Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change Cafter organ transplantation. For example, grapefruit juice could increase tacrolimus Cdue to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as T, C, AUC, and Cof tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002328742241210102522
2024-12-26
2025-04-06
Loading full text...

Full text loading...

References

  1. OliverasL. ColomaA. LloberasN. LinoL. FavàA. ManonellesA. CodinaS. CouceiroC. MelilliE. SharifA. HeckingM. GuthoffM. CruzadoJ.M. PascualJ. MonteroN. Immunosuppressive drug combinations after kidney transplantation and post-transplant diabetes: A systematic review and meta-analysis.Transplant. Rev. (Orlando)202438310085610.1016/j.trre.2024.10085638723582
    [Google Scholar]
  2. JoshiR. MedhiB. Natural product and drugs interactions, its clinical implication in drug therapy management.Saudi Med. J.200829333333918327355
    [Google Scholar]
  3. RenH. KongX. ZhangY. DengF. LiJ. ZhaoF. LiP. PeiK. TanJ. ChengY. WangY. ZhangL. WangY. HaoX. The therapeutic potential of Ziziphi Spinosae Semen and Polygalae Radix in insomnia management: Insights from gut microbiota and serum metabolomics techniques.J. Ethnopharmacol.202433011825510.1016/j.jep.2024.11825538670402
    [Google Scholar]
  4. ChianconeF. CarrinoM. MeccarielloC. PucciL. FedeliniM. FedeliniP. The use of a combination of Vaccinium Macracarpon, Lycium barbarum L. and Probiotics (Bifiprost®) for the prevention of chronic bacterial prostatitis: A double-blind randomized study.Urol. Int.2019103442342610.1159/00050276531527377
    [Google Scholar]
  5. BushraR. AslamN. KhanA. Food-drug interactions.Oman Med. J.2011262778310.5001/omj.2011.2122043389
    [Google Scholar]
  6. NekvindováJ. AnzenbacherP. Interactions of food and dietary supplements with drug metabolising cytochrome P450 enzymes.Ceska Slov Farm.2007564165173
    [Google Scholar]
  7. HanstenP.D. Appendix II: important interactions and their mechanisms.Basic and clinical PharmacologyMcGraw hill2004
    [Google Scholar]
  8. AyoJ.A. AguH. MadakiI. Food and drug interactions: Its side effects.Nutr. Food Sci.200535424325210.1108/00346650510605630
    [Google Scholar]
  9. HayeshiR. MasimirembwaC. MukanganyamaS. UngellA.L.B. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux.Eur. J. Pharm. Sci.2006291708110.1016/j.ejps.2006.05.00916846720
    [Google Scholar]
  10. QuezadaV. GuadarramaN. ElizaldeS. IturriagaM. LandaverdeP.V. Loarca-PiñaG. Bioaccessibility of bioactive compounds present in Persea americana Mill. seed ingredient during oral-gastric digestion with antibacterial capacity against Helicobacter pylori.J. Ethnopharmacol.202433111825910.1016/j.jep.2024.11825938685366
    [Google Scholar]
  11. BaiM. ShenQ. WuY. MaZ. WangY. ChenM. LiuD. ZhouL. Evaluation of transport mechanisms of methotrexate in human choriocarcinoma cell lines by LC-MS/MS.J. Pharm. Biomed. Anal.202424711626810.1016/j.jpba.2024.11626838823222
    [Google Scholar]
  12. YangN. WeiL. TengY. YuP. XiangC. LiuJ. Cyclodextrin-based metal-organic frameworks transforming drug delivery.Eur. J. Med. Chem.202427411654610.1016/j.ejmech.2024.11654638823266
    [Google Scholar]
  13. LiM. XiaoJ. YuT. HuangL. CaiR. YuH. LiJ. ChengS. Analysis of hemorrhagic drug-drug interactions between P-gp inhibitors and direct oral anticoagulants from the FDA adverse event reporting system.Expert Opin. Drug Saf.202423111453146110.1080/14740338.2024.237669338962834
    [Google Scholar]
  14. HawiA. AlcornH. BergJ. HinesC. HaitH. SciasciaT. Pharmacokinetics of nalbuphine hydrochloride extended release tablets in hemodialysis patients with exploratory effect on pruritus.BMC Nephrol.20151614710.1186/s12882‑015‑0043‑325885112
    [Google Scholar]
  15. KorzekwaK. NagarS. ClarkD. SciasciaT. HawiA. A continuous intestinal absorption model to predict drug enterohepatic recirculation in healthy humans: Nalbuphine as a model substrate.Mol. Pharm.20242194510452310.1021/acs.molpharmaceut.4c0042438956965
    [Google Scholar]
  16. SangL. YangS. ZhuY. ZhuZ. YangB. LiZ. MaoX. ChenS. LiC. DuJ. ZhengX. HeH. ZhengJ. HuangY. The combined use of B vitamins and probiotics promotes B vitamin absorption and increases Akkermansia abundance.Food Funct.202415137017703110.1039/D4FO01805B38860333
    [Google Scholar]
  17. LiuP. WangJ. MeiP. LiJ. XuB. RenX. ChenX. WuD. ZhuF. YangX. HeM. LiuJ. HuangH. The interaction effect of metals exposure and dietary habit on cognitive function in Chinese older adult cohort.J. Nutr. Health Aging202428710028410.1016/j.jnha.2024.10028438833765
    [Google Scholar]
  18. KumarA. BajajP. SinghB. PaulK. SharmaP. MehraS. Robin KaurP. JasrotiaS. KumarP. Rajat SinghV. TuliH.S. Sesamol as a potent anticancer compound: From chemistry to cellular interactions.Naunyn Schmiedebergs Arch. Pharmacol.202439774961497910.1007/s00210‑023‑02919‑238180556
    [Google Scholar]
  19. MubthasimaP.P. SinghS.A. KannanA. Sesamol-mediated targeting of EPHA2 sensitises cervical cancer for cisplatin treatment by regulating mitochondrial dynamics, autophagy, and mitophagy.Mol. Biol. Rep.202451194910.1007/s11033‑024‑09875‑x39222165
    [Google Scholar]
  20. OboulbigaE.B. DouambaZ. Compaoré-SéréméD. SemporéJ.N. DaboR. SemdeZ. TapsobaF.W.B. Hama-BaF. Songré-OuattaraL.T. ParkoudaC. DickoM.H. Physicochemical, potential nutritional, antioxidant and health properties of sesame seed oil: A review.Front. Nutr.202310112792610.3389/fnut.2023.112792637377483
    [Google Scholar]
  21. Huertas-AbrilP.V. Prieto-ÁlamoM.J. JuradoJ. PérezJ. Molina-HernándezV. García-BarreraT. AbrilN. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet.Food Chem. Toxicol.202419111484510.1016/j.fct.2024.11484538945390
    [Google Scholar]
  22. SeyfferthA.L. LimmerM.A. RunkleB.R.K. ChaneyR.L. Mitigating toxic metal exposure through leafy greens: A comprehensive review contrasting cadmium and lead in spinach.Geohealth202486e2024GH00108110.1029/2024GH001081
    [Google Scholar]
  23. VendruscoloL.F. VendruscoloJ.C.M. WhitingK.E. AcriJ.B. VolkowN.D. KoobG.F. The mGlu5 receptor negative allosteric modulator mavoglurant reduces escalated cocaine self-administration in male and female rats.Psychopharmacology2024241112303231310.1007/s00213‑024‑06634‑538869515
    [Google Scholar]
  24. YuZ. GaoY. ShangZ. WangT. HeX. LeiJ. TaiF. ZhangL. ChenY. A stable delivery system for curcumin: Fabrication and characterization of self-assembling acylated kidney bean protein isolate nanogels.Food Chem.202444313852610.1016/j.foodchem.2024.13852638290298
    [Google Scholar]
  25. ArtusioF. MüllerL. RazzaN. Cordeiro FilipeI. OlgiatiF. RichterŁ. CiveraE. ÖzkanM. GasbarriM. RinaldiL. WangH. GarcìaE. SchaferJ. MichotL. ButotS. BaertL. ZuberS. HalikM. StellacciF. Broad-spectrum supramolecularly reloadable antimicrobial coatings.ACS Appl. Mater. Interfaces20241623298672987510.1021/acsami.4c0470538825754
    [Google Scholar]
  26. Available from:https://www.statista.com/statistics/398645(accessed on 18-11-2024).
  27. GhamariT.Z. Monitoring tacrolimus after liver transplantation; a consideration of alternative techniques and the influence of clinical status.LondonKing’s College1999
    [Google Scholar]
  28. Tolou-GhamariZ. PalizbanA.A. TredgerJ.M. Modelling tacrolimus AUC in acute and chronic liver disease immediately after transplant.Transplantationsmedizin.2004162109111
    [Google Scholar]
  29. Tolou-GhamariZ. PalizbanA.A. WendonJ. TredgerJ.M. Pharmacokinetics of tacrolimus immediately after liver transplantation.Transplantationsmedizin.2004162112116
    [Google Scholar]
  30. Tolou GhamariZ. PalizbanA.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients; an updated review.Curr. Drug Res. Rev.20232023Epub ahead of print10.2174/012589977525932623121207324038151846
    [Google Scholar]
  31. GhamariT.Z. Tacrolimus and Cyclosporin Pharmacotherapy, Detection Methods, Cytochrome P450 Enzymes after Heart Transplantation.Cardiovasc. Hematol. Agents Med. Chem.20232023002110.2174/187152572166623072615002137496131
    [Google Scholar]
  32. Tolou-GhamariZ. Review of association between urinary tract infections and immunosuppressive drugs after heart transplantation.Rev. Recent Clin. Trials202419Epub ahead of print10.2174/011574887131544524091609152839323339
    [Google Scholar]
  33. Tolou-GhamariZ. Nosocomial urinary tract infections in a tertiary hospital; preliminary study of antibiotics susceptibility testing and pathogen types.Antiinfect. Agents2024222e25102322269610.2174/0122113525258170231016081424
    [Google Scholar]
  34. Tolou-GhamariZ. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital.Antiinfect. Agents2024222e27102322286510.2174/0122113525259607231020063637
    [Google Scholar]
  35. Tolou-GhamariZ. WendonJ. TredgerJ.M. In vitro pentamer formation as a biomarker of tacrolimus-related immunosuppressive activity after liver transplantation.Clin. Chem. Laborat. Med.2000381112091211
    [Google Scholar]
  36. YuM. LiuM. ZhangW. MingY. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation.Curr. Drug Metab.201819651352210.2174/138920021966618012915194829380698
    [Google Scholar]
  37. TangJ.T. YanL. WangL.L. BaiY.J. LiY.M. ZouY.G. LiY. van GelderT. ShiY.Y. A low fixed tacrolimus starting dose is effective and safe in chinese renal transplantation recipients.Ann. Transplant.20182330030910.12659/AOT.90766629735966
    [Google Scholar]
  38. SchönfelderK. MöhlendickB. EisenbergerU. KribbenA. SiffertW. HeinemannF.M. GäcklerA. WildeB. Friebus-KardashJ. Early CYP3A5 genotype-based adjustment of tacrolimus dosage reduces risk of de novo donor-specific HLA antibodies and rejection among CYP3A5-expressing renal transplant patients.Diagnostics (Basel)20241419220210.3390/diagnostics1419220239410605
    [Google Scholar]
  39. MartialL.C. BiewengaM. RuijterB.N. KeizerR. SwenJ.J. van HoekB. MoesD.J.A.R. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients.Br. J. Clin. Pharmacol.202187114262427210.1111/bcp.1484233786892
    [Google Scholar]
  40. PanB. LiY. WangX. OuY. HengG. LiuX. JiangD. LiuW. HuangY. HuF. XuZ. ChenZ. ZhangL. ZhangC. Adequate cumulative exposure to tacrolimus and low tacrolimus variability decrease the incidence of biliary complications after liver transplantation.Int. Immunopharmacol.202412811146110.1016/j.intimp.2023.11146138176344
    [Google Scholar]
  41. SikmaM.A. HunaultC.C. Van MaarseveenE.M. HuitemaA.D.R. Van de GraafE.A. KirkelsJ.H. VerhaarM.C. GruttersJ.C. KeseciogluJ. De LangeD.W. High variability of whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation.Eur. J. Drug Metab. Pharmacokinet.202045112313410.1007/s13318‑019‑00591‑731745812
    [Google Scholar]
  42. VenkataramananR. SwaminathanA. PrasadT. JainA. ZuckermanS. WartyV. McMichaelJ. LeverJ. BurckartG. StarzlT. Clinical pharmacokinetics of tacrolimus.Clin. Pharmacokinet.199529640443010.2165/00003088‑199529060‑000038787947
    [Google Scholar]
  43. MunjalR.S. SharmaJ. PolishettiS. ValleruP.S. BankerH. Bandhu GuptaR. AnamikaF.N.U. JainR. Beyond immunosuppression: The intricate relationship between tacrolimus and microangiopathy.Cureus20231511e4935110.7759/cureus.4935138146570
    [Google Scholar]
  44. SikmaM.A. van MaarseveenE.M. van de GraafE.A. KirkelsJ.H. VerhaarM.C. DonkerD.W. KeseciogluJ. MeulenbeltJ. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation.Am. J. Transplant.20151592301231310.1111/ajt.1330926053114
    [Google Scholar]
  45. SchagenM.R. UluA.N. FranckeM.I. van de WeteringJ. van BurenM.C. SchoenmakersS. MaticM. van SchaikR.H.N. HesselinkD.A. de WinterB.C.M. Modelling changes in the pharmacokinetics of tacrolimus during pregnancy after kidney transplantation: A retrospective cohort study.Br. J. Clin. Pharmacol.202490117618810.1111/bcp.1588637596793
    [Google Scholar]
  46. VersluisJ. BourgonjeA.R. TouwD.J. MeindertsJ.R. PrinsJ.R. de JongM.F.C. MianP. Pharmacokinetics of tacrolimus in pregnant solid-organ transplant recipients: A retrospective study.J. Clin. Pharmacol.202464442843610.1002/jcph.239338084781
    [Google Scholar]
  47. HuppertzA. BollmannJ. BehnischR. BrucknerT. ZornM. BurhenneJ. HaefeliW.E. CzockD. Differential effect of a continental breakfast on tacrolimus formulations with different release characteristics.Clin. Pharmacol. Drug Dev.202110889990710.1002/cpdd.92433641238
    [Google Scholar]
  48. MiedziaszczykM. BajonA. JakielskaE. PrimkeM. SikoraJ. SkowrońskaD. Idasiak-PiechockaI. Controversial interactions of tacrolimus with dietary supplements, herbs and food.Pharmaceutics.20031410215410.3390/pharmaceutics14102154
    [Google Scholar]
  49. Beltrá-PicóI. Díaz-GonzálezM. Nalda-MolinaR. Ramon-LopezA. Pascual-BartoloméS. Miralles-MaciàC.F. Rodríguez-SolerM. Más-SerranoP. Cassia angustifolia and tacrolimus interaction in a liver transplant patient, a case report.Br. J. Clin. Pharmacol.20249071745175010.1111/bcp.1607938657592
    [Google Scholar]
  50. BekerskyI. DresslerD. MekkiQ.A. Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects.J. Clin. Pharmacol.200141217618210.1177/0091270012200999911210398
    [Google Scholar]
  51. WoonT.H. TanM.J.H. KwanY.H. FongW. Evidence of the interactions between immunosuppressive drugs used in autoimmune rheumatic diseases and Chinese herbal medicine: A scoping review.Complement. Ther. Med.20248010301710.1016/j.ctim.2024.10301738218549
    [Google Scholar]
  52. LemaitreF. BuddeK. Van GelderT. BerganS. LawsonR. NocetiO. VenkataramananR. ElensL. MoesD.J.A.R. HesselinkD.A. PawinskiT. Johnson-DavisK.L. De WinterB.C.M. PattanaikS. BrunetM. MasudaS. LangmanL.J. Therapeutic drug monitoring and dosage adjustments of immunosuppressive drugs when combined with nirmatrelvir/ritonavir in patients with COVID-19.Ther. Drug Monit.202345219119910.1097/FTD.000000000000101435944126
    [Google Scholar]
  53. Tecen-YucelK. Bayraktar-EkinciogluA. YildirimT. YilmazS.R. DemirkanK. ErdemY. Assessment of clinically relevant drug interactions by online programs in renal transplant recipients.J. Manag. Care Spec. Pharm.202026101291129610.18553/jmcp.2020.26.10.129132996393
    [Google Scholar]
  54. De NicolòA. PinonM. PalermitiA. NonnatoA. MancaA. MulaJ. CatalanoS. TandoiF. RomagnoliR. D’AvolioA. CalvoP.L. Monitoring tacrolimus concentrations in whole blood and peripheral blood mononuclear cells: Inter- and intra-patient variability in a cohort of pediatric patients.Front. Pharmacol.20211275043310.3389/fphar.2021.75043334803692
    [Google Scholar]
  55. Fernandez RiveraC. Calvo RodríguezM. PovedaJ.L. PascualJ. CrespoM. GomezG. Cabello PelegrinS. PaulJ. LauzuricaR. Perez MirM. MoresoF. PerellóM. AndresA. GonzálezE. FernandezA. MendiluceA. Fernández CarbajoB. Sanchez FructuosoA. CalvoN. SuarezA. Bernal BlancoG. OsunaA. Ruiz-FuentesM.C. MelilliE. Montero PerezN. RamosA. FernándezB. LópezV. HernandezD. Better study Bioavailability of once-daily tacrolimus formulations used in clinical practice in the management of De Novo kidney transplant recipients: The better study.Clin. Transplant.2022363e1455010.1111/ctr.1455034851532
    [Google Scholar]
  56. ChristiansU. StromT. ZhangY.L. SteudelW. SchmitzV. TrumpS. HaschkeM. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics.Ther. Drug Monit.2006281394410.1097/01.ftd.0000183385.27394.e716418692
    [Google Scholar]
  57. D’AlessandroC. BenedettiA. Di PaoloA. GianneseD. CupistiA. Interactions between food and drugs, and nutritional status in renal patients: A narrative review.Nutrients202214121210.3390/nu1401021235011087
    [Google Scholar]
  58. AlghamdiW. Al-FadelN. AlghamdiE.A. AlghamdiM. AlharbiF. Signal detection and assessment of herb–drug interactions: Saudi food and drug authority experience.Drugs Real World Outcomes2023104577585Epub ahead of print10.1007/s40801‑023‑00388‑w37857794
    [Google Scholar]
  59. LoerH.L.H. FeickD. RüdesheimS. SelzerD. SchwabM. TeutonicoD. FrechenS. van der LeeM. MoesD.J.A.R. SwenJ.J. LehrT. Physiologically based pharmacokinetic modeling of tacrolimus for food–drug and CYP3A drug–drug–gene interaction predictions.CPT Pharmacometrics Syst. Pharmacol.202312572473810.1002/psp4.1294636808892
    [Google Scholar]
  60. YigitaslanS. erol CengelliC. The effect of P-glycoprotein inhibition and activation on the absorption and serum levels of cyclosporine and tacrolimus in rats.Adv. Clin. Exp. Med.201625223724210.17219/acem/3525427627555
    [Google Scholar]
  61. NabekuraT. KawasakiT. KatoY. KawaiK. FioritoS. EpifanoF. GenoveseS. UwaiY. Citrus auraptene induces drug efflux transporter P-glycoprotein expression in human intestinal cells.Food Funct.20201165017502310.1039/D0FO00315H32530447
    [Google Scholar]
  62. PilchN.A. SellM.L. McGheeW. VenkataramananR. Important considerations for drugs, nutritional, and herbal supplements in pediatric solid organ transplant recipients.Pediatr. Transplant.2021251e1388110.1111/petr.1388133142023
    [Google Scholar]
  63. ZhaiX. ChenC. XuX. MaL. ZhouS. WangZ. MaL. ZhaoX. ZhouY. CuiY. Marked change in blood tacrolimus concentration levels due to grapefruit in a renal transplant patient.J. Clin. Pharm. Ther.201944581982210.1111/jcpt.1300231231823
    [Google Scholar]
  64. LeinoA.D. EmotoC. FukudaT. PriviteraM. VinksA.A. AllowayR.R. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus.Am. J. Transplant.201919102944294810.1111/ajt.1539831012522
    [Google Scholar]
  65. NayeriA. WuS. AdamsE. TannerC. MeshmanJ. SainiI. ReidW. Acute calcineurin inhibitor nephrotoxicity secondary to turmeric intake: A case report.Transplant. Proc.201749119820010.1016/j.transproceed.2016.11.02928104136
    [Google Scholar]
  66. WerbaJ.P. MisakaS. GiroliM.G. ShimomuraK. AmatoM. SimonelliN. VigoL. TremoliE. Update of green tea interactions with cardiovascular drugs and putative mechanisms.J. Food Drug Anal.2018262S72S7710.1016/j.jfda.2018.01.00829703388
    [Google Scholar]
  67. EgashiraK. SasakiH. HiguchiS. IeiriI. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats.Drug Metab. Pharmacokinet.201227224224710.2133/dmpk.DMPK‑11‑RG‑10522123127
    [Google Scholar]
  68. ZhangW. TanT.M.C. LimL.Y. Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats.Drug Metab. Dispos.200735111011510.1124/dmd.106.01107217050652
    [Google Scholar]
  69. VanhoveT. AnnaertP. KuypersD.R.J. Clinical determinants of calcineurin inhibitor disposition: A mechanistic review.Drug Metab. Rev.20164818811210.3109/03602532.2016.115103726912097
    [Google Scholar]
  70. MooreL.W. Food, food components, and botanicals affecting drug metabolism in transplantation.J. Ren. Nutr.2013233e71e7310.1053/j.jrn.2013.02.00223611558
    [Google Scholar]
  71. BoissiereC FrancoisE VabretE Le DaréB BacleA. Spice-drug interactions: A case report on the use of turmeric, curry and ginger in a renal transplant patient on tacrolimus.Eur. J. Hosp. Pharm.2023311686910.1136/ejhpharm‑2023‑003871
    [Google Scholar]
  72. KhuuT. HickeyA. DengM.C. Pomegranate-containing products and tacrolimus: A potential interaction.J. Heart Lung Transplant.201332227227410.1016/j.healun.2012.10.01523200637
    [Google Scholar]
  73. LinS.P. ChaoP.D.L. TsaiS.Y. WangM.J. HouY.C. Citrus grandis peel increases the bioavailability of cyclosporine and tacrolimus, two important immunosuppressants, in rats.J. Med. Food201114111463146810.1089/jmf.2011.159621883002
    [Google Scholar]
  74. LeiH. LuoJ. TongL. PengL. QiY. JiaZ. WeiQ. Quercetin binds to calcineurin at a similar region to cyclosporin A and tacrolimus.Food Chem.201112731169117410.1016/j.foodchem.2011.01.11925214110
    [Google Scholar]
  75. DouwesR.M. Gomes-NetoA.W. SchuttenJ.C. van den BergE. de BorstM.H. BergerS.P. TouwD.J. HakE. BlokzijlH. NavisG. BakkerS.J.L. Proton-pump inhibitors and hypomagnesaemia in kidney transplant recipients.J. Clin. Med.2019812216210.3390/jcm812216231817776
    [Google Scholar]
  76. MurakamiT. BodorE. BodorN. Modulation of expression/function of intestinal P-glycoprotein under disease states.Expert Opin. Drug Metab. Toxicol.2020161597810.1080/17425255.2020.170165331821048
    [Google Scholar]
  77. HohmannN. MikusG. HaefeliW.E. SchwengerV. GattusoG. BarrecaD. WeissJ. A follow-up report on potential drug interactions with clementines: Two single case experiments show no effect on CYP3A-dependent midazolam clearance.Eur. J. Pharm. Sci.2019133545810.1016/j.ejps.2019.03.01330905614
    [Google Scholar]
  78. HoP.C. SavilleD.J. WanwimolrukS. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds.J. Pharm. Pharm. Sci.20014321722711737987
    [Google Scholar]
  79. PeynaudD. CharpiatB. VialT. GallavardinM. DucerfC. Tacrolimus severe overdosage after intake of masked grapefruit in orange marmalade.Eur. J. Clin. Pharmacol.63772172210.1007/s00228‑007‑0323‑3
    [Google Scholar]
  80. LiuC. ShangY.F. ZhangX.F. ZhangX.G. WangB. WuZ. LiuX.M. YuL. MaF. LvY. Co-administration of grapefruit juice increases bioavailability of tacrolimus in liver transplant patients: A prospective study.Eur. J. Clin. Pharmacol.200965988188510.1007/s00228‑009‑0702‑z19629461
    [Google Scholar]
  81. IwasakiK. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics.Drug Metab. Pharmacokinet.200722532833510.2133/dmpk.22.32817965516
    [Google Scholar]
  82. DresserG.K. BaileyD.G. The effects of fruit juices on drug disposition: a new model for drug interactions.Eur. J. Clin. Invest.200333s2Suppl. 2101610.1046/j.1365‑2362.33.s2.2.x14641551
    [Google Scholar]
  83. PelusoI. PalmeryM. Is a flavonoid-rich diet with steamer cooking safe during calcineurin inhibitors therapy?J. Clin. Pharm. Ther.201439547147410.1111/jcpt.1218624938126
    [Google Scholar]
  84. KnightA.K. BoxerM. ChandlerM.J. Alcohol-induced rash caused by topical tacrolimus.Ann. Allergy Asthma Immunol.200595329129210.1016/S1081‑1206(10)61227‑616200821
    [Google Scholar]
  85. SchmidtL.E. DalhoffK. Food-drug interactions.Drugs200262101481150210.2165/00003495‑200262100‑0000512093316
    [Google Scholar]
  86. WilsonN.K. KatariaA.D. Immunosuppression in solid organ-transplant recipients and impact on nutrition support.Nutr. Clin. Pract.20232023Epub ahead of print10.1002/ncp.1109938030572
    [Google Scholar]
  87. YenN.T.H. PhatN.K. OhJ.H. ParkS.M. MoonK.S. ThuV.T.A. ChoY.S. ShinJ.G. LongN.P. KimD.H. Pathway-level multi-omics analysis of the molecular mechanisms underlying the toxicity of long-term tacrolimus exposure.Toxicol. Appl. Pharmacol.202347311659710.1016/j.taap.2023.11659737321324
    [Google Scholar]
  88. González-GuerreroC. Ocaña-SalcedaC. BerzalS. CarrascoS. Fernández-FernándezB. Cannata-OrtizP. EgidoJ. OrtizA. RamosA.M. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells.Toxicol. Appl. Pharmacol.2013272382584110.1016/j.taap.2013.08.01123958496
    [Google Scholar]
  89. ChoiS.J.N. YouH.S. ChungS.Y. Tacrolimus-induced apoptotic signal transduction pathway.Transplant. Proc.20084082734273610.1016/j.transproceed.2008.08.02818929848
    [Google Scholar]
  90. OhnishiA. MatsuoH. YamadaS. TakanagaH. MorimotoS. ShoyamaY. OhtaniH. SawadaY. Effect of furanocoumarin derivatives in grapefruit juice on the uptake of vinblastine by Caco-2 cells and on the activity of cytochrome P450 3A4.Br. J. Pharmacol.200013061369137710.1038/sj.bjp.070343310903978
    [Google Scholar]
  91. WestveerM.K. EstveerM.K. FarwuharM.L. Co-administration of grapefruit juice increases tacrolimus levels in liver transplant recipients.Ann. Meet. Am. Soc. Transplant Physicians.1996202115
    [Google Scholar]
  92. CaoY. XiangQ. HuZ. ShuaiS. XiongA. Tacrolimus, cyclosporine, and grapefruit: Friends or foes?Transpl. Immunol.20227210158410.1016/j.trim.2022.10158435322792
    [Google Scholar]
  93. UshijimaK. MizutaK. OtomoS. OgakiK. SanadaY. HirataY. IharaY. UrahashiT. ImaiY. FujimuraA. Increased tacrolimus blood concentration by B eni- M adonna – a new hybrid citrus cultivar categorized as ‘Tangor’, in a liver transplant patient: likely furanocoumarin-mediated inhibition of CYP3A4 or P-glycoprotein.Br. J. Clin. Pharmacol.201884122933293510.1111/bcp.1374330218442
    [Google Scholar]
  94. AbushammalaI. Tacrolimus and herbs interactions: A review.Pharmazie2021761046847210.1691/ph.2021.168434620272
    [Google Scholar]
  95. TheileD. HohmannN. KiemelD. GattusoG. BarrecaD. MikusG. HaefeliW.E. SchwengerV. WeissJ. Clementine juice has the potential for drug interactions – In vitro comparison with grapefruit and mandarin juice.Eur. J. Pharm. Sci.20179724725610.1016/j.ejps.2016.11.02127890698
    [Google Scholar]
  96. TsujiH. OhmuraK. NakashimaR. HashimotoM. ImuraY. YukawaN. YoshifujiH. FujiiT. MimoriT. Efficacy and safety of grapefruit juice intake accompanying tacrolimus treatment in connective tissue disease patients.Intern. Med.201655121547155210.2169/internalmedicine.55.555327301503
    [Google Scholar]
  97. HuangX. ZhangR. YangT. WeiY. YangC. ZhouJ. LiuY. ShiS. Inhibition effect of epigallocatechin-3-gallate on the pharmacokinetics of calcineurin inhibitors, tacrolimus, and cyclosporine A, in rats.Expert Opin. Drug Metab. Toxicol.202117112113410.1080/17425255.2021.183711133054444
    [Google Scholar]
  98. BackJ.H. RyuH.H. HongR. HanS.A. YoonY.M. KimD.H. HongS.J. KimH.L. ChungJ.H. ShinB.C. KwonY.E. Antiproteinuric effects of green tea extract on tacrolimus-induced nephrotoxicity in mice.Transplant. Proc.20154762032203410.1016/j.transproceed.2015.06.00826293093
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002328742241210102522
Loading
/content/journals/cdm/10.2174/0113892002328742241210102522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): food; grapefruit juice; interactions; micronutrients; phytochemicals; Tacrolimus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test