Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Objective

Osilodrostat, used to treat Cushing's disease, exhibits an anabolic effect, leading to its classification as a prohibited substance in horseracing and equestrian sports. This study reports the characterization of osilodrostat metabolites in horse urine and elucidates its metabolic pathways for the first time for doping control purposes.

Methods

Osilodrostat was administered nasoesophageally to four thoroughbreds (one gelding and three mares) at a dose of 50 mg each. Potential metabolites were extensively screened our developed generic approach employing differential analysis to identify metabolites. Specifically, high-resolution mass spectral data were compared between pre- and post-administration samples on the basis of criteria of fold-changes of peak areas and their P values. Potential metabolite candidates were further identified through mass spectral interpretations using product ion scan data.

Results

A total of 37 metabolites were identified after comprehensive analysis. Osilodrostat was predominantly metabolized into a mono-hydroxylated form M1c (~40%) alongside osilodrostat glucuronide M2 (~17%). Given their longest detection time (2 weeks after administration) and the identification of several conjugates of osilodrostat and M1c, including a novel conjugate of riburonic acid, we recommend monitoring both osilodrostat and M1c after hydrolysis during the screening stage. However, only osilodrostat can be used for confirmation because of the availability of a reference material.

Conclusion

It is advisable to screen for both osilodrostat and its mono-hydroxylated metabolite M1c to effectively monitor horse urine for the potential misuse or abuse of osilodrostat. For suspicious samples, confirmation of osilodrostat using its reference material is required.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002325954240903062440
2024-09-05
2025-01-10
Loading full text...

Full text loading...

References

  1. Assessment report Isturisa. European Medicines Agency.2024Available from: https://www.ema.europa.eu/en/documents/assessment-report/isturisa-epar-public-assessment-report_.pdf
  2. DugganS. Osilodrostat: First Approval.Drugs202080549550010.1007/s40265‑020‑01277‑0 32141023
    [Google Scholar]
  3. ThevisM. KuuranneT. GeyerH. Annual banned‐substance review—Analytical approaches in human sports drug testing 2021/2022–.Drug Test. Anal.202315152610.1002/dta.3408 36369629
    [Google Scholar]
  4. International agreement on breeding, racing and wagering and appendixes.2024Available from: https://www.ifhaonline.org/default.asp?section=IABRW&area=15
  5. Equine prohibited substances list.2024Available from: https://inside.fei.org/sites/default/files/2024%20Prohibited%20Substances%20List.pdf
  6. ArmaniS. TingL. SauterN. DarsteinC. TripathiA.P. WangL. ZhuB. GuH. ChunD.Y. EinolfH.J. KulkarniS. Drug interaction potential of osilodrostat (lci699) based on its effect on the pharmacokinetics of probe drugs of cytochrome p450 enzymes in healthy adults.Clin. Drug Investig.201737546547210.1007/s40261‑017‑0497‑028155129
    [Google Scholar]
  7. BalakirouchenaneD. VasseurA. Bonnet-SerranoF. ChoiM. KhoudourN. PuszkielA. GroussinL. VidalM. DeclèvesX. BertheratJ. BlanchetB. LC-MS/MS method for simultaneous quantification of osilodrostat and metyrapone in human plasma from patients treated for Cushing’s Syndrome.J. Pharm. Biomed. Anal.202322811531610.1016/j.jpba.2023.115316 36868030
    [Google Scholar]
  8. LiL. VashishtK. BoisclairJ. LiW. LinT. SchmidH.A. KluweW. SchoenfeldH. HoffmannP. Osilodrostat (LCI699), a potent 11β-hydroxylase inhibitor, administered in combination with the multireceptor-targeted somatostatin analog pasireotide: A 13-week study in rats.Toxicol. Appl. Pharmacol.2015286322423310.1016/j.taap.2015.05.004 25981165
    [Google Scholar]
  9. LiW. LuoS. RebelloS. FlarakosJ. TseF.L.S. A semi-automated LC–MS/MS method for the determination of LCI699, a steroid 11β-hydroxylase inhibitor, in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201496018219310.1016/j.jchromb.2014.04.012 24814004
    [Google Scholar]
  10. IshiiH. IshikawaY. MizobeF. NomuraM. YamanakaT. TanabeS. NagataS. YamadaM. LeungG.N.W. Pharmacokinetic study of osilodrostat and identification of mono‐hydroxylated metabolite in equine plasma for the purpose of doping control.Rapid Commun. Mass Spectrom.2024385e969510.1002/rcm.9695 38355879
    [Google Scholar]
  11. IshiiH. LeungG.N.W. YamashitaS. YamadaM. KushiroA. KasashimaY. OkadaJ. KawasakiK. Kijima-SudaI. Doping control analysis of GW1516 in equine plasma using liquid chromatography/electrospray ionization Q‐Exactive high‐resolution mass spectrometry.Rapid Commun. Mass Spectrom.20203423e892010.1002/rcm.8920 32776613
    [Google Scholar]
  12. IshiiH. ShibuyaM. LeungG.N.W. YamashitaS. YamadaM. KushiroA. KasashimaY. OkadaJ. KawasakiK. Kijima-SudaI. Metabolic study of GW1516 in equine urine using liquid chromatography/electrospray ionization Q‐Exactive high‐resolution mass spectrometry for doping control.Rapid Commun. Mass Spectrom.2021355e902810.1002/rcm.9028 33319421
    [Google Scholar]
  13. IshiiH. ShibuyaM. LeungG.N.W. NozawaS. YamashitaS. YamadaM. KushiroA. KasashimaY. OkadaJ. KawasakiK. Kijima-SudaI. Detection and longitudinal distribution of GW1516 and its metabolites in equine hair for doping control using liquid chromatography/high‐resolution mass spectrometry.Rapid Commun. Mass Spectrom.2021358e905010.1002/rcm.9050 33470485
    [Google Scholar]
  14. IshiiH. ShibuyaM. SoY.M. WongJ.K.Y. HoE.N.M. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. YamadaM. LeungG.N.W. Comprehensive metabolic study of IOX4 in equine urine and plasma using liquid chromatography/electrospray ionization Q exactive high‐resolution mass spectrometer for the purpose of doping control.Drug Test. Anal.202214223325110.1002/dta.3172 34612014
    [Google Scholar]
  15. IshiiH. ShibuyaM. SoY.M. WongJ.K.Y. HoE.N.M. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. YamadaM. LeungG.N.W. Long‐term monitoring of IOX4 in horse hair and its longitudinal distribution with segmental analysis using liquid chromatography/electrospray ionization Q exactive high‐resolution mass spectrometry for the purpose of doping control.Drug Test. Anal.20221471244125410.1002/dta.3247 35195358
    [Google Scholar]
  16. IshiiH. LeungG.N.W. YamashitaS. NagataS. KushiroA. SakaiS. TojuK. OkadaJ. KawasakiK. KusanoK. Kijima-SudaI. Comprehensive metabolic study of nicotine in equine plasma and urine using liquid chromatography/high-resolution mass spectrometry for the identification of unique biomarkers for doping control.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022119012310010.1016/j.jchromb.2022.123100 35032890
    [Google Scholar]
  17. IshiiH. LeungG.N.W. YamashitaS. NagataS. KushiroA. SakaiS. TojuK. OkadaJ. KawasakiK. KusanoK. Kijima-SudaI. Identification of potential biomarkers in urine and plasma after consumption of tobacco product in horses.Drug Test. Anal.202214590291410.1002/dta.3242 35195357
    [Google Scholar]
  18. IshiiH. ShibuyaM. LeungG.N.W. YamashitaS. NagataS. KushiroA. SakaiS. TojuK. OkadaJ. KawasakiK. KusanoK. Kijima-SudaI. Additional studies on nicotine exposure in horses: Accurate quantification and elimination profiles of potential biomarkers in plasma and urine.Rapid Commun. Mass Spectrom.20223623e939610.1002/rcm.9396 36098053
    [Google Scholar]
  19. IshiiH. ShibuyaM. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. SatoF. KurodaT. YamadaM. LeungG.N.W. Pharmacokinetic study of vadadustat and high-resolution mass spectrometric characterization of its novel metabolites in equines for the purpose of doping control.Curr. Drug Metab.2022231085086510.2174/1389200223666220825093945 36017833
    [Google Scholar]
  20. IshiiH. ShibuyaM. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. YamadaM. LeungG.N.W. Segmental analysis and long-term monitoring of vadadustat in equine hair for the purpose of doping control.J. Anal. Toxicol.202347762363110.1093/jat/bkad057 37632695
    [Google Scholar]
  21. IshiiH. ShibuyaM. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. SatoF. KurodaT. YamadaM. LeungG.N.W. Generic approach for the discovery of drug metabolites in horses based on data-dependent acquisition by liquid chromatography high-resolution mass spectrometry and its applications to pharmacokinetic study of daprodustat.Anal. Bioanal. Chem.2022414288125814210.1007/s00216‑022‑04347‑2 36181513
    [Google Scholar]
  22. IshiiH. ShibuyaM. KusanoK. SoneY. KamiyaT. WakunoA. ItoH. MiyataK. YamadaM. LeungG.N.W. First evidence of the incorporation of daprodustat and other hypoxia-inducible factor stabilizers into equine hair by passive transfer based on segmental quantitative analysis.J. Pharm. Biomed. Anal.202323511560010.1016/j.jpba.2023.115600 37516063
    [Google Scholar]
  23. Gonzalez-SanchezM.B. LanucaraF. HardmanG.E. EyersC.E. Gas-phase intermolecular phosphate transfer within a phosphohistidine phosphopeptide dimer.Int. J. Mass Spectrom.2014367283410.1016/j.ijms.2014.04.015 25844054
    [Google Scholar]
  24. LiangY. Simón-MansoY. NetaP. SteinS.E. Unexpected gas-phase nitrogen–oxygen smiles rearrangement: collision-induced dissociation of deprotonated 2-(N-methylanilino)ethanol and morpholinylbenzoic acid derivatives.J. Am. Soc. Mass Spectrom.202233112120212810.1021/jasms.2c00210 36269933
    [Google Scholar]
  25. RosaB. Equine drug transporters: A mini-review and veterinary perspective.Pharmaceutics20201211106410.3390/pharmaceutics12111064 33171593
    [Google Scholar]
  26. ScarthJ.P. TealeP. KuuranneT. Drug metabolism in the horse: A review.Drug Test. Anal.201131195310.1002/dta.174 20967889
    [Google Scholar]
  27. Fink-GremmelsJ. Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences.Eur. J. Pharmacol.20085852-350250910.1016/j.ejphar.2008.03.013 18417118
    [Google Scholar]
  28. Bailly-ChouriberryL. PinelG. GarciaP. PopotM.A. Le BizecB. BonnaireY. Identification of recombinant equine growth hormone in horse plasma by LC-MS/MS: A confirmatory analysis in doping control.Anal. Chem.200880218340834710.1021/ac801234f 18816143
    [Google Scholar]
  29. McKinneyA.R. Modern techniques for the determination of anabolic-androgenic steroid doping in the horse.Bioanalysis20091478580310.4155/bio.09.52 21083138
    [Google Scholar]
  30. ToutainP.L. Veterinary medicines and competition animals: The question of medication versus doping control.Handbook of Experimental PharmacologyCunningham, F.; Elliott, J.; Lees, P., Eds.; Springer201019919931533910.1007/978‑3‑642‑10324‑7_13
    [Google Scholar]
  31. CawleyA.T. KeledjianJ. Intelligence‐based anti‐doping from an equine biological passport.Drug Test. Anal.2017991441144710.1002/dta.2180 28266147
    [Google Scholar]
  32. KnychH.K. Nonsteroidal anti-inflammatory drug use in horses.Vet. Clin. North Am. Equine Pract.201733111510.1016/j.cveq.2016.11.001 28190614
    [Google Scholar]
  33. PalmerD. RademakerK. MartinI. HessellJ. HowittR. Identification of gonadotropin‐releasing hormone metabolites in greyhound urine.Drug Test. Anal.20179101499150510.1002/dta.2164 28087978
    [Google Scholar]
  34. PopotM.A. HoE.N.M. StojiljkovicN. BagiletF. RemyP. MaciejewskiP. LoupB. ChanG.H.M. HargraveS. ArthurR.M. RussoC. WhiteJ. HincksP. PearceC. GanioG. ZahraP. BattyD. JarrettM. BrooksL. PrescottL.A. Bailly-ChouriberryL. BonnaireY. WanT.S.M. Interlaboratory trial for the measurement of total cobalt in equine urine and plasma by ICP‐MS.Drug Test. Anal.2017991400140610.1002/dta.2191 28320080
    [Google Scholar]
  35. KwakY.B. YuJ. YooH.H. A quantitative method for the simultaneous detection of SR9009 and SR9011 in equine plasma using liquid chromatography–electrospray ionization–tandem mass spectrometry.Drug Test. Anal.20221481532153810.1002/dta.3271 35396832
    [Google Scholar]
  36. PhilipM. Karakka KalA.K. MathewB. SubhaharM.B. KarattT.K. PerwadZ. Metabolic study of hypoxia‐inducible factor stabilizers BAY 87‐2243, MK‐8617, and PT‐2385 in equine liver microsomes for doping control.Drug Test. Anal.202214101703172310.1002/dta.3348 35853151
    [Google Scholar]
  37. ZahraP.W. JayasingheN.S. SelvaduraiN.S. WillersS.J. KrstaD. BattyD.C. VineJ.H. A fully automated method to quantitate total carbon dioxide in equine plasma by headspace GCMS.Drug Test. Anal.202214101724173110.1002/dta.3353 35940610
    [Google Scholar]
  38. GuanF. YouY. FayS. AdreanceM.A. McGoldrickL.K. RobinsonM.A. Factors affecting untargeted detection of doping agents in biological samples.Talanta202325812444610.1016/j.talanta.2023.124446 36940570
    [Google Scholar]
  39. FloresL. HargraveS. CliffordA. AlarcioG. MoellerB.C. Detection of doping peptides and basic drugs in equine urine using liquid chromatography–mass spectrometry.Drug Test. Anal.202416440641910.1002/dta.3544 37548131
    [Google Scholar]
  40. HoH.S.M. HoE.N.M. WongW.T. Endogenous nature of estra‐4,9‐diene‐3,17‐dione in entire male horses.Drug Test. Anal.2024dta.368510.1002/dta.368538532598
    [Google Scholar]
  41. OzbeyA.C. FowlerS. LeysK. AnnaertP. UmeharaK. ParrottN. PBPK modelling for drugs cleared by non-cyp enzymes: State-of-the-art and future perspectives.Drug Metab. Dispos.2023521445510.1124/dmd.123.001487 37879848
    [Google Scholar]
  42. DaiW. YinP. ZengZ. KongH. TongH. XuZ. LuX. LehmannR. XuG. Nontargeted modification-specific metabolomics study based on liquid chromatography-high-resolution mass spectrometry.Anal. Chem.201486189146915310.1021/ac502045j 25186149
    [Google Scholar]
  43. ChuJ.M. YinT.L. ZhengS.J. YangJ. YuanB.F. FengY.Q. Metal oxide-based dispersive solid-phase extraction coupled with mass spectrometry analysis for determination of ribose conjugates in human follicular fluid.Talanta201716750651210.1016/j.talanta.2017.02.062 28340751
    [Google Scholar]
  44. HaradaT. Special bacterial polysaccharides and polysaccharases.Biochem. Soc. Symp.19834897116 6400487
    [Google Scholar]
  45. MuszyńskiA. HeissC. HjulerC.T. SullivanJ.T. KellyS.J. ThygesenM.B. StougaardJ. AzadiP. CarlsonR.W. RonsonC.W. Structures of exopolysaccharides involved in receptor-mediated perception of mesorhizobium loti by Lotus japonicus.J. Biol. Chem.201629140209462096110.1074/jbc.M116.743856 27502279
    [Google Scholar]
  46. MatsunagaT. ShintaniS. HaraA. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds.Drug Metab. Pharmacokinet.200621111810.2133/dmpk.21.1 16547389
    [Google Scholar]
  47. MorganR.A. BeckK.R. NixonM. HomerN.Z.M. CrawfordA.A. MelchersD. HoutmanR. MeijerO.C. StombyA. AndersonA.J. UpretiR. StimsonR.H. OlssonT. MichoelT. CohainA. RuusaleppA. SchadtE.E. BjörkegrenJ.L.M. AndrewR. KenyonC.J. HadokeP.W.F. OdermattA. KeenJ.A. WalkerB.R. Carbonyl reductase 1 catalyzes 20β-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity.Sci. Rep.2017711063310.1038/s41598‑017‑10410‑1 28878267
    [Google Scholar]
  48. WinklerM. Carboxylic acid reductase enzymes (CARs).Curr. Opin. Chem. Biol.201843232910.1016/j.cbpa.2017.10.006 29127833
    [Google Scholar]
  49. GahlothD. AlekuG.A. LeysD. Carboxylic acid reductase: Structure and mechanism.J. Biotechnol.202030710711310.1016/j.jbiotec.2019.10.010 31689469
    [Google Scholar]
  50. SchoberL. DobiašováH. JurkašV. ParmeggianiF. RudroffF. WinklerM. Enzymatic reactions towards aldehydes: An overview.Flavour Fragrance J.202338422124210.1002/ffj.3739 38505272
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002325954240903062440
Loading
/content/journals/cdm/10.2174/0113892002325954240903062440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test