Skip to content
2000
image of Tacrolimus, Cytochrome P450, Interactions with Food Variables in Organ Transplant Recipients; A Current and Comprehensive Review

Abstract

The well-established calcineurin inhibitor, tacrolimus, as an immunosuppressive agent, is widely prescribed after organ transplantation. Cytochrome P450 (CYP 450) isoforms are responsible for the metabolism of many features associated with food parameters like phytochemicals, juices, and fruits. This review article summarizes the findings of previous studies to help predict the efficacy or side effects of tacrolimus in the presence of food variables. From the commencement of databases associated with the topic of interest to 26 October 2024, all relevant articles were searched through PubMed, Scopus, and Web of Science. The suggested therapeutic range for tacrolimus trough concentration (C) was reported as 5-15 ng/ml blood. Tacrolimus interaction with food variables could significantly change Cafter organ transplantation. For example, grapefruit juice could increase tacrolimus Cdue to CYP enzyme inhibition. Toxicity such as nephrotoxicity could result from turmeric and other herbal or food products. By inhibiting tacrolimus-metabolizing enzymes and transporters, a high intake of vegetables could increase the risk of adverse effects. Secondary metabolites of vegetables could lead to toxicity in patients with tacrolimus. Furthermore, grapefruit juice, citrus fruits, turmeric, and pomegranate juice could change clinical pharmacokinetics parameters such as T, C, AUC, and Cof tacrolimus after organ transplantation. Bioavailability of tacrolimus might be decreased by induction of the CYP450 system and P-gp efflux pump due to cranberry, rooibos tea, and boldo. Increased inhibitory effect on CYP450 system and/or P-gp efflux pump by grapefruit juice, schisandra, berberine, turmeric, pomegranate juice, pomelo, and ginger could increase bioavailability of tacrolimus. A vigilant immunosuppressive strategy accompanied by scheduled therapeutic drug monitoring is recommended before and after transplant surgery.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002328742241210102522
2024-12-26
2025-01-24
Loading full text...

Full text loading...

References

  1. Oliveras L. Coloma A. Lloberas N. Lino L. Favà A. Manonelles A. Codina S. Couceiro C. Melilli E. Sharif A. Hecking M. Guthoff M. Cruzado J.M. Pascual J. Montero N. Immunosuppressive drug combinations after kidney transplantation and post-transplant diabetes: A systematic review and meta-analysis. Transplant. Rev. (Orlando) 2024 38 3 100856 10.1016/j.trre.2024.100856 38723582
    [Google Scholar]
  2. Joshi R. Medhi B. Natural product and drugs interactions, its clinical implication in drug therapy management. Saudi Med. J. 2008 29 3 333 339 18327355
    [Google Scholar]
  3. Ren H. Kong X. Zhang Y. Deng F. Li J. Zhao F. Li P. Pei K. Tan J. Cheng Y. Wang Y. Zhang L. Wang Y. Hao X. The therapeutic potential of Ziziphi Spinosae Semen and Polygalae Radix in insomnia management: Insights from gut microbiota and serum metabolomics techniques. J. Ethnopharmacol. 2024 330 118255 10.1016/j.jep.2024.118255 38670402
    [Google Scholar]
  4. Chiancone F. Carrino M. Meccariello C. Pucci L. Fedelini M. Fedelini P. The use of a combination of Vaccinium Macracarpon, Lycium barbarum L. and Probiotics (Bifiprost®) for the prevention of chronic bacterial prostatitis: A double-blind randomized study. Urol. Int. 2019 103 4 423 426 10.1159/000502765 31527377
    [Google Scholar]
  5. Bushra R. Aslam N. Khan A. Food-drug interactions. Oman Med. J. 2011 26 2 77 83 10.5001/omj.2011.21 22043389
    [Google Scholar]
  6. Nekvindová J. Anzenbacher P. Interactions of food and dietary supplements with drug metabolising cytochrome P450 enzymes. Ceska Slov Farm. 2007 56 4 165 173
    [Google Scholar]
  7. Hansten P.D. Appendix II: important interactions and their mechanisms. Basic and clinical Pharmacology McGraw hill 2004
    [Google Scholar]
  8. Ayo J.A. Agu H. Madaki I. Food and drug interactions: Its side effects. Nutr. Food Sci. 2005 35 4 243 252 10.1108/00346650510605630
    [Google Scholar]
  9. Hayeshi R. Masimirembwa C. Mukanganyama S. Ungell A.L.B. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur. J. Pharm. Sci. 2006 29 1 70 81 10.1016/j.ejps.2006.05.009 16846720
    [Google Scholar]
  10. Quezada V. Guadarrama N. Elizalde S. Iturriaga M. Landaverde P.V. Loarca-Piña G. Bioaccessibility of bioactive compounds present in Persea americana Mill. seed ingredient during oral-gastric digestion with antibacterial capacity against Helicobacter pylori. J. Ethnopharmacol. 2024 331 118259 10.1016/j.jep.2024.118259 38685366
    [Google Scholar]
  11. Bai M. Shen Q. Wu Y. Ma Z. Wang Y. Chen M. Liu D. Zhou L. Evaluation of transport mechanisms of methotrexate in human choriocarcinoma cell lines by LC-MS/MS. J. Pharm. Biomed. Anal. 2024 247 116268 10.1016/j.jpba.2024.116268 38823222
    [Google Scholar]
  12. Yang N. Wei L. Teng Y. Yu P. Xiang C. Liu J. Cyclodextrin-based metal-organic frameworks transforming drug delivery. Eur. J. Med. Chem. 2024 274 116546 10.1016/j.ejmech.2024.116546 38823266
    [Google Scholar]
  13. Li M. Xiao J. Yu T. Huang L. Cai R. Yu H. Li J. Cheng S. Analysis of hemorrhagic drug-drug interactions between P-gp inhibitors and direct oral anticoagulants from the FDA adverse event reporting system. Expert Opin. Drug Saf. 2024 23 11 1453 1461 10.1080/14740338.2024.2376693 38962834
    [Google Scholar]
  14. Hawi A. Alcorn H. Berg J. Hines C. Hait H. Sciascia T. Pharmacokinetics of nalbuphine hydrochloride extended release tablets in hemodialysis patients with exploratory effect on pruritus. BMC Nephrol. 2015 16 1 47 10.1186/s12882‑015‑0043‑3 25885112
    [Google Scholar]
  15. Korzekwa K. Nagar S. Clark D. Sciascia T. Hawi A. A continuous intestinal absorption model to predict drug enterohepatic recirculation in healthy humans: Nalbuphine as a model substrate. Mol. Pharm. 2024 21 9 4510 4523 10.1021/acs.molpharmaceut.4c00424 38956965
    [Google Scholar]
  16. Sang L. Yang S. Zhu Y. Zhu Z. Yang B. Li Z. Mao X. Chen S. Li C. Du J. Zheng X. He H. Zheng J. Huang Y. The combined use of B vitamins and probiotics promotes B vitamin absorption and increases Akkermansia abundance. Food Funct. 2024 15 13 7017 7031 10.1039/D4FO01805B 38860333
    [Google Scholar]
  17. Liu P. Wang J. Mei P. Li J. Xu B. Ren X. Chen X. Wu D. Zhu F. Yang X. He M. Liu J. Huang H. The interaction effect of metals exposure and dietary habit on cognitive function in Chinese older adult cohort. J. Nutr. Health Aging 2024 28 7 100284 10.1016/j.jnha.2024.100284 38833765
    [Google Scholar]
  18. Kumar A. Bajaj P. Singh B. Paul K. Sharma P. Mehra S. Robin Kaur P. Jasrotia S. Kumar P. Rajat Singh V. Tuli H.S. Sesamol as a potent anticancer compound: From chemistry to cellular interactions. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 7 4961 4979 10.1007/s00210‑023‑02919‑2 38180556
    [Google Scholar]
  19. Mubthasima P.P. Singh S.A. Kannan A. Sesamol-mediated targeting of EPHA2 sensitises cervical cancer for cisplatin treatment by regulating mitochondrial dynamics, autophagy, and mitophagy. Mol. Biol. Rep. 2024 51 1 949 10.1007/s11033‑024‑09875‑x 39222165
    [Google Scholar]
  20. Oboulbiga E.B. Douamba Z. Compaoré-Sérémé D. Semporé J.N. Dabo R. Semde Z. Tapsoba F.W.B. Hama-Ba F. Songré-Ouattara L.T. Parkouda C. Dicko M.H. Physicochemical, potential nutritional, antioxidant and health properties of sesame seed oil: A review. Front. Nutr. 2023 10 1127926 10.3389/fnut.2023.1127926 37377483
    [Google Scholar]
  21. Huertas-Abril P.V. Prieto-Álamo M.J. Jurado J. Pérez J. Molina-Hernández V. García-Barrera T. Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem. Toxicol. 2024 191 114845 10.1016/j.fct.2024.114845 38945390
    [Google Scholar]
  22. Seyfferth A.L. Limmer M.A. Runkle B.R.K. Chaney R.L. Mitigating toxic metal exposure through leafy greens: A comprehensive review contrasting cadmium and lead in spinach. Geohealth 2024 8 6 e2024GH001081 10.1029/2024GH001081
    [Google Scholar]
  23. Vendruscolo L.F. Vendruscolo J.C.M. Whiting K.E. Acri J.B. Volkow N.D. Koob G.F. The mGlu5 receptor negative allosteric modulator mavoglurant reduces escalated cocaine self-administration in male and female rats. Psychopharmacology 2024 241 11 2303 2313 10.1007/s00213‑024‑06634‑5 38869515
    [Google Scholar]
  24. Yu Z. Gao Y. Shang Z. Wang T. He X. Lei J. Tai F. Zhang L. Chen Y. A stable delivery system for curcumin: Fabrication and characterization of self-assembling acylated kidney bean protein isolate nanogels. Food Chem. 2024 443 138526 10.1016/j.foodchem.2024.138526 38290298
    [Google Scholar]
  25. Artusio F. Müller L. Razza N. Cordeiro Filipe I. Olgiati F. Richter Ł. Civera E. Özkan M. Gasbarri M. Rinaldi L. Wang H. Garcìa E. Schafer J. Michot L. Butot S. Baert L. Zuber S. Halik M. Stellacci F. Broad-spectrum supramolecularly reloadable antimicrobial coatings. ACS Appl. Mater. Interfaces 2024 16 23 29867 29875 10.1021/acsami.4c04705 38825754
    [Google Scholar]
  26. Available from:https://www.statista.com/statistics/398645(accessed on 18-11-2024).
  27. Ghamari T.Z. Monitoring tacrolimus after liver transplantation; a consideration of alternative techniques and the influence of clinical status. London King’s College 1999
    [Google Scholar]
  28. Tolou-Ghamari Z. Palizban A.A. Tredger J.M. Modelling tacrolimus AUC in acute and chronic liver disease immediately after transplant. Transplantationsmedizin. 2004 16 2 109 111
    [Google Scholar]
  29. Tolou-Ghamari Z. Palizban A.A. Wendon J. Tredger J.M. Pharmacokinetics of tacrolimus immediately after liver transplantation. Transplantationsmedizin. 2004 16 2 112 116
    [Google Scholar]
  30. Tolou Ghamari Z. Palizban A.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients; an updated review. Curr. Drug Res. Rev. 2023 2023 Epub ahead of print 10.2174/0125899775259326231212073240 38151846
    [Google Scholar]
  31. Ghamari T.Z. Tacrolimus and Cyclosporin Pharmacotherapy, Detection Methods, Cytochrome P450 Enzymes after Heart Transplantation. Cardiovasc. Hematol. Agents Med. Chem. 2023 2023 0021 10.2174/1871525721666230726150021 37496131
    [Google Scholar]
  32. Tolou-Ghamari Z. Review of association between urinary tract infections and immunosuppressive drugs after heart transplantation. Rev. Recent Clin. Trials 2024 19 Epub ahead of print 10.2174/0115748871315445240916091528 39323339
    [Google Scholar]
  33. Tolou-Ghamari Z. Nosocomial urinary tract infections in a tertiary hospital; preliminary study of antibiotics susceptibility testing and pathogen types. Antiinfect. Agents 2024 22 2 e251023222696 10.2174/0122113525258170231016081424
    [Google Scholar]
  34. Tolou-Ghamari Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital. Antiinfect. Agents 2024 22 2 e271023222865 10.2174/0122113525259607231020063637
    [Google Scholar]
  35. Tolou-Ghamari Z. Wendon J. Tredger J.M. In vitro pentamer formation as a biomarker of tacrolimus-related immunosuppressive activity after liver transplantation. Clin. Chem. Laborat. Med. 2000 38 11 1209 1211
    [Google Scholar]
  36. Yu M. Liu M. Zhang W. Ming Y. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr. Drug Metab. 2018 19 6 513 522 10.2174/1389200219666180129151948 29380698
    [Google Scholar]
  37. Tang J.T. Yan L. Wang L.L. Bai Y.J. Li Y.M. Zou Y.G. Li Y. van Gelder T. Shi Y.Y. A low fixed tacrolimus starting dose is effective and safe in chinese renal transplantation recipients. Ann. Transplant. 2018 23 300 309 10.12659/AOT.907666 29735966
    [Google Scholar]
  38. Schönfelder K. Möhlendick B. Eisenberger U. Kribben A. Siffert W. Heinemann F.M. Gäckler A. Wilde B. Friebus-Kardash J. Early CYP3A5 genotype-based adjustment of tacrolimus dosage reduces risk of de novo donor-specific HLA antibodies and rejection among CYP3A5-expressing renal transplant patients. Diagnostics (Basel) 2024 14 19 2202 10.3390/diagnostics14192202 39410605
    [Google Scholar]
  39. Martial L.C. Biewenga M. Ruijter B.N. Keizer R. Swen J.J. van Hoek B. Moes D.J.A.R. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br. J. Clin. Pharmacol. 2021 87 11 4262 4272 10.1111/bcp.14842 33786892
    [Google Scholar]
  40. Pan B. Li Y. Wang X. Ou Y. Heng G. Liu X. Jiang D. Liu W. Huang Y. Hu F. Xu Z. Chen Z. Zhang L. Zhang C. Adequate cumulative exposure to tacrolimus and low tacrolimus variability decrease the incidence of biliary complications after liver transplantation. Int. Immunopharmacol. 2024 128 111461 10.1016/j.intimp.2023.111461 38176344
    [Google Scholar]
  41. Sikma M.A. Hunault C.C. Van Maarseveen E.M. Huitema A.D.R. Van de Graaf E.A. Kirkels J.H. Verhaar M.C. Grutters J.C. Kesecioglu J. De Lange D.W. High variability of whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation. Eur. J. Drug Metab. Pharmacokinet. 2020 45 1 123 134 10.1007/s13318‑019‑00591‑7 31745812
    [Google Scholar]
  42. Venkataramanan R. Swaminathan A. Prasad T. Jain A. Zuckerman S. Warty V. McMichael J. Lever J. Burckart G. Starzl T. Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 1995 29 6 404 430 10.2165/00003088‑199529060‑00003 8787947
    [Google Scholar]
  43. Munjal R.S. Sharma J. Polishetti S. Valleru P.S. Banker H. Bandhu Gupta R. Anamika F.N.U. Jain R. Beyond immunosuppression: The intricate relationship between tacrolimus and microangiopathy. Cureus 2023 15 11 e49351 10.7759/cureus.49351 38146570
    [Google Scholar]
  44. Sikma M.A. van Maarseveen E.M. van de Graaf E.A. Kirkels J.H. Verhaar M.C. Donker D.W. Kesecioglu J. Meulenbelt J. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am. J. Transplant. 2015 15 9 2301 2313 10.1111/ajt.13309 26053114
    [Google Scholar]
  45. Schagen M.R. Ulu A.N. Francke M.I. van de Wetering J. van Buren M.C. Schoenmakers S. Matic M. van Schaik R.H.N. Hesselink D.A. de Winter B.C.M. Modelling changes in the pharmacokinetics of tacrolimus during pregnancy after kidney transplantation: A retrospective cohort study. Br. J. Clin. Pharmacol. 2024 90 1 176 188 10.1111/bcp.15886 37596793
    [Google Scholar]
  46. Versluis J. Bourgonje A.R. Touw D.J. Meinderts J.R. Prins J.R. de Jong M.F.C. Mian P. Pharmacokinetics of tacrolimus in pregnant solid‐organ transplant recipients: A retrospective study. J. Clin. Pharmacol. 2024 64 4 428 436 10.1002/jcph.2393 38084781
    [Google Scholar]
  47. Huppertz A. Bollmann J. Behnisch R. Bruckner T. Zorn M. Burhenne J. Haefeli W.E. Czock D. Differential effect of a continental breakfast on tacrolimus formulations with different release characteristics. Clin. Pharmacol. Drug Dev. 2021 10 8 899 907 10.1002/cpdd.924 33641238
    [Google Scholar]
  48. Miedziaszczyk M. Bajon A. Jakielska E. Primke M. Sikora J. Skowrońska D. Idasiak-Piechocka I. Controversial interactions of tacrolimus with dietary supplements, herbs and food. Pharmaceutics. 2003 14 10 2154 10.3390/pharmaceutics14102154
    [Google Scholar]
  49. Beltrá-Picó I. Díaz-González M. Nalda-Molina R. Ramon-Lopez A. Pascual-Bartolomé S. Miralles-Macià C.F. Rodríguez-Soler M. Más-Serrano P. Cassia angustifolia and tacrolimus interaction in a liver transplant patient, a case report. Br. J. Clin. Pharmacol. 2024 90 7 1745 1750 10.1111/bcp.16079 38657592
    [Google Scholar]
  50. Bekersky I. Dressler D. Mekki Q.A. Effect of low- and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J. Clin. Pharmacol. 2001 41 2 176 182 10.1177/00912700122009999 11210398
    [Google Scholar]
  51. Woon T.H. Tan M.J.H. Kwan Y.H. Fong W. Evidence of the interactions between immunosuppressive drugs used in autoimmune rheumatic diseases and Chinese herbal medicine: A scoping review. Complement. Ther. Med. 2024 80 103017 10.1016/j.ctim.2024.103017 38218549
    [Google Scholar]
  52. Lemaitre F. Budde K. Van Gelder T. Bergan S. Lawson R. Noceti O. Venkataramanan R. Elens L. Moes D.J.A.R. Hesselink D.A. Pawinski T. Johnson-Davis K.L. De Winter B.C.M. Pattanaik S. Brunet M. Masuda S. Langman L.J. Therapeutic drug monitoring and dosage adjustments of immunosuppressive drugs when combined with nirmatrelvir/ritonavir in patients with COVID-19. Ther. Drug Monit. 2023 45 2 191 199 10.1097/FTD.0000000000001014 35944126
    [Google Scholar]
  53. Tecen-Yucel K. Bayraktar-Ekincioglu A. Yildirim T. Yilmaz S.R. Demirkan K. Erdem Y. Assessment of clinically relevant drug interactions by online programs in renal transplant recipients. J. Manag. Care Spec. Pharm. 2020 26 10 1291 1296 10.18553/jmcp.2020.26.10.1291 32996393
    [Google Scholar]
  54. De Nicolò A. Pinon M. Palermiti A. Nonnato A. Manca A. Mula J. Catalano S. Tandoi F. Romagnoli R. D’Avolio A. Calvo P.L. Monitoring tacrolimus concentrations in whole blood and peripheral blood mononuclear cells: Inter- and intra-patient variability in a cohort of pediatric patients. Front. Pharmacol. 2021 12 750433 10.3389/fphar.2021.750433 34803692
    [Google Scholar]
  55. Fernandez Rivera C. Calvo Rodríguez M. Poveda J.L. Pascual J. Crespo M. Gomez G. Cabello Pelegrin S. Paul J. Lauzurica R. Perez Mir M. Moreso F. Perelló M. Andres A. González E. Fernandez A. Mendiluce A. Fernández Carbajo B. Sanchez Fructuoso A. Calvo N. Suarez A. Bernal Blanco G. Osuna A. Ruiz-Fuentes M.C. Melilli E. Montero Perez N. Ramos A. Fernández B. López V. Hernandez D. Better study Bioavailability of once‐daily tacrolimus formulations used in clinical practice in the management of De Novo kidney transplant recipients: The better study. Clin. Transplant. 2022 36 3 e14550 10.1111/ctr.14550 34851532
    [Google Scholar]
  56. Christians U. Strom T. Zhang Y.L. Steudel W. Schmitz V. Trump S. Haschke M. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther. Drug Monit. 2006 28 1 39 44 10.1097/01.ftd.0000183385.27394.e7 16418692
    [Google Scholar]
  57. D’Alessandro C. Benedetti A. Di Paolo A. Giannese D. Cupisti A. Interactions between food and drugs, and nutritional status in renal patients: A narrative review. Nutrients 2022 14 1 212 10.3390/nu14010212 35011087
    [Google Scholar]
  58. Alghamdi W. Al-Fadel N. Alghamdi E.A. Alghamdi M. Alharbi F. Signal detection and assessment of herb–drug interactions: Saudi food and drug authority experience. Drugs Real World Outcomes 2023 10 4 577 585 Epub ahead of print 10.1007/s40801‑023‑00388‑w 37857794
    [Google Scholar]
  59. Loer H.L.H. Feick D. Rüdesheim S. Selzer D. Schwab M. Teutonico D. Frechen S. van der Lee M. Moes D.J.A.R. Swen J.J. Lehr T. Physiologically based pharmacokinetic modeling of tacrolimus for food–drug and CYP3A drug–drug–gene interaction predictions. CPT Pharmacometrics Syst. Pharmacol. 2023 12 5 724 738 10.1002/psp4.12946 36808892
    [Google Scholar]
  60. Yigitaslan S. erol Cengelli C. The effect of P-glycoprotein inhibition and activation on the absorption and serum levels of cyclosporine and tacrolimus in rats. Adv. Clin. Exp. Med. 2016 25 2 237 242 10.17219/acem/35254 27627555
    [Google Scholar]
  61. Nabekura T. Kawasaki T. Kato Y. Kawai K. Fiorito S. Epifano F. Genovese S. Uwai Y. Citrus auraptene induces drug efflux transporter P-glycoprotein expression in human intestinal cells. Food Funct. 2020 11 6 5017 5023 10.1039/D0FO00315H 32530447
    [Google Scholar]
  62. Pilch N.A. Sell M.L. McGhee W. Venkataramanan R. Important considerations for drugs, nutritional, and herbal supplements in pediatric solid organ transplant recipients. Pediatr. Transplant. 2021 25 1 e13881 10.1111/petr.13881 33142023
    [Google Scholar]
  63. Zhai X. Chen C. Xu X. Ma L. Zhou S. Wang Z. Ma L. Zhao X. Zhou Y. Cui Y. Marked change in blood tacrolimus concentration levels due to grapefruit in a renal transplant patient. J. Clin. Pharm. Ther. 2019 44 5 819 822 10.1111/jcpt.13002 31231823
    [Google Scholar]
  64. Leino A.D. Emoto C. Fukuda T. Privitera M. Vinks A.A. Alloway R.R. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus. Am. J. Transplant. 2019 19 10 2944 2948 10.1111/ajt.15398 31012522
    [Google Scholar]
  65. Nayeri A. Wu S. Adams E. Tanner C. Meshman J. Saini I. Reid W. Acute calcineurin inhibitor nephrotoxicity secondary to turmeric intake: A case report. Transplant. Proc. 2017 49 1 198 200 10.1016/j.transproceed.2016.11.029 28104136
    [Google Scholar]
  66. Werba J.P. Misaka S. Giroli M.G. Shimomura K. Amato M. Simonelli N. Vigo L. Tremoli E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J. Food Drug Anal. 2018 26 2 S72 S77 10.1016/j.jfda.2018.01.008 29703388
    [Google Scholar]
  67. Egashira K. Sasaki H. Higuchi S. Ieiri I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab. Pharmacokinet. 2012 27 2 242 247 10.2133/dmpk.DMPK‑11‑RG‑105 22123127
    [Google Scholar]
  68. Zhang W. Tan T.M.C. Lim L.Y. Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab. Dispos. 2007 35 1 110 115 10.1124/dmd.106.011072 17050652
    [Google Scholar]
  69. Vanhove T. Annaert P. Kuypers D.R.J. Clinical determinants of calcineurin inhibitor disposition: A mechanistic review. Drug Metab. Rev. 2016 48 1 88 112 10.3109/03602532.2016.1151037 26912097
    [Google Scholar]
  70. Moore L.W. Food, food components, and botanicals affecting drug metabolism in transplantation. J. Ren. Nutr. 2013 23 3 e71 e73 10.1053/j.jrn.2013.02.002 23611558
    [Google Scholar]
  71. Boissiere C Francois E Vabret E Le Daré B Bacle A. Spice-drug interactions: A case report on the use of turmeric, curry and ginger in a renal transplant patient on tacrolimus. Eur. J. Hosp. Pharm. 2023 31 1 68 69 10.1136/ejhpharm‑2023‑003871
    [Google Scholar]
  72. Khuu T. Hickey A. Deng M.C. Pomegranate-containing products and tacrolimus: A potential interaction. J. Heart Lung Transplant. 2013 32 2 272 274 10.1016/j.healun.2012.10.015 23200637
    [Google Scholar]
  73. Lin S.P. Chao P.D.L. Tsai S.Y. Wang M.J. Hou Y.C. Citrus grandis peel increases the bioavailability of cyclosporine and tacrolimus, two important immunosuppressants, in rats. J. Med. Food 2011 14 11 1463 1468 10.1089/jmf.2011.1596 21883002
    [Google Scholar]
  74. Lei H. Luo J. Tong L. Peng L. Qi Y. Jia Z. Wei Q. Quercetin binds to calcineurin at a similar region to cyclosporin A and tacrolimus. Food Chem. 2011 127 3 1169 1174 10.1016/j.foodchem.2011.01.119 25214110
    [Google Scholar]
  75. Douwes R.M. Gomes-Neto A.W. Schutten J.C. van den Berg E. de Borst M.H. Berger S.P. Touw D.J. Hak E. Blokzijl H. Navis G. Bakker S.J.L. Proton-pump inhibitors and hypomagnesaemia in kidney transplant recipients. J. Clin. Med. 2019 8 12 2162 10.3390/jcm8122162 31817776
    [Google Scholar]
  76. Murakami T. Bodor E. Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin. Drug Metab. Toxicol. 2020 16 1 59 78 10.1080/17425255.2020.1701653 31821048
    [Google Scholar]
  77. Hohmann N. Mikus G. Haefeli W.E. Schwenger V. Gattuso G. Barreca D. Weiss J. A follow-up report on potential drug interactions with clementines: Two single case experiments show no effect on CYP3A-dependent midazolam clearance. Eur. J. Pharm. Sci. 2019 133 54 58 10.1016/j.ejps.2019.03.013 30905614
    [Google Scholar]
  78. Ho P.C. Saville D.J. Wanwimolruk S. Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J. Pharm. Pharm. Sci. 2001 4 3 217 227 11737987
    [Google Scholar]
  79. Peynaud D. Charpiat B. Vial T. Gallavardin M. Ducerf C. Tacrolimus severe overdosage after intake of masked grapefruit in orange marmalade. Eur. J. Clin. Pharmacol. 63 7 721 722 10.1007/s00228‑007‑0323‑3
    [Google Scholar]
  80. Liu C. Shang Y.F. Zhang X.F. Zhang X.G. Wang B. Wu Z. Liu X.M. Yu L. Ma F. Lv Y. Co-administration of grapefruit juice increases bioavailability of tacrolimus in liver transplant patients: A prospective study. Eur. J. Clin. Pharmacol. 2009 65 9 881 885 10.1007/s00228‑009‑0702‑z 19629461
    [Google Scholar]
  81. Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab. Pharmacokinet. 2007 22 5 328 335 10.2133/dmpk.22.328 17965516
    [Google Scholar]
  82. Dresser G.K. Bailey D.G. The effects of fruit juices on drug disposition: a new model for drug interactions. Eur. J. Clin. Invest. 2003 33 s2 Suppl. 2 10 16 10.1046/j.1365‑2362.33.s2.2.x 14641551
    [Google Scholar]
  83. Peluso I. Palmery M. Is a flavonoid-rich diet with steamer cooking safe during calcineurin inhibitors therapy? J. Clin. Pharm. Ther. 2014 39 5 471 474 10.1111/jcpt.12186 24938126
    [Google Scholar]
  84. Knight A.K. Boxer M. Chandler M.J. Alcohol-induced rash caused by topical tacrolimus. Ann. Allergy Asthma Immunol. 2005 95 3 291 292 10.1016/S1081‑1206(10)61227‑6 16200821
    [Google Scholar]
  85. Schmidt L.E. Dalhoff K. Food-drug interactions. Drugs 2002 62 10 1481 1502 10.2165/00003495‑200262100‑00005 12093316
    [Google Scholar]
  86. Wilson N.K. Kataria A.D. Immunosuppression in solid organ-transplant recipients and impact on nutrition support. Nutr. Clin. Pract. 2023 2023 Epub ahead of print 10.1002/ncp.11099 38030572
    [Google Scholar]
  87. Yen N.T.H. Phat N.K. Oh J.H. Park S.M. Moon K.S. Thu V.T.A. Cho Y.S. Shin J.G. Long N.P. Kim D.H. Pathway-level multi-omics analysis of the molecular mechanisms underlying the toxicity of long-term tacrolimus exposure. Toxicol. Appl. Pharmacol. 2023 473 116597 10.1016/j.taap.2023.116597 37321324
    [Google Scholar]
  88. González-Guerrero C. Ocaña-Salceda C. Berzal S. Carrasco S. Fernández-Fernández B. Cannata-Ortiz P. Egido J. Ortiz A. Ramos A.M. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol. Appl. Pharmacol. 2013 272 3 825 841 10.1016/j.taap.2013.08.011 23958496
    [Google Scholar]
  89. Choi S.J.N. You H.S. Chung S.Y. Tacrolimus-induced apoptotic signal transduction pathway. Transplant. Proc. 2008 40 8 2734 2736 10.1016/j.transproceed.2008.08.028 18929848
    [Google Scholar]
  90. Ohnishi A. Matsuo H. Yamada S. Takanaga H. Morimoto S. Shoyama Y. Ohtani H. Sawada Y. Effect of furanocoumarin derivatives in grapefruit juice on the uptake of vinblastine by Caco‐2 cells and on the activity of cytochrome P450 3A4. Br. J. Pharmacol. 2000 130 6 1369 1377 10.1038/sj.bjp.0703433 10903978
    [Google Scholar]
  91. Westveer M.K. Estveer M.K. Farwuhar M.L. Co-administration of grapefruit juice increases tacrolimus levels in liver transplant recipients. Ann. Meet. Am. Soc. Transplant Physicians. 1996 202 115
    [Google Scholar]
  92. Cao Y. Xiang Q. Hu Z. Shuai S. Xiong A. Tacrolimus, cyclosporine, and grapefruit: Friends or foes? Transpl. Immunol. 2022 72 101584 10.1016/j.trim.2022.101584 35322792
    [Google Scholar]
  93. Ushijima K. Mizuta K. Otomo S. Ogaki K. Sanada Y. Hirata Y. Ihara Y. Urahashi T. Imai Y. Fujimura A. Increased tacrolimus blood concentration by B eni‐ M adonna – a new hybrid citrus cultivar categorized as ‘ T angor’, in a liver transplant patient: likely furanocoumarin‐mediated inhibition of CYP3A4 or P ‐glycoprotein. Br. J. Clin. Pharmacol. 2018 84 12 2933 2935 10.1111/bcp.13743 30218442
    [Google Scholar]
  94. Abushammala I. Tacrolimus and herbs interactions: A review. Pharmazie 2021 76 10 468 472 10.1691/ph.2021.1684 34620272
    [Google Scholar]
  95. Theile D. Hohmann N. Kiemel D. Gattuso G. Barreca D. Mikus G. Haefeli W.E. Schwenger V. Weiss J. Clementine juice has the potential for drug interactions – In vitro comparison with grapefruit and mandarin juice. Eur. J. Pharm. Sci. 2017 97 247 256 10.1016/j.ejps.2016.11.021 27890698
    [Google Scholar]
  96. Tsuji H. Ohmura K. Nakashima R. Hashimoto M. Imura Y. Yukawa N. Yoshifuji H. Fujii T. Mimori T. Efficacy and safety of grapefruit juice intake accompanying tacrolimus treatment in connective tissue disease patients. Intern. Med. 2016 55 12 1547 1552 10.2169/internalmedicine.55.5553 27301503
    [Google Scholar]
  97. Huang X. Zhang R. Yang T. Wei Y. Yang C. Zhou J. Liu Y. Shi S. Inhibition effect of epigallocatechin-3-gallate on the pharmacokinetics of calcineurin inhibitors, tacrolimus, and cyclosporine A, in rats. Expert Opin. Drug Metab. Toxicol. 2021 17 1 121 134 10.1080/17425255.2021.1837111 33054444
    [Google Scholar]
  98. Back J.H. Ryu H.H. Hong R. Han S.A. Yoon Y.M. Kim D.H. Hong S.J. Kim H.L. Chung J.H. Shin B.C. Kwon Y.E. Antiproteinuric effects of green tea extract on tacrolimus-induced nephrotoxicity in mice. Transplant. Proc. 2015 47 6 2032 2034 10.1016/j.transproceed.2015.06.008 26293093
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002328742241210102522
Loading
/content/journals/cdm/10.2174/0113892002328742241210102522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemicals ; micronutrients ; grapefruit juice ; interactions ; food ; Tacrolimus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test