Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies.

Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002338926241114080504
2024-11-29
2025-04-06
Loading full text...

Full text loading...

References

  1. ZhaoA. ZhouH. YangJ. LiM. NiuT. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies.Signal Transduct. Target. Ther.2023817110.1038/s41392‑023‑01342‑636797244
    [Google Scholar]
  2. TaylorJ. XiaoW. Abdel-WahabO. Diagnosis and classification of hematologic malignancies on the basis of genetics.Blood2017130441042310.1182/blood‑2017‑02‑73454128600336
    [Google Scholar]
  3. PattingreS. LevineB. Bcl-2 inhibition of autophagy: A new route to cancer?Cancer Res.20066662885288810.1158/0008‑5472.CAN‑05‑441216540632
    [Google Scholar]
  4. EbrahimA.S. SabbaghH. LiddaneA. RaufiA. KandouzM. Al-KatibA. Hematologic malignancies: Newer strategies to counter the BCL-2 protein.J. Cancer Res. Clin. Oncol.201614292013202210.1007/s00432‑016‑2144‑127043233
    [Google Scholar]
  5. DhakalP. BatesM. TomassonM.H. SutamtewagulG. DupuyA. BhattV.R. Acute myeloid leukemia resistant to venetoclax-based therapy: What does the future hold?Blood Rev.20235910103610.1016/j.blre.2022.10103636549969
    [Google Scholar]
  6. LasicaM. AndersonM.A. Review of venetoclax in CLL, AML and multiple myeloma.J. Pers. Med.202111646310.3390/jpm1106046334073976
    [Google Scholar]
  7. GuptaV.A. BarwickB.G. MatulisS.M. ShirasakiR. JayeD.L. KeatsJ.J. OberltonB. JosephN.S. HofmeisterC.C. HeffnerL.T. DhodapkarM.V. NookaA.K. LonialS. MitsiadesC.S. KaufmanJ.L. BoiseL.H. Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression.Blood2021137263604361510.1182/blood.202000789933649772
    [Google Scholar]
  8. BazinetA. DarbaniyanF. JabbourE. Montalban-BravoG. OhanianM. ChienK. KadiaT. TakahashiK. MasarovaL. ShortN. AlvaradoY. YilmazM. RavandiF. AndreeffM. Kanagal-ShamannaR. Ganan- GomezI. CollaS. QiaoW. HuangX. McCueD. MirabellaB. KantarjianH. Garcia-ManeroG. Azacitidine plus venetoclax in patients with high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia: Phase 1 results of a single-centre, dose-escalation, dose-expansion, phase 1–2 study.Lancet Haematol.2022910e756e76510.1016/S2352‑3026(22)00216‑236063832
    [Google Scholar]
  9. MorschhauserF. FeugierP. FlinnI.W. GasiorowskiR. GreilR. IllésÁ. JohnsonN.A. LaroucheJ.F. LugtenburgP.J. PattiC. SallesG.A. TrněnýM. de VosS. MirF. SamineniD. KimS.Y. JiangY. PunnooseE. SinhaA. ClarkE. SpielewoyN. HumphreyK. BazeosA. ZelenetzA.D. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma.Blood2021137560060910.1182/blood.202000657833538797
    [Google Scholar]
  10. TamC.S. AndersonM.A. PottC. AgarwalR. HandunnettiS. HicksR.J. BurburyK. TurnerG. Di IulioJ. BresselM. WestermanD. LadeS. DreylingM. DawsonS.J. DawsonM.A. SeymourJ.F. RobertsA.W. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma.N. Engl. J. Med.2018378131211122310.1056/NEJMoa171551929590547
    [Google Scholar]
  11. ZinzaniP.L. FlinnI.W. YuenS.L.S. ToppM.S. RusconiC. FleuryI. Le DûK. ArthurC. ProB. GrittiG. CrumpM. PetrichA. SamineniD. SinhaA. PunnooseE.A. Szafer-GlusmanE. SpielewoyN. MobasherM. HumphreyK. KornackerM. HiddemannW. Venetoclax-rituximab with or without bendamustine vs. bendamustine-rituximab in relapsed/refractory follicular lymphoma.Blood20201362326282637[J].32785666
    [Google Scholar]
  12. AgarwalS. GopalakrishnanS. MensingS. PotluriJ. HayslipJ. KirschbrownW. FriedelA. MenonR SalemH. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis.Hematol. Oncol.201937446447310.1002/hon.264631251400
    [Google Scholar]
  13. AgarwalS.K. DiNardoC.D. PotluriJ. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: Evaluation of dose adjustments.Clin. Ther.201739235936710.1016/j.clinthera.2017.01.00328161120
    [Google Scholar]
  14. Korycka-WolowiecA. WolowiecD. Kubiak-MlonkaA. RobakT. Venetoclax in the treatment of chronic lymphocytic leukemia.Expert Opin. Drug Metab. Toxicol.201915535336610.1080/17425255.2019.160621130969139
    [Google Scholar]
  15. CzabotarP.E. Garcia-SaezA.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis.Nat. Rev. Mol. Cell Biol.2023241073274810.1038/s41580‑023‑00629‑437438560
    [Google Scholar]
  16. LagadinouE.D. SachA. CallahanK. RossiR.M. NeeringS.J. MinhajuddinM. AshtonJ.M. PeiS. GroseV. O’DwyerK.M. LiesveldJ.L. BrookesP.S. BeckerM.W. JordanC.T. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.Cell Stem Cell201312332934110.1016/j.stem.2012.12.01323333149
    [Google Scholar]
  17. OngF. KimK. KonoplevaM.Y. Venetoclax resistance: Mechanistic insights and future strategies.Cancer Drug Resist.20225238040010.20517/cdr.2021.12535800373
    [Google Scholar]
  18. SeymourJ.F. DavidsM.S. PagelJ.M. KahlB.S. WierdaW.G. MillerT.P. GerecitanoJ.F. KippsT.J. AndersonM.A. HuangD.C.S. DardenD.E. GressickL.A. NolanC.E. YangJ. BusmanT.A. GrahamA.M. CerriE. EnschedeS.H. HumerickhouseR.A. RobertsA.W. Updated results of a phase I first-in-human study of the BCL-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL).J. Clin. Oncol.201331Suppl 15701810.1200/jco.2013.31.15_suppl.7018
    [Google Scholar]
  19. PanR. HogdalL.J. BenitoJ.M. BucciD. HanL. BorthakurG. CortesJ. DeAngeloD.J. DeboseL. MuH. DöhnerH. GaidzikV.I. GalinskyI. GolfmanL.S. HaferlachT. HarutyunyanK.G. HuJ. LeversonJ.D. MarcucciG. MüschenM. NewmanR. ParkE. RuvoloP.P. RuvoloV. RyanJ. SchindelaS. Zweidler-McKayP. StoneR.M. KantarjianH. AndreeffM. KonoplevaM. LetaiA.G. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.Cancer Discov.20144336237510.1158/2159‑8290.CD‑13‑060924346116
    [Google Scholar]
  20. WengG. ZhangY. YuG. LuoT. YuS. XuN. SunZ. LinD. DengL. LiangX. XiaoJ. ZhangH. GuoZ. ShaoR. DuX. JinH. LiuQ. Genetic characteristics predict response to venetoclax plus hypomethylating agents in relapsed or refractory acute myeloid leukemia.J. Intern. Med.2023293332933910.1111/joim.1358136284445
    [Google Scholar]
  21. AldossI. YangD. PillaiR. SanchezJ.F. MeiM. AribiA. AliH. SandhuK. MalkiM.M.A. SalhotraA. KhaledS. Association of leukemia genetics with response to venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia.Am. J. Hematol.20199410E253E25510.1002/ajh.2556731259427
    [Google Scholar]
  22. WangY.W. TsaiC.H. LinC.C. TienF.M. ChenY.W. LinH.Y. YaoM. LinY.C. LinC.T. ChengC.L. TangJ.L. ChouW.C. HouH.A. TienH.F. Cytogenetics and mutations could predict outcome in relapsed and refractory acute myeloid leukemia patients receiving BCL-2 inhibitor venetoclax.Ann. Hematol.202099350151110.1007/s00277‑020‑03911‑z31965269
    [Google Scholar]
  23. CourtoisL. Cabannes-HamyA. KimR. DelecourtM. PintonA. CharbonnierG. FeroulM. SmithC. TueurG. PivertC. BalducciE. SimoninM. AngelL.H. SpicugliaS. BoisselN. AndrieuG.P. AsnafiV. RousselotP. LhermitteL. IL-7 receptor expression is frequent in T-cell acute lymphoblastic leukemia and predicts sensitivity to JAK inhibition.Blood2023142215817137023368
    [Google Scholar]
  24. KontroM. KumarA. MajumderM.M. EldforsS. ParsonsA. PemovskaT. SaarelaJ. YadavB. MalaniD. FløisandY. HöglundM. RemesK. GjertsenB.T. KallioniemiO. WennerbergK. HeckmanC.A. PorkkaK. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia.Leukemia201731230130910.1038/leu.2016.22227499136
    [Google Scholar]
  25. ChanS.M. ThomasD. Corces-ZimmermanM.R. XavyS. RastogiS. HongW.J. ZhaoF. MedeirosB.C. TyvollD.A. MajetiR. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia.Nat. Med.201521217818410.1038/nm.378825599133
    [Google Scholar]
  26. ChylaB. DaverN. DoyleK. McKeeganE. HuangX. RuvoloV. WangZ. ChenK. SouersA. LeversonJ. PotluriJ. BoghaertE. BhathenaA. KonoplevaM. PopovicR. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia.Am. J. Hematol.2018938E202E20510.1002/ajh.2514629770480
    [Google Scholar]
  27. YeS. XiongF. HeX. YuanY. LiD. YeD. ShiL. LinZ. ZhaoM. FengS. ZhouB. WengH. HongL. YeH. GaoS. DNA hypermethylation-induced miR-182 silence targets BCL2 and HOXA9 to facilitate the self-renewal of leukemia stem cell, accelerate acute myeloid leukemia progression, and determine the sensitivity of BCL2 inhibitor venetoclax.Theranostics2023131779410.7150/thno.7740436593968
    [Google Scholar]
  28. LimaK. Pereira-MartinsD.A. de MirandaL.B.L. Coelho-SilvaJ.L. LeandroG.S. WeinhäuserI. CavaglieriR.C. LealA.M. da SilvaW.F. LangeA.P.A.L. VellosoE.D.R.P. GriessingerE. HilberinkJ.R. AmmatunaE. HulsG. SchuringaJ.J. RegoE.M. Machado-NetoJ.A. The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy.Blood Cancer J.2022121115110.1038/s41408‑022‑00747‑w36347832
    [Google Scholar]
  29. ThusY.J. De RooijM.F.M. SwierN. BeijersbergenR.L. GuikemaJ.E.J. KerstenM.J. ElderingE. PalsS.T. KaterA.P. SpaargarenM. Inhibition of casein kinase 2 sensitizes mantle cell lymphoma to venetoclax through MCL-1 downregulation.Haematologica2022108379781010.3324/haematol.2022.28166836226498
    [Google Scholar]
  30. CoccaroN. TotaG. AnelliL. ZagariaA. SpecchiaG. AlbanoF. Digital PCR: A reliable tool for analyzing and monitoring hematologic malignancies.Int. J. Mol. Sci.2020219314110.3390/ijms2109314132365599
    [Google Scholar]
  31. Hehir-KwaJ.Y. KoudijsM.J. VerwielE.T.P. KesterL.A. van TuilM. StrengmanE. BuijsA. KranendonkM.E.G. Hiemcke-JiwaL.S. de HaasV. van de GeerE. de LengW. van der LugtJ. LijnzaadP. HolstegeF.C.P. KemmerenP. TopsB.B.J. Improved gene fusion detection in childhood cancer diagnostics using RNA sequencing.JCO Precis. Oncol.202266e200050410.1200/PO.20.0050435085008
    [Google Scholar]
  32. JanssenM. SchmidtC. BruchP.M. BlankM.F. RohdeC. WaclawiczekA. HeidD. RendersS. GöllnerS. VierbaumL. BesenbeckB. HerbstS.A. KnollM. KolbC. PrzybyllaA. WeidenauerK. LudwigA.K. FabreM. GuM. SchlenkR.F. StölzelF. BornhäuserM. RölligC. PlatzbeckerU. BaldusC. ServeH. SauerT. RaffelS. PabstC. VassiliouG. VickB. JeremiasI. TrumppA. KrijgsveldJ. Müller-TidowC. DietrichS. Venetoclax synergizes with gilteritinib in FLT3 wild-type high-risk acute myeloid leukemia by suppressing MCL-1.Blood2022140242594261010.1182/blood.202101424135857899
    [Google Scholar]
  33. MareiH.E. AlthaniA. AfifiN. HasanA. CaceciT. PozzoliG. MorrioneA. GiordanoA. CenciarelliC. p53 signaling in cancer progression and therapy.Cancer Cell Int.202121170310.1186/s12935‑021‑02396‑834952583
    [Google Scholar]
  34. DaverN.G. IqbalS. RenardC. ChanR.J. HasegawaK. HuH. TseP. YanJ. ZorattiM.J. XieF. RamsinghG. Treatment outcomes for newly diagnosed, treatment-naïve TP53-mutated acute myeloid leukemia: A systematic review and meta-analysis.J. Hematol. Oncol.20231611910.1186/s13045‑023‑01417‑536879351
    [Google Scholar]
  35. ThijssenR. DiepstratenS.T. MoujalledD. ChewE. FlensburgC. ShiM.X. DenglerM.A. LitalienV. MacRaildS. ChenM. AnsteeN.S. ReljićB. GabrielS.S. DjajawiT.M. RiffkinC.D. AubreyB.J. ChangC. TaiL. XuZ. MorleyT. PomilioG. BruedigamC. KalliesA. StroudD.A. BajelA. KluckR.M. LaneS.W. SchoumacherM. BanquetS. MajewskiI.J. StrasserA. RobertsA.W. HuangD.C.S. BrownF.C. KellyG.L. WeiA.H. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias.Blood2021137202721273510.1182/blood.202001016733824975
    [Google Scholar]
  36. Culp-HillR. StevensB.M. JonesC.L. PeiS. DzieciatkowskaM. MinhajuddinM. JordanC.T. D’AlessandroA. Therapy-resistant acute myeloid leukemia stem cells are resensitized to venetoclax + azacitidine by targeting fatty acid desaturases 1 and 2.Metabolites202313446710.3390/metabo1304046737110126
    [Google Scholar]
  37. JiangJ. WangY. LiuD. WangX. ZhuY. TongJ. ChenE. XueL. ZhaoN. LiangT. ZhengC. Selinexor synergistically promotes the antileukemia activity of venetoclax in acute myeloid leukemia by inhibiting glycolytic function and downregulating the expression of DNA replication genes.ImmunoTargets Ther.20231213514710.2147/ITT.S42940238026089
    [Google Scholar]
  38. SalemA.H. AgarwalS.K. DunbarM. EnschedeS.L.H. HumerickhouseR.A. WongS.L. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma.J. Clin. Pharmacol.201757448449210.1002/jcph.82127558232
    [Google Scholar]
  39. SalemA.H. DunbarM. AgarwalS.K. Pharmacokinetics of venetoclax in patients with 17p deletion chronic lymphocytic leukemia.Anticancer Drugs201728891191410.1097/CAD.000000000000052228562380
    [Google Scholar]
  40. SalemA.H. AgarwalS.K. DunbarM. NuthalapatiS. ChienD. FreiseK.J. WongS.L. Effect of lowand high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor.J. Clin. Pharmacol.201656111355136110.1002/jcph.74127029823
    [Google Scholar]
  41. CheungT.T. SalemA.H. MenonR.M. MunasingheW.P. BuenoO.F. AgarwalS.K. Pharmacokinetics of the BCL-2 inhibitor venetoclax in healthy Chinese subjects.Clin. Pharmacol. Drug Dev.20187443544010.1002/cpdd.39529058801
    [Google Scholar]
  42. JonesA.K. FreiseK.J. AgarwalS.K. HumerickhouseR.A. WongS.L. SalemA.H. Clinical predictors of venetoclax pharmacokinetics in chronic lymphocytic leukemia and non-hodgkin’s lymphoma patients: A pooled population pharmacokinetic analysis.AAPS J.20161851192120210.1208/s12248‑016‑9927‑927233802
    [Google Scholar]
  43. MeibohmB. BeierleI. DerendorfH. How important are gender differences in pharmacokinetics?Clin. Pharmacokinet.200241532934210.2165/00003088‑200241050‑0000212036391
    [Google Scholar]
  44. ZuckerI. PrendergastB.J. Sex differences in pharmacokinetics predict adverse drug reactions in women.Biol. Sex Differ.20201113210.1186/s13293‑020‑00308‑532503637
    [Google Scholar]
  45. BadawiM. MenonR. PlaceA.E. PalenskiT. SunkersettG. ArrendaleR. DengR. FedericoS.M. CooperT.M. SalemA.H. Venetoclax penetrates the blood brain barrier: A pharmacokinetic analysis in pediatric leukemia patients.J. Cancer20231471151115610.7150/jca.8179537215448
    [Google Scholar]
  46. JianY. HanF. ZhuY. GengC. ZhangY. WuY. LengY. ChenW. AnZ. ZhuH.H. Paired comparisons of venetoclax concentration in cerebrospinal fluid, bone marrow, and plasma in acute leukemia patients.Clin. Transl. Sci.2024179e7000610.1111/cts.7000639286959
    [Google Scholar]
  47. LiuH. MichmerhuizenM.J. LaoY. WanK. SalemA.H. SawickiJ. SerbyM. VaidyanathanS. WongS.L. AgarwalS. DunbarM. SydorJ. de MoraisS.M. LeeA.J. Metabolism and disposition of a novel B-cell lymphoma-2 inhibitor venetoclax in humans and characterization of its unusual metabolites.Drug Metab. Dispos.201745329430510.1124/dmd.116.07161327993930
    [Google Scholar]
  48. SalemA.H. DaveN. MarburyT. HuB. MilesD. AgarwalS.K. BuenoO.F. MenonR.M. Pharmacokinetics of the BCL-2 inhibitor venetoclax in subjects with hepatic impairment.Clin. Pharmacokinet.20195881091110010.1007/s40262‑019‑00746‑430949874
    [Google Scholar]
  49. KrensS.D. LasscheG. JansmanF.G.A. DesarI.M.E. LankheetN.A.G. BurgerD.M. van HerpenC.M.L. van ErpN.P. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment.Lancet Oncol.2019204e200e20710.1016/S1470‑2045(19)30145‑730942181
    [Google Scholar]
  50. NooraniB. MenonR.M. ChenX. Venetoclax pharmacokinetics in participants with end-stage renal disease undergoing haemodialysis.Br. J. Clin. Pharmacol.2023111[J].37855131
    [Google Scholar]
  51. Megías-VericatJ.E. Solana-AltabellaA. Ballesta-LópezO. Martínez-CuadrónD. MontesinosP. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia.Ann. Hematol.20209991989200710.1007/s00277‑020‑04186‑032683457
    [Google Scholar]
  52. SalemA.H. HuB. FreiseK.J. AgarwalS.K. SidhuD.S. WongS.L. Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 inhibitor, and warfarin in healthy volunteers.Clin. Drug Investig.201737330330910.1007/s40261‑016‑0485‑927910036
    [Google Scholar]
  53. DongJ. LiuS. RasheduzzamanJ.M. HuangC. MiaoL. Development of physiology based pharmacokinetic model to predict the drug interactions of voriconazole and venetoclax.Pharm. Res.20223981921193310.1007/s11095‑022‑03289‑935725843
    [Google Scholar]
  54. AgarwalS.K. SalemA.H. DanilovA.V. HuB. PuvvadaS. GutierrezM. ChienD. LewisL.D. WongS.L. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma.Br. J. Clin. Pharmacol.201783484685410.1111/bcp.1317527859472
    [Google Scholar]
  55. FreiseK.J. HuB. SalemA.H. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics.Eur. J. Clin. Pharmacol.201874441342110.1007/s00228‑017‑2403‑329302721
    [Google Scholar]
  56. AgarwalS.K. HuB. ChienD. WongS.L. SalemA.H. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: Results of a single- and multiple-dose study.J. Clin. Pharmacol.201656111335134310.1002/jcph.73026953185
    [Google Scholar]
  57. FreiseK.J. ShebleyM. SalemA.H. Quantitative prediction of the effect of CYP3A inhibitors and inducers on venetoclax pharmacokinetics using a physiologically based pharmacokinetic model.J. Clin. Pharmacol.201757679680410.1002/jcph.85828052338
    [Google Scholar]
  58. MukherjeeD. BrackmanD.J. SuleimanA.A. ZhaJ. MenonR.M. SalemA.H. Impact of multiple concomitant CYP3A inhibitors on venetoclax pharmacokinetics: A PBPK and population PK-informed analysis.J. Clin. Pharmacol.202363111912510.1002/jcph.214035996877
    [Google Scholar]
  59. ChineyM.S. MenonR.M. BuenoO.F. TongB. SalemA.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin.Xenobiotica201848990491010.1080/00498254.2017.138177929027832
    [Google Scholar]
  60. AlhadabA.A. SalemA.H. FreiseK.J. Semimechanistic modeling to guide venetoclax coadministration with ritonavir and digoxin.Clin. Transl. Sci.202013355556210.1111/cts.1273931961475
    [Google Scholar]
  61. AgarwalS.K. TongB. BuenoO.F. MenonR.M. SalemA.H. Effect of azithromycin on venetoclax pharmacokinetics in healthy volunteers: Implications for dosing venetoclax with P-gp Inhibitors.Adv. Ther.201835112015202310.1007/s12325‑018‑0793‑y30264382
    [Google Scholar]
  62. BrackmanD. EckertD. MenonR. SalemA.H. PotluriJ. SmithB.D. WeiA.H. HayslipJ. MilesD. MensingS. GopalakrishnanS. ZhaJ. Venetoclax exposure-efficacy and exposure-safety relationships in patients with treatment-naïve acute myeloid leukemia who are ineligible for intensive chemotherapy.Hematol. Oncol.202240226927910.1002/hon.296435043428
    [Google Scholar]
  63. SamineniD. GibianskyL. WangB. VadhavkarS. RajwanshiR. TandonM. SinhaA. Al-SawafO. FischerK. HallekM. SalemA.H. LiC. MilesD. Pharmacokinetics and exposure-response analysis of venetoclax + obinutuzumab in chronic lymphocytic leukemia: Phase 1b study and phase 3 CLL14 trial.Adv. Ther.20223983635365310.1007/s12325‑022‑02170‑w35708885
    [Google Scholar]
  64. SamineniD. HuangW. GibianskyL. DingH. ZhangR. LiC. SinhaA. RajwanshiR. HumphreyK. BazeosA. SalemA.H. MilesD. Population pharmacokinetics and exposure - Response analyses for venetoclax in combination with R-CHOP in relapsed/refractory and previously untreated patients with diffuse large B cell lymphoma.Adv. Ther.202239159861810.1007/s12325‑021‑01919‑z34822104
    [Google Scholar]
  65. ParikhA. GopalakrishnanS. FreiseK.J. VerdugoM.E. MenonR.M. MensingS. SalemA.H. Exposure-response evaluations of venetoclax efficacy and safety in patients with non-Hodgkin lymphoma.Leuk. Lymphoma201859487187910.1080/10428194.2017.136102428797193
    [Google Scholar]
  66. ChesonB.D. Heitner EnschedeS. CerriE. DesaiM. PotluriJ. LamannaN. TamC. Tumor lysis syndrome in chronic lymphocytic leukemia with novel targeted agents.Oncologist201722111283129110.1634/theoncologist.2017‑005528851760
    [Google Scholar]
  67. RobertsA.W. DavidsM.S. PagelJ.M. KahlB.S. PuvvadaS.D. GerecitanoJ.F. KippsT.J. AndersonM.A. BrownJ.R. GressickL. WongS. DunbarM. ZhuM. DesaiM.B. CerriE. Heitner EnschedeS. HumerickhouseR.A. WierdaW.G. SeymourJ.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia.N. Engl. J. Med.2016374431132210.1056/NEJMoa151325726639348
    [Google Scholar]
  68. AbernathyK.M. PerciavalleM.A. GatwoodK.S. ChenH. ZakhariM.M. ByrneM. Real-world analysis of tumor lysis syndrome in patients started on venetoclax combination for acute myeloid leukemia.J. Oncol. Pharm. Pract.20232961326133310.1177/1078155222111863535946111
    [Google Scholar]
  69. CramerP. von TresckowJ. BahloJ. RobrechtS. LangerbeinsP. Al- SawafO. EngelkeA. FinkA.M. FischerK. TauschE. SeilerT. Fischer von WeikersthalL. HebartH. KreuzerK.A. BöttcherS. RitgenM. KnebaM. WendtnerC.M. StilgenbauerS. EichhorstB. HallekM. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): Primary endpoint analysis of a multicentre, open-label, phase 2 trial.Lancet Oncol.20181991215122810.1016/S1470‑2045(18)30414‑530115596
    [Google Scholar]
  70. DiNardoC.D. JonasB.A. PullarkatV. ThirmanM.J. GarciaJ.S. WeiA.H. KonoplevaM. DöhnerH. LetaiA. FenauxP. KollerE. HavelangeV. LeberB. EsteveJ. WangJ. PejsaV. HájekR. PorkkaK. IllésÁ. LavieD. LemoliR.M. YamamotoK. YoonS.S. JangJ.H. YehS.P. TurgutM. HongW.J. ZhouY. PotluriJ. PratzK.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N. Engl. J. Med.2020383761762910.1056/NEJMoa201297132786187
    [Google Scholar]
  71. ZeidanA.M. BorateU. PollyeaD.A. BrunnerA.M. RoncolatoF. GarciaJ.S. FilshieR. OdenikeO. WatsonA.M. KrishnadasanR. BajelA. NaqviK. ZhaJ. ChengW.H. ZhouY. HoffmanD. HarbJ.G. PotluriJ. Garcia-ManeroG. A phase 1b study of venetoclax and azacitidine combination in patients with relapsed or refractory myelodysplastic syndromes.Am. J. Hematol.202398227228110.1002/ajh.2677136309981
    [Google Scholar]
  72. WeiA.H. MontesinosP. IvanovV. DiNardoC.D. NovakJ. LaribiK. KimI. StevensD.A. FiedlerW. PagoniM. SamoilovaO. HuY. AnagnostopoulosA. BergeronJ. HouJ.Z. MurthyV. YamauchiT. McDonaldA. ChylaB. GopalakrishnanS. JiangQ. MendesW. HayslipJ. PanayiotidisP. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial.Blood2020135242137214510.1182/blood.202000485632219442
    [Google Scholar]
  73. FukumotoA. NaritaK. IkedaD. UesugiY. TabataR. MiuraD. TakeuchiM. MatsueK. Safety and efficacy of venetoclax for acute myeloid leukaemia in real-world clinical practice.Jpn. J. Clin. Oncol.2023531099199510.1093/jjco/hyad07537394913
    [Google Scholar]
  74. PapadakiH.A. EliopoulosG.D. The role of apoptosis in the pathophysiology of chronic neutropenias associated with bone marrow failure.Cell Cycle20032544544910.4161/cc.2.5.46312963840
    [Google Scholar]
  75. KargboR.B. Redefining cancer therapy: Toward BCL-XL/BCL-2 dual inhibitors with diminished platelet toxicity.ACS Med. Chem. Lett.20231491156115810.1021/acsmedchemlett.3c0035737736185
    [Google Scholar]
  76. DiNardoC.D. PratzK. PullarkatV. JonasB.A. ArellanoM. BeckerP.S. FrankfurtO. KonoplevaM. WeiA.H. KantarjianH.M. XuT. HongW.J. ChylaB. PotluriJ. PollyeaD.A. LetaiA. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia.Blood2019133171710.1182/blood‑2018‑08‑86875230361262
    [Google Scholar]
  77. ZhuL. ChenR. WangL. SunJ. ZhouD. LiL. qianJ. ZhangY. TongH. YuW. MengH. MaiW. XieW. JinJ. YeX. ZhuH. A real-world study of infectious complications of venetoclax combined with decitabine or azacitidine in adult acute myeloid leukemia.Support. Care Cancer20223087031703810.1007/s00520‑022‑07126‑y35585204
    [Google Scholar]
  78. PandianJ. RaghavanV. ManuprasadA. ShenoyP.K. NairC.K. Infection at diagnosis—a unique challenge in acute myeloid leukemia treatment in developing world.Support. Care Cancer202028115449545410.1007/s00520‑020‑05379‑z32166380
    [Google Scholar]
  79. CandoniA. LazzarottoD. PapayannidisC. PicciniM. NadaliG. DargenioM. RivaM. FracchiollaN. MellilloL. DragonettiG. Del PrincipeM.I. CattaneoC. StulleM. PasciollaC. De MarchiR. DeliaM. TisiM.C. BonuomoV. SciumèM. SpadeaA. SartorC. GriguoloD. BuzzattiE. BasilicoC.M. SarloC. PiccioniA.L. CerquiE. LessiF. OlivieriA. FaninR. LuppiM. PaganoL. Prospective multicenter study on infectious complications and clinical outcome of 230 unfit acute myeloid leukemia patients receiving first-line therapy with hypomethylating agents alone or in combination with Venetoclax.Am. J. Hematol.2023984E80E8310.1002/ajh.2684636651870
    [Google Scholar]
  80. BucaneveG. MicozziA. MenichettiF. MartinoP. DionisiM.S. MartinelliG. AllioneB. D’AntonioD. BuelliM. NosariA.M. CilloniD. ZuffaE. CantaffaR. SpecchiaG. AmadoriS. FabbianoF. DeliliersG.L. LauriaF. FoàR. Del FaveroA. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia.N. Engl. J. Med.20053531097798710.1056/NEJMoa04409716148283
    [Google Scholar]
  81. Gafter-GviliA. FraserA. PaulM. LeiboviciL. Meta-analysis: Antibiotic prophylaxis reduces mortality in neutropenic patients.Ann. Intern. Med.200514212_Part_197999510.7326/0003‑4819‑142‑12_Part_1‑200506210‑0000815968013
    [Google Scholar]
  82. OtsukiA. KumondaiM. KobayashiD. KikuchiM. UekiY. SatoY. HayashiN. YagiA. OnishiY. OnoderaK. IchikawaS. FukuharaN. YokoyamaH. MaekawaM. ManoN. Plasma venetoclax concentrations in patients with acute myeloid leukemia treated with CYP3A4 inhibitors.Yakugaku Zasshi2024144777577910.1248/yakushi.24‑0001838945852
    [Google Scholar]
  83. HagiharaM. YasuT. GandoY. SugiT. NakashimaS. ImaiY. NakanoH. UchidaT. InoueM. Increased trough concentration of venetoclax when combined with itraconazole for acute myeloid leukemia.Ann. Hematol.2024103114497450210.1007/s00277‑024‑05845‑239327313
    [Google Scholar]
  84. DavidsM.S. HallekM. WierdaW. RobertsA.W. StilgenbauerS. JonesJ.A. GerecitanoJ.F. KimS.Y. PotluriJ. BusmanT. BestA. VerdugoM.E. CerriE. DesaiM. HillmenP. SeymourJ.F. Comprehensive safety analysis of venetoclax monotherapy for patients with relapsed/refractory chronic lymphocytic leukemia.Clin. Cancer Res.201824184371437910.1158/1078‑0432.CCR‑17‑376129895707
    [Google Scholar]
  85. HadjiaggelidouC. DouganiotisG. TsirouK. VerrouE. TriantafyllouT. KeramidiotiK. KonstantinidouP. KatodritouE. A rare case of autoimmune hemolytic anemia during venetoclax therapy for relapsed chronic lymphocytic leukemia.Leuk. Lymphoma202162123054305610.1080/10428194.2021.194193234151719
    [Google Scholar]
  86. BerentsenS. BarcelliniW. Autoimmune hemolytic anemias.N. Engl. J. Med.2021385151407141910.1056/NEJMra203398234614331
    [Google Scholar]
  87. JohnsonI.M. BezerraE.D. FarrukhF. McCulloughK. Al-KaliA. AlkhateebH.B. BegnaK. LitzowM.R. HoganW.J. ShahM.V. PatnaikM.M. TefferiA. GangatN. Cardiac events in patients with acute myeloid leukemia treated with venetoclax combined with hypomethylating agents.Blood Adv.20226175227523110.1182/bloodadvances.202200733335358999
    [Google Scholar]
  88. AlAsmariA.F. AlghamdiA. AliN. AlmeaiklM.A. HakamiH.M. AlyousefM.K. AlSwayyedM. AlharbiM. AlqahtaniF. AlasmariF. AlsalehN. Venetoclax induces cardiotoxicity through modulation of oxidative-stress-mediated cardiac inflammation and apoptosis via NF-κB and BCL-2 pathway.Int. J. Mol. Sci.20222311626010.3390/ijms2311626035682939
    [Google Scholar]
  89. KleberM.E. DelgadoG. GrammerT.B. SilbernagelG. HuangJ. KrämerB.K. RitzE. MärzW. Uric acid and cardiovascular events: A Mendelian randomization study.J. Am. Soc. Nephrol.201526112831283810.1681/ASN.201407066025788527
    [Google Scholar]
  90. YeF. ZhangW. FanC. DongJ. PengM. DengW. ZhangH. YangL. Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis.J. Transl. Med.202321160610.1186/s12967‑023‑04481‑037679782
    [Google Scholar]
  91. PervushinN.V. KopeinaG.S. ZhivotovskyB. Bcl-B: an “unknown” protein of the Bcl-2 family.Biol. Direct20231816910.1186/s13062‑023‑00431‑437899453
    [Google Scholar]
  92. KaloniD. DiepstratenS.T. StrasserA. KellyG.L. BCL-2 protein family: Attractive targets for cancer therapy.Apoptosis2023281-2203810.1007/s10495‑022‑01780‑736342579
    [Google Scholar]
  93. PloumakiI. TriantafyllouE. KoumprentziotisI.A. KarampinosK. DrougkasK. KaravoliasI. TrontzasI. KotteasE.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials.Clin. Transl. Oncol.20232561554157810.1007/s12094‑022‑03070‑936639602
    [Google Scholar]
  94. FairlieW.D. LeeE.F. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers.Biochem. Soc. Trans.20214952397241010.1042/BST2021075034581776
    [Google Scholar]
  95. LindemanG.J. FernandoT.M. BowenR. JerzakK.J. SongX. DeckerT. BoyleF. McCuneS. ArmstrongA. ShannonC. BertelliG. ChangC.W. DesaiR. GuptaK. WilsonT.R. FlechaisA. BardiaA. VERONICA: Randomized phase II study of fulvestrant and venetoclax in ER-positive metastatic breast cancer post-CDK4/6 inhibitors – Efficacy, safety, and biomarker results.Clin. Cancer Res.202228153256326710.1158/1078‑0432.CCR‑21‑381135583555
    [Google Scholar]
  96. XuJ. DongX. HuangD.C.S. XuP. ZhaoQ. ChenB. Current advances and future strategies for BCL-2 inhibitors: Potent weapons against cancers.Cancers (Basel)20231520495710.3390/cancers1520495737894324
    [Google Scholar]
  97. NeelyV. ManchikalapudiA. NguyenK. DaltonK. HuB. KoblinskiJ.E. FaberA.C. DebS. HaradaH. Targeting oncogenic mutant p53 and BCL-2 for small cell lung cancer treatment.Int. J. Mol. Sci.202324171308210.3390/ijms24171308237685889
    [Google Scholar]
  98. ZhaoL. LiuP. MaoM. ZhangS. BigenwaldC. DutertreC.A. LehmannC.H.K. PanH. PaulhanN. AmonL. BuquéA. YamazakiT. GalluzziL. KloecknerB. SilvinA. PanY. ChenH. TianA.L. LyP. DudziakD. ZitvogelL. KeppO. KroemerG. BCL2 inhibition reveals a dendritic cell–specific immune checkpoint that controls tumor immunosurveillance.Cancer Discov.202313112448246910.1158/2159‑8290.CD‑22‑133837623817
    [Google Scholar]
  99. LiuP. ZhaoL. KroemerG. KeppO. BCL2 inhibition stimulates dendritic cell function for improved anticancer immunotherapy.Genes Immun.202425434835010.1038/s41435‑024‑00256‑938267541
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002338926241114080504
Loading
/content/journals/cdm/10.2174/0113892002338926241114080504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test