Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Introduction

This study aims to develop co-amorphous Solid Dispersion (SD) system containing antimalarials Artesunate (ARS) and Amodiaquine (AMQ) to improve its oral bioavailability employing the Hot Melt Extrusion (HME) technique. Soluplus® was selected as a polymeric excipient, whereas Lutrol F127, Lutrol F68, TPGS, and PEG400 as surfactants were incorporated along with Soluplus® to enhance extrudability, improve hydrophilicity, and improve the blend viscosity during HME. Soluplus® with surfactant combination successfully stabilizes both drugs during extrusion by generating SD because of its lower glass transition temperature (Tg) and viscoelastic behavior.

Methods

Physicochemical characterizations were performed using FTIR, DSC, TGA, and XRD, which confirmed the amorphousization of drugs in the SD system. The molecular level morphology of the optimized formulation was quantified using high-resolution techniques such as Atomic-Force Microscopy (AFM), Raman spectral, and mapping analysis. The transition of the crystalline drugs into a stable amorphous form has been demonstrated by 1H-NMR and 2D-NMR studies. The pharmacokinetics study in rats showed that the SD-containing drug-Soluplus-TPGS (FDC10) formulation has 36.63-56.13 (ARS-AMQ) folds increase in the Cmax and 41.87-54.34 (ARS-AMQ) folds increase AUC (0–72) as compared to pure drugs.

Results

Pharmacokinetic analysis shows that a fixed-dose combination of 50:135 mg of both APIs (ARS-AMQ) significantly increased oral bioavailability by elevating Cmax and AUC, in comparison to pure APIs and also better than the marketed product Coarsucam®.

Conclusion

Therefore, the developed melt extruded co-amorphous formulation has enhanced bioavailability and has more effectiveness than the marketed product Coarsucam®.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002330772240912055518
2024-09-25
2025-01-10
Loading full text...

Full text loading...

References

  1. AndrewsG.P. Abu-DiakO. KusmantoF. HornsbyP. HuiZ. JonesD.S. Physicochemical characterization and drug-release properties of celecoxib hot-melt extruded glass solutions.J. Pharm. Pharmacol.201062111580159010.1111/j.2042‑7158.2010.01177.x 21072971
    [Google Scholar]
  2. LiuP. ZhouJ. ChangJ. LiuX. XueH. WangR. LiZ. LiC. WangJ. LiuC. Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: Development, characterization and oral bioavailability.Drug Des. Devel. Ther.2020142959297510.2147/DDDT.S253405 32801637
    [Google Scholar]
  3. DjurisJ. NikolakakisI. IbricS. DjuricZ. KachrimanisK. Preparation of carbamazepine–Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by thermodynamic model fitting.Eur. J. Pharm. Biopharm.201384122823710.1016/j.ejpb.2012.12.018 23333900
    [Google Scholar]
  4. ManiruzzamanM. RanaM.M. BoatengJ.S. MitchellJ.C. DouroumisD. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers.Drug Dev. Ind. Pharm.201339221822710.3109/03639045.2012.670642 22452601
    [Google Scholar]
  5. PatilH. TiwariR.V. RepkaM.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation.AAPS PharmSciTech2016171204210.1208/s12249‑015‑0360‑7 26159653
    [Google Scholar]
  6. MillerD.A. McConvilleJ.T. YangW. WilliamsR.O.III McGinityJ.W. Hot-melt extrusion for enhanced delivery of drug particles.J. Pharm. Sci.200796236137610.1002/jps.20806 17075869
    [Google Scholar]
  7. CrowleyM.M. ZhangF. RepkaM.A. ThummaS. UpadhyeS.B. Kumar BattuS. McGinityJ.W. MartinC. Pharmaceutical applications of hot-melt extrusion: Part I.Drug Dev. Ind. Pharm.200733990992610.1080/03639040701498759 17891577
    [Google Scholar]
  8. ZhangK. YuH. LuoQ. YangS. LinX. ZhangY. TianB. TangX. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension.Eur. J. Pharm. Biopharm.20138531285129210.1016/j.ejpb.2013.03.002 23562534
    [Google Scholar]
  9. TianY. BoothJ. MeehanE. JonesD.S. LiS. AndrewsG.P. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: Identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.Mol. Pharm.201310123624810.1021/mp300386v 23110477
    [Google Scholar]
  10. LiH. ZhangM. XiongL. FengW. WilliamsR.O.III Bioavailability improvement of carbamazepine via oral administration of modified-release amorphous solid dispersions in rats.Pharmaceutics20201211102310.3390/pharmaceutics12111023 33114739
    [Google Scholar]
  11. ZiP. ZhangC. JuC. SuZ. BaoY. GaoJ. SunJ. LuJ. ZhangC. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus.Eur. J. Pharm. Sci.201913423324510.1016/j.ejps.2019.04.022 31028820
    [Google Scholar]
  12. AldawsariM.F. AnwerM.K. AhmedM.M. FatimaF. SolimanG.A. BhatiaS. ZafarA. AboudzadehM.A. Enhanced dissolution of sildenafil citrate using solid dispersion with hydrophilic polymers: Physicochemical characterization and in vivo sexual behavior studies in male rats.Polymers (Basel)20211320351210.3390/polym13203512 34685271
    [Google Scholar]
  13. FuleR.A. MeerT.S. SavA.R. AminP.D. Artemether-soluplus hot-melt extrudate solid dispersion systems for solubility and dissolution rate enhancement with amorphous state characteristics.J. Pharm. (Cairo)2013201311510.1155/2013/151432 26555968
    [Google Scholar]
  14. FuleR. AminP. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation.Asian J. Pharm. Sci.2014929210610.1016/j.ajps.2013.12.004
    [Google Scholar]
  15. FuleR. DhamechaD. ManiruzzamanM. KhaleA. AminP. Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): Evaluating amorphous state and in vivo performance.Int. J. Pharm.2015496113715610.1016/j.ijpharm.2015.09.069 26471056
    [Google Scholar]
  16. AnvikarA.R. SharmaB. ShahiB.H. TyagiP.K. BoseT.K. SharmaS.K. SrivastavaP. SrivastavaB. KiechelJ.R. DashA.P. ValechaN. Artesunate-amodiaquine fixed dose combination for the treatment of Plasmodium falciparum malaria in India.Malar. J.20121119710.1186/1475‑2875‑11‑97 22458860
    [Google Scholar]
  17. PintoJ.M.O. LeãoA.F. BazzoG.C. MendesC. MadureiraL.M.P. CaramoriG.F. ParreiraR.L.T. StulzerH.K. Supersaturating drug delivery systems containing fixed-dose combination of two antihypertensive drugs: Formulation, in vitro evaluation and molecular metadynamics simulations.Eur. J. Pharm. Sci.202116310586010.1016/j.ejps.2021.105860 33901683
    [Google Scholar]
  18. PartogiH.T. SoewandhiS.N. SofiaP.J. Identification of physical interaction between anti malarial drugs combination artesunate-amodiaquine hydrochloride.Int. J. Pharm. Pharm. Sci.201353206210
    [Google Scholar]
  19. VoC.L.N. ParkC. LeeB.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.Eur. J. Pharm. Biopharm.201385379981310.1016/j.ejpb.2013.09.007 24056053
    [Google Scholar]
  20. FuleR. MeerT. AminP. DhamechaD. GhadlingeS. Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique.J. Pharm. Investig.2014441415910.1007/s40005‑013‑0099‑7
    [Google Scholar]
  21. FuleR. MeerT. SavA. AminP. Solubility and dissolution rate enhancement of lumefantrine using hot melt extrusion technology with physicochemical characterisation.J. Pharm. Investig.201343430532110.1007/s40005‑013‑0078‑z
    [Google Scholar]
  22. WidjajaE. KanaujiaP. LauG. NgW.K. GarlandM. SaalC. HanefeldA. FischbachM. MaioM. TanR.B.H. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis.Eur. J. Pharm. Sci.2011421-2455410.1016/j.ejps.2010.10.004 20969956
    [Google Scholar]
  23. KangY. MaoZ. WangY. PanC. OuM. ZhangH. ZengW. JiX. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy.Nat. Commun.2022131242510.1038/s41467‑022‑30166‑1 35504879
    [Google Scholar]
  24. YeJ. FanY. SheY. ShiJ. YangY. YuanX. LiR. HanJ. LiuL. KangY. JiX. Biomimetic self‐propelled asymmetric nanomotors for cascade‐targeted treatment of neurological inflammation.Adv. Sci. (Weinh.)20241122231021110.1002/advs.202310211 38460166
    [Google Scholar]
  25. YuanX. KangY. DongJ. LiR. YeJ. FanY. HanJ. YuJ. NiG. JiX. MingD. Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy.Nat. Commun.2023141514010.1038/s41467‑023‑40954‑y 37612298
    [Google Scholar]
  26. FuleR. PaithankarV. AminP. Hot melt extrusion based solid solution approach: Exploring polymer comparison, physicochemical characterization and in vivo evaluation.Int. J. Pharm.20164991-228029410.1016/j.ijpharm.2015.12.062 26746801
    [Google Scholar]
  27. PaudelA. GeppiM. MooterG.V. Structural and dynamic properties of amorphous solid dispersions: The role of solid-state nuclear magnetic resonance spectroscopy and relaxometry.J. Pharm. Sci.201410392635266210.1002/jps.23966 24715618
    [Google Scholar]
  28. SolankiN. GuptaS.S. SerajuddinA.T.M. Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion.Eur. J. Pharm. Sci.201811148249110.1016/j.ejps.2017.10.034 29080855
    [Google Scholar]
  29. KharwadeR. AliN. GanganeP. PawarK. MoreS. IqbalM. BhatA.R. AlAsmariA.F. KaleemM. DOE-assisted formulation, optimization, and characterization of tioconazole-loaded transferosomal hydrogel for the effective treatment of atopic dermatitis: In vitro and in vivo evaluation.Gels20239430310.3390/gels9040303 37102915
    [Google Scholar]
  30. SarodeA.L. SandhuH. ShahN. MalickW. ZiaH. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug–polymer interactions on supersaturation.Eur. J. Pharm. Sci.201348337138410.1016/j.ejps.2012.12.012 23267847
    [Google Scholar]
  31. BreitenbachJ. Melt extrusion: From process to drug delivery technology.Eur. J. Pharm. Biopharm.200254210711710.1016/S0939‑6411(02)00061‑9 12191680
    [Google Scholar]
  32. JainJ.P. LeongF.J. ChenL. KalluriS. KoradiaV. SteinD.S. WolfM.C. SunkaraG. KotaJ. bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers.Antimicrob. Agents Chemother.2017619e008681710.1128/AAC.00868‑17 28630183
    [Google Scholar]
  33. QuangN.N. ChavchichM. AnhC.X. BirrellG.W. van BredaK. TraversT. RowcliffeK. EdsteinM.D. Comparison of the pharmacokinetics and ex vivo antimalarial activities of artesunate-amodiaquine and artemisinin-piperaquine in healthy volunteers for preselection malaria therapy.Am. J. Trop. Med. Hyg.2018991657210.4269/ajtmh.17‑0434 29741150
    [Google Scholar]
  34. ZhengM.C. TangW.T. YuL.L. QianX.J. RenJ. LiJ.J. RongW.W. LiJ.X. ZhuQ. Preclinical pharmacokinetics and bioavailability of oxypeucedanin in rats after single intravenous and oral administration.Molecules20222711357010.3390/molecules27113570 35684506
    [Google Scholar]
  35. KangY. XuL. DongJ. YuanX. YeJ. FanY. LiuB. XieJ. JiX. Programmed microalgae-gel promotes chronic wound healing in diabetes.Nat. Commun.2024151104210.1038/s41467‑024‑45101‑9 38310127
    [Google Scholar]
  36. SawantK.P. FuleR. ManiruzzamanM. AminP.D. Extended release delivery system of metoprolol succinate using hot-melt extrusion: Effect of release modifier on methacrylic acid copolymer.Drug Deliv. Transl. Res.2018861679169310.1007/s13346‑018‑0545‑1 29948916
    [Google Scholar]
  37. WeutsI. KempenD. DecorteA. VerreckG. PeetersJ. BrewsterM. Van den MooterG. Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64.Eur. J. Pharm. Sci.200422537538510.1016/j.ejps.2004.04.002 15265507
    [Google Scholar]
  38. FuleR. KaleemM. AsarT.O. RashidM.A. ShaikR.A. EidB.G. NasrullahM.Z. AhmadA. KazmiI. Formulation, optimization and evaluation of cytarabine-loaded iron oxide nanoparticles: From in vitro to in vivo evaluation of anticancer activity.Nanomaterials (Basel)202213117510.3390/nano13010175 36616087
    [Google Scholar]
  39. HossainA. NandiU. FuleR. NokhodchiA. ManiruzzamanM. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.J. Colloid Interface Sci.201749215716610.1016/j.jcis.2016.11.018 28086118
    [Google Scholar]
  40. LauerM.E. SiamM. TardioJ. PageS. KindtJ.H. GrassmannO. Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy - From bench to batch.Pharm. Res.20133082010202210.1007/s11095‑013‑1045‑0 23673553
    [Google Scholar]
  41. PhamT.N. WatsonS.A. EdwardsA.J. ChavdaM. ClawsonJ.S. StrohmeierM. VogtF.G. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.Mol. Pharm.2010751667169110.1021/mp100205g 20681586
    [Google Scholar]
  42. Tousif AyyubK. MoravkarK. ManiruzzamanM. AminP. Effect of melt extrudability and melt binding efficiency of polyvinyl caprolactam polyvinyl acetate polyethylene glycol graft copolymer (Soluplus®) on release pattern of hydrophilic and high dose drugs.Mater. Sci. Eng. C20199956357410.1016/j.msec.2019.01.126 30889730
    [Google Scholar]
  43. KaravasE. GeorgarakisE. SigalasM.P. AvgoustakisK. BikiarisD. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug–polymer interactions.Eur. J. Pharm. Biopharm.200766333434710.1016/j.ejpb.2006.11.020 17267194
    [Google Scholar]
  44. FrançaM.T. Nicolay PereiraR. Klüppel RiekesM. Munari Oliveira PintoJ. StulzerH.K. Investigation of novel supersaturating drug delivery systems of chlorthalidone: The use of polymer-surfactant complex as an effective carrier in solid dispersions.Eur. J. Pharm. Sci.201811114215210.1016/j.ejps.2017.09.043 28964949
    [Google Scholar]
  45. LuX. HuangC. LowingerM.B. YangF. XuW. BrownC.D. HeskD. KoynovA. SchenckL. SuY. Molecular interactions in posaconazole amorphous solid dispersions from two-dimensional solid-state NMR spectroscopy.Mol. Pharm.20191662579258910.1021/acs.molpharmaceut.9b00174 31021639
    [Google Scholar]
  46. RosiakN. WdowiakK. TykarskaE. Cielecka-PiontekJ. Amorphous solid dispersion of hesperidin with polymer excipients for enhanced apparent solubility as a more effective approach to the treatment of civilization diseases.Int. J. Mol. Sci.202223231519810.3390/ijms232315198 36499518
    [Google Scholar]
  47. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. KaleemM. DalhatM.H. Thermosensitive hydrogels loaded with resveratrol nanoemulsion: Formulation optimization by central composite design and evaluation in MCF-7 human breast cancer cell lines.Gels20228745010.3390/gels8070450 35877535
    [Google Scholar]
  48. TungN.T. TranC.S. NguyenT.L. PhamT.M.H. ChiS.C. NguyenH.A. BuiQ.D. BuiD.N. TranT.Q. Effect of surfactant on the in Vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion.Eur. J. Pharm. Sci.202116210583610.1016/j.ejps.2021.105836 33852972
    [Google Scholar]
  49. RivelliG.G. RicoyL.B.M. CésarI.C. FernandesC. PianettiG.A. Level A in vitro-in vivo correlation: Application to establish a dissolution test for artemether and lumefantrine tablets.J. Pharm. Biomed. Anal.201815526226910.1016/j.jpba.2018.03.063 29674137
    [Google Scholar]
  50. TambeS. JainD. AgarwalY. AminP. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications.J. Drug Deliv. Sci. Technol.20216310245210.1016/j.jddst.2021.102452
    [Google Scholar]
  51. AttiaM.S. ElshahatA. HamdyA. FathiA.M. Emad-EldinM. GhazyF-E.S. ChopraH. IbrahimT.M. Soluplus® as a solubilizing excipient for poorly water-soluble drugs: Recent advances in formulation strategies and pharmaceutical product features.J. Drug Deliv. Sci. Technol.20238410451910.1016/j.jddst.2023.104519
    [Google Scholar]
  52. PartheniadisI. NikolakakisI. Development and characterization of co-amorphous griseofulvin/L-leucin by modified solvent processing hot-melt extrusion.Int. J. Pharm.202465212382410.1016/j.ijpharm.2024.123824 38246478
    [Google Scholar]
  53. HanJ. TangM. YangY. SunW. YueZ. ZhangY. ZhuY. LiuX. WangJ. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion.Int. J. Pharm.202364612349010.1016/j.ijpharm.2023.123490 37805146
    [Google Scholar]
  54. DarwichM. MohylyukV. KolterK. BodmeierR. DashevskiyA. Enhancement of itraconazole solubility and release by hot-melt extrusion with Soluplus®.J. Drug Deliv. Sci. Technol.20238110428010.1016/j.jddst.2023.104280
    [Google Scholar]
  55. FanW. WuJ. GaoM. ZhangX. ZhuW. Preparation of solid dispersion of polygonum cuspidatum extract by hot melt extrusion to enhance oral bioavailability of resveratrol.Molecules202328273710.3390/molecules28020737 36677795
    [Google Scholar]
  56. SvobodaR. NevyhoštěnáM. MacháčkováJ. VaculíkJ. KnotkováK. ChromčíkováM. KomersováA. thermal degradation of affinisol HPMC: Optimum processing temperatures for hot melt extrusion and 3D printing.Pharm. Res.20234092253226810.1007/s11095‑023‑03592‑z 37610622
    [Google Scholar]
  57. SamanthulaK.S. KemisettiD. MandhadiJ.R. ThalluriC. DeyB.K. Novel applications of hot melt extrusion technology.J. Drug Deliv. Ther.202313415415810.22270/jddt.v13i4.5794
    [Google Scholar]
  58. AL-Japairai, K.; Hamed Almurisi, S.; Mahmood, S.; Madheswaran, T.; Chatterjee, B.; Sri, P.; Azra Binti Ahmad Mazlan, N.; Al Hagbani, T.; Alheibshy, F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method.Int. J. Pharm.202364712353610.1016/j.ijpharm.2023.123536 37865133
    [Google Scholar]
  59. JiangJ. LuA. MaX. OuyangD. WilliamsR.O.III The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion.Int. J. Pharm. X2023510016410.1016/j.ijpx.2023.100164 36798832
    [Google Scholar]
  60. WuH. WangZ. ZhaoY. GaoY. WangL. ZhangH. BuR. DingZ. HanJ. Effect of different seed crystals on the supersaturation state of ritonavir tablets prepared by hot-melt extrusion.Eur. J. Pharm. Sci.202318510644010.1016/j.ejps.2023.106440 37004961
    [Google Scholar]
  61. EssaE. AminM. SultanA. ArafaM. El MaghrabyG. McConvilleC. Hot melt extrusion for enhanced dissolution and intestinal absorption of hydrochlorothiazide.J. Drug Deliv. Sci. Technol.20238810489510.1016/j.jddst.2023.104895
    [Google Scholar]
  62. MunnangiS.R. YoussefA.A.A. NaralaN. LakkalaP. VemulaS.K. AlluriR. ZhangF. RepkaM.A. Continuous manufacturing of solvent-free cyclodextrin inclusion complexes for enhanced drug solubility via hot-melt extrusion: A quality by design approach.Pharmaceutics2023159220310.3390/pharmaceutics15092203 37765172
    [Google Scholar]
  63. FengS. ZhangZ. AlmotairyA. RepkaM.A. Development and evaluation of polymeric mixed micelles prepared using hot-melt extrusion for extended delivery of poorly water-soluble drugs.J. Pharm. Sci.2023112112869287810.1016/j.xphs.2023.06.007 37327994
    [Google Scholar]
  64. PatilH. VemulaS.K. NaralaS. LakkalaP. MunnangiS.R. NaralaN. JaraM.O. WilliamsR.O.III TerefeH. RepkaM.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation — Where are we now?AAPS PharmSciTech20242523710.1208/s12249‑024‑02749‑2 38355916
    [Google Scholar]
  65. KimS.Y. PenaI. WeonK.Y. ParkJ.B. Preparation of tofacitinib sustained-release tablets using hot melt extrusion technology.Pharm. Dev. Technol.202429324825710.1080/10837450.2024.2323621 38416122
    [Google Scholar]
  66. UttrejaP. YoussefA.A.A. KarnikI. SanilK. NaralaN. WangH. ElkanayatiR.M. VemulaS.K. RepkaM.A. Formulation development of solid self-nanoemulsifying drug delivery systems of quetiapine fumarate via hot-melt extrusion technology: Optimization using central composite design.Pharmaceutics202416332410.3390/pharmaceutics16030324 38543219
    [Google Scholar]
  67. KuchlerL. SpoerkM. EderS. DoğanA. KhinastJ. SacherS. Liquid API feeding in pharmaceutical HME: Novel options in solid dosage manufacturing.Int. J. Pharm.202465012369010.1016/j.ijpharm.2023.123690 38081563
    [Google Scholar]
  68. LacerdaS.P. Del ConfettoS. HaurieL. BernardM. FagetS. RéM.I. An innovative carrier for the formulation of amorphous solid dispersion by hot-melt extrusion with no further downstream processes: A case study with indomethacin.Pharm. Dev. Technol.202429213114210.1080/10837450.2024.2306802 38235570
    [Google Scholar]
  69. ArjunS. KulhariU. PadakantiA.P. SahuB.D. ChellaN. Colon-targeted delivery of niclosamide from solid dispersion employing a pH-dependent polymer via hotmelt extrusion for the treatment of ulcerative colitis in mice.J. Drug Target.202432218619910.1080/1061186X.2023.2298849 38133596
    [Google Scholar]
  70. ZhangP. LiJ. AshourE.A. ChungS. WangH. VemulaS.K. RepkaM.A. Development of multiple structured extended release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing.Int. J. Pharm.202465312390510.1016/j.ijpharm.2024.123905 38355075
    [Google Scholar]
  71. ZhangP. WangH. ChungS. LiJ. VemulaS.K. RepkaM.A. Fabrication of suppository shells via hot-melt extrusion paired with fused deposition modeling 3D printing techniques.J. Drug Deliv. Sci. Technol.20249410549110.1016/j.jddst.2024.105491
    [Google Scholar]
  72. KrauseJ. DomstaV. UlbrichtM. SchickP. SeidlitzA. A case study to investigate the influence of extrusion temperature, 3D printing parameters and the use of antioxidants on the degradation of dexamethasone.J. Drug Deliv. Sci. Technol.20249210539410.1016/j.jddst.2024.105394
    [Google Scholar]
  73. OmariS. AshourE.A. ElkanayatiR. AlyahyaM. AlmutairiM. RepkaM.A. Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology.J. Drug Deliv. Sci. Technol.20227410350510.1016/j.jddst.2022.103505
    [Google Scholar]
  74. OmariS. AshourE.A. ElkanayatiR. AmutairiM. AlyahyaM. RepkaM.A. Formulation development of loratadine immediate- release tablets using hot-melt extrusion coupled with 3d printing technology.SSRN202210.2139/ssrn.4022329
    [Google Scholar]
  75. ZhangZ. FengS. AlmotairyA. BandariS. RepkaM.A. Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques.Eur. J. Pharm. Biopharm.202318310211110.1016/j.ejpb.2023.01.004 36632906
    [Google Scholar]
  76. ChungS. SrinivasanP. ZhangP. BandariS. RepkaM.A. Development of ibuprofen tablet with polyethylene oxide using fused deposition modeling 3D-printing coupled with hot-melt extrusion.J. Drug Deliv. Sci. Technol.20227610371610.1016/j.jddst.2022.103716
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002330772240912055518
Loading
/content/journals/cdm/10.2174/0113892002330772240912055518
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): dissolution; Hot melt extrusion; pharmacokinetic; solid dispersion; solid state; solubility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test