv. Ther. 2022 39 8 3635 3653 10.1007/s12325‑022‑02170‑w 35708885
    [Google Scholar]
  64. Samineni D. Huang W. Gibiansky L. Ding H. Zhang R. Li C. Sinha A. Rajwanshi R. Humphrey K. Bazeos A. Salem A.H. Miles D. Population pharmacokinetics and exposure - Response analyses for venetoclax in combination with R-CHOP in relapsed/refractory and previously untreated patients with diffuse large B cell lymphoma. Adv. Ther. 2022 39 1 598 618 10.1007/s12325‑021‑01919‑z 34822104
    [Google Scholar]
  65. Parikh A. Gopalakrishnan S. Freise K.J. Verdugo M.E. Menon R.M. Mensing S. Salem A.H. Exposure-response evaluations of venetoclax efficacy and safety in patients with non-Hodgkin lymphoma. Leuk. Lymphoma 2018 59 4 871 879 10.1080/10428194.2017.1361024 28797193
    [Google Scholar]
  66. Cheson B.D. Heitner Enschede S. Cerri E. Desai M. Potluri J. Lamanna N. Tam C. Tumor lysis syndrome in chronic lymphocytic leukemia with novel targeted agents. Oncologist 2017 22 11 1283 1291 10.1634/theoncologist.2017‑0055 28851760
    [Google Scholar]
  67. Roberts A.W. Davids M.S. Pagel J.M. Kahl B.S. Puvvada S.D. Gerecitano J.F. Kipps T.J. Anderson M.A. Brown J.R. Gressick L. Wong S. Dunbar M. Zhu M. Desai M.B. Cerri E. Heitner Enschede S. Humerickhouse R.A. Wierda W.G. Seymour J.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016 374 4 311 322 10.1056/NEJMoa1513257 26639348
    [Google Scholar]
  68. Abernathy K.M. Perciavalle M.A. Gatwood K.S. Chen H. Zakhari M.M. Byrne M. Real-world analysis of tumor lysis syndrome in patients started on venetoclax combination for acute myeloid leukemia. J. Oncol. Pharm. Pract. 2023 29 6 1326 1333 10.1177/10781552221118635 35946111
    [Google Scholar]
  69. Cramer P. von Tresckow J. Bahlo J. Robrecht S. Langerbeins P. Al-Sawaf O. Engelke A. Fink A.M. Fischer K. Tausch E. Seiler T. Fischer von Weikersthal L. Hebart H. Kreuzer K.A. Böttcher S. Ritgen M. Kneba M. Wendtner C.M. Stilgenbauer S. Eichhorst B. Hallek M. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): Primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018 19 9 1215 1228 10.1016/S1470‑2045(18)30414‑5 30115596
    [Google Scholar]
  70. DiNardo C.D. Jonas B.A. Pullarkat V. Thirman M.J. Garcia J.S. Wei A.H. Konopleva M. Döhner H. Letai A. Fenaux P. Koller E. Havelange V. Leber B. Esteve J. Wang J. Pejsa V. Hájek R. Porkka K. Illés Á. Lavie D. Lemoli R.M. Yamamoto K. Yoon S.S. Jang J.H. Yeh S.P. Turgut M. Hong W.J. Zhou Y. Potluri J. Pratz K.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020 383 7 617 629 10.1056/NEJMoa2012971 32786187
    [Google Scholar]
  71. Zeidan A.M. Borate U. Pollyea D.A. Brunner A.M. Roncolato F. Garcia J.S. Filshie R. Odenike O. Watson A.M. Krishnadasan R. Bajel A. Naqvi K. Zha J. Cheng W.H. Zhou Y. Hoffman D. Harb J.G. Potluri J. Garcia-Manero G. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes. Am. J. Hematol. 2023 98 2 272 281 10.1002/ajh.26771 36309981
    [Google Scholar]
  72. Wei A.H. Montesinos P. Ivanov V. DiNardo C.D. Novak J. Laribi K. Kim I. Stevens D.A. Fiedler W. Pagoni M. Samoilova O. Hu Y. Anagnostopoulos A. Bergeron J. Hou J.Z. Murthy V. Yamauchi T. McDonald A. Chyla B. Gopalakrishnan S. Jiang Q. Mendes W. Hayslip J. Panayiotidis P. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020 135 24 2137 2145 10.1182/blood.2020004856 32219442
    [Google Scholar]
  73. Fukumoto A. Narita K. Ikeda D. Uesugi Y. Tabata R. Miura D. Takeuchi M. Matsue K. Safety and efficacy of venetoclax for acute myeloid leukaemia in real-world clinical practice. Jpn. J. Clin. Oncol. 2023 53 10 991 995 10.1093/jjco/hyad075 37394913
    [Google Scholar]
  74. Papadaki H.A. Eliopoulos G.D. The role of apoptosis in the pathophysiology of chronic neutropenias associated with bone marrow failure. Cell Cycle 2003 2 5 445 449 10.4161/cc.2.5.463 12963840
    [Google Scholar]
  75. Kargbo R.B. Redefining cancer therapy: Toward BCL-XL/BCL-2 dual inhibitors with diminished platelet toxicity. ACS Med. Chem. Lett. 2023 14 9 1156 1158 10.1021/acsmedchemlett.3c00357 37736185
    [Google Scholar]
  76. DiNardo C.D. Pratz K. Pullarkat V. Jonas B.A. Arellano M. Becker P.S. Frankfurt O. Konopleva M. Wei A.H. Kantarjian H.M. Xu T. Hong W.J. Chyla B. Potluri J. Pollyea D.A. Letai A. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019 133 1 7 17 10.1182/blood‑2018‑08‑868752 30361262
    [Google Scholar]
  77. Zhu L. Chen R. Wang L. Sun J. Zhou D. Li L. qian J. Zhang Y. Tong H. Yu W. Meng H. Mai W. Xie W. Jin J. Ye X. Zhu H. A real-world study of infectious complications of venetoclax combined with decitabine or azacitidine in adult acute myeloid leukemia. Support. Care Cancer 2022 30 8 7031 7038 10.1007/s00520‑022‑07126‑y 35585204
    [Google Scholar]
  78. Pandian J. Raghavan V. Manuprasad A. Shenoy P.K. Nair C.K. Infection at diagnosis—a unique challenge in acute myeloid leukemia treatment in developing world. Support. Care Cancer 2020 28 11 5449 5454 10.1007/s00520‑020‑05379‑z 32166380
    [Google Scholar]
  79. Candoni A. Lazzarotto D. Papayannidis C. Piccini M. Nadali G. Dargenio M. Riva M. Fracchiolla N. Mellillo L. Dragonetti G. Del Principe M.I. Cattaneo C. Stulle M. Pasciolla C. De Marchi R. Delia M. Tisi M.C. Bonuomo V. Sciumè M. Spadea A. Sartor C. Griguolo D. Buzzatti E. Basilico C.M. Sarlo C. Piccioni A.L. Cerqui E. Lessi F. Olivieri A. Fanin R. Luppi M. Pagano L. Prospective multicenter study on infectious complications and clinical outcome of 230 unfit acute myeloid leukemia patients receiving first‐line therapy with hypomethylating agents alone or in combination with Venetoclax. Am. J. Hematol. 2023 98 4 E80 E83 10.1002/ajh.26846 36651870
    [Google Scholar]
  80. Bucaneve G. Micozzi A. Menichetti F. Martino P. Dionisi M.S. Martinelli G. Allione B. D’Antonio D. Buelli M. Nosari A.M. Cilloni D. Zuffa E. Cantaffa R. Specchia G. Amadori S. Fabbiano F. Deliliers G.L. Lauria F. Foà R. Del Favero A. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N. Engl. J. Med. 2005 353 10 977 987 10.1056/NEJMoa044097 16148283
    [Google Scholar]
  81. Gafter-Gvili A. Fraser A. Paul M. Leibovici L. Meta-analysis: Antibiotic prophylaxis reduces mortality in neutropenic patients. Ann. Intern. Med. 2005 142 12_Part_1 979 995 10.7326/0003‑4819‑142‑12_Part_1‑200506210‑00008 15968013
    [Google Scholar]
  82. Otsuki A. Kumondai M. Kobayashi D. Kikuchi M. Ueki Y. Sato Y. Hayashi N. Yagi A. Onishi Y. Onodera K. Ichikawa S. Fukuhara N. Yokoyama H. Maekawa M. Mano N. Plasma Venetoclax Concentrations in Patients with Acute Myeloid Leukemia Treated with CYP3A4 Inhibitors. Yakugaku Zasshi 2024 144 7 775 779 10.1248/yakushi.24‑00018 38945852
    [Google Scholar]
  83. Hagihara M. Yasu T. Gando Y. Sugi T. Nakashima S. Imai Y. Nakano H. Uchida T. Inoue M. Increased trough concentration of venetoclax when combined with itraconazole for acute myeloid leukemia. Ann. Hematol. 2024 103 11 4497 4502 10.1007/s00277‑024‑05845‑2 39327313
    [Google Scholar]
  84. Davids M.S. Hallek M. Wierda W. Roberts A.W. Stilgenbauer S. Jones J.A. Gerecitano J.F. Kim S.Y. Potluri J. Busman T. Best A. Verdugo M.E. Cerri E. Desai M. Hillmen P. Seymour J.F. Comprehensive safety analysis of venetoclax monotherapy for patients with relapsed/refractory chronic lymphocytic leukemia. Clin. Cancer Res. 2018 24 18 4371 4379 10.1158/1078‑0432.CCR‑17‑3761 29895707
    [Google Scholar]
  85. Hadjiaggelidou C. Douganiotis G. Tsirou K. Verrou E. Triantafyllou T. Keramidioti K. Konstantinidou P. Katodritou E. A rare case of autoimmune hemolytic anemia during venetoclax therapy for relapsed chronic lymphocytic leukemia. Leuk. Lymphoma 2021 62 12 3054 3056 10.1080/10428194.2021.1941932 34151719
    [Google Scholar]
  86. Berentsen S. Barcellini W. Autoimmune hemolytic anemias. N. Engl. J. Med. 2021 385 15 1407 1419 10.1056/NEJMra2033982 34614331
    [Google Scholar]
  87. Johnson I.M. Bezerra E.D. Farrukh F. McCullough K. Al-Kali A. Alkhateeb H.B. Begna K. Litzow M.R. Hogan W.J. Shah M.V. Patnaik M.M. Tefferi A. Gangat N. Cardiac events in patients with acute myeloid leukemia treated with venetoclax combined with hypomethylating agents. Blood Adv. 2022 6 17 5227 5231 10.1182/bloodadvances.2022007333 35358999
    [Google Scholar]
  88. AlAsmari A.F. Alghamdi A. Ali N. Almeaikl M.A. Hakami H.M. Alyousef M.K. AlSwayyed M. Alharbi M. Alqahtani F. Alasmari F. Alsaleh N. Venetoclax induces cardiotoxicity through modulation of oxidative-stress-mediated cardiac inflammation and apoptosis via NF-κB and BCL-2 pathway. Int. J. Mol. Sci. 2022 23 11 6260 10.3390/ijms23116260 35682939
    [Google Scholar]
  89. Kleber M.E. Delgado G. Grammer T.B. Silbernagel G. Huang J. Krämer B.K. Ritz E. März W. Uric acid and cardiovascular events: A Mendelian randomization study. J. Am. Soc. Nephrol. 2015 26 11 2831 2838 10.1681/ASN.2014070660 25788527
    [Google Scholar]
  90. Ye F. Zhang W. Fan C. Dong J. Peng M. Deng W. Zhang H. Yang L. Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis. J. Transl. Med. 2023 21 1 606 10.1186/s12967‑023‑04481‑0 37679782
    [Google Scholar]
  91. Pervushin N.V. Kopeina G.S. Zhivotovsky B. Bcl-B: an “unknown” protein of the Bcl-2 family. Biol. Direct 2023 18 1 69 10.1186/s13062‑023‑00431‑4 37899453
    [Google Scholar]
  92. Kaloni D. Diepstraten S.T. Strasser A. Kelly G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis 2023 28 1-2 20 38 10.1007/s10495‑022‑01780‑7 36342579
    [Google Scholar]
  93. Ploumaki I. Triantafyllou E. Koumprentziotis I.A. Karampinos K. Drougkas K. Karavolias I. Trontzas I. Kotteas E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol. 2023 25 6 1554 1578 10.1007/s12094‑022‑03070‑9 36639602
    [Google Scholar]
  94. Fairlie W.D. Lee E.F. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem. Soc. Trans. 2021 49 5 2397 2410 10.1042/BST20210750 34581776
    [Google Scholar]
  95. Lindeman G.J. Fernando T.M. Bowen R. Jerzak K.J. Song X. Decker T. Boyle F. McCune S. Armstrong A. Shannon C. Bertelli G. Chang C.W. Desai R. Gupta K. Wilson T.R. Flechais A. Bardia A. VERONICA: Randomized phase II study of fulvestrant and venetoclax in ER-positive metastatic breast cancer post-CDK4/6 inhibitors – Efficacy, safety, and biomarker results. Clin. Cancer Res. 2022 28 15 3256 3267 10.1158/1078‑0432.CCR‑21‑3811 35583555
    [Google Scholar]
  96. Xu J. Dong X. Huang D.C.S. Xu P. Zhao Q. Chen B. Current advances and future strategies for BCL-2 inhibitors: Potent weapons against cancers. Cancers (Basel) 2023 15 20 4957 10.3390/cancers15204957 37894324
    [Google Scholar]
  97. Neely V. Manchikalapudi A. Nguyen K. Dalton K. Hu B. Koblinski J.E. Faber A.C. Deb S. Harada H. Targeting oncogenic mutant p53 and BCL-2 for small cell lung cancer treatment. Int. J. Mol. Sci. 2023 24 17 13082 10.3390/ijms241713082 37685889
    [Google Scholar]
  98. Zhao L. Liu P. Mao M. Zhang S. Bigenwald C. Dutertre C.A. Lehmann C.H.K. Pan H. Paulhan N. Amon L. Buqué A. Yamazaki T. Galluzzi L. Kloeckner B. Silvin A. Pan Y. Chen H. Tian A.L. Ly P. Dudziak D. Zitvogel L. Kepp O. Kroemer G. BCL2 inhibition reveals a dendritic cell–specific immune checkpoint that controls tumor immunosurveillance. Cancer Discov. 2023 13 11 2448 2469 10.1158/2159‑8290.CD‑22‑1338 37623817
    [Google Scholar]
  99. Liu P. Zhao L. Kroemer G. Kepp O. BCL2 inhibition stimulates dendritic cell function for improved anticancer immunotherapy. Genes Immun. 2024 25 4 348 350 10.1038/s41435‑024‑00256‑9 38267541
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002338926241114080504
Loading
/content/journals/cdm/10.2174/0113892002338926241114080504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test