Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Cariprazine (CPZ) is a third-generation antipsychotic medication that has been approved for treating schizophrenia. This study aimed to develop a cariprazine-loaded nanostructured lipid carrier (CPZ-NLCs) to prevent first-pass metabolism and improve bioavailability and site-specific delivery from nose to the brain.

Methods

The CPZ-NLCs were prepared using melt emulsification. The formulation was optimized using the Box–Behnken design (BBD); where the influence of independent variables on critical quality attributes, such as particle size and entrapment efficiency was studied.

Results

The optimized batch (F6) had a particle size of 173.3 ± 0.6 nm and an entrapment efficiency of 96.1 ± 0.57%, respectively. The release showed >96% release of CPZ from NLC within 30 min. The optimized formulation's studies revealed significantly increased CPZ permeability (>75%) in sheep nasal mucosa compared to the CPZ suspension (~26%). The ciliotoxicity study of the nasal mucosa revealed that the CPZ-NLC formulation did not affect the nasal epithelium. The intranasal administration of the formulation achieved 76.14±6.23 µg/ml concentration in the brain which was significantly higher than the oral CPZ suspension administration (30.46±7.24 µg/ml). The developed formulation was stable for 3 months.

Conclusion

The study concluded that the developed CPZ-NLC could significantly improve the bioavailability with quick delivery to the brain.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002327148240924071717
2024-10-03
2025-01-24
Loading full text...

Full text loading...

References

  1. Schizophrenia.Available from: https://www.nimh.nih.gov/health/topics/schizophrenia(Accessed on: June 2, 2023).
  2. CoffeyM. Schizophrenia: A review of current research and thinking.J. Clin. Nurs.19987648949810.1046/j.1365‑2702.1998.00204.x 10222943
    [Google Scholar]
  3. Schizophrenia, WHO.2022 Available from: https://www.who.int/news-room/fact-sheets/detail/schizophrenia(Accessed on: June 2, 2023).
  4. StahlS.M. LaredoS. MorrissetteD.A. Cariprazine as a treatment across the bipolar I spectrum from depression to mania: Mechanism of action and review of clinical data.Ther. Adv. Psychopharmacol.20201010.1177/2045125320905752 32110377
    [Google Scholar]
  5. KissB. HorváthA. NémethyZ. SchmidtÉ. LaszlovszkyI. BugovicsG. FazekasK. HornokK. OroszS. GyertyánI. Ágai-CsongorÉ. DományG. TihanyiK. AdhamN. SzombathelyiZ. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: In vitro and neurochemical profile.J. Pharmacol. Exp. Ther.2010333132834010.1124/jpet.109.160432 20093397
    [Google Scholar]
  6. LaszlovszkyI. BarabássyÁ. NémethG. Cariprazine, a broad-spectrum antipsychotic for the treatment of schizophrenia: Pharmacology, Efficacy, and Safety.Adv. Ther.20213873652367310.1007/s12325‑021‑01797‑5 34091867
    [Google Scholar]
  7. CitromeL. Cariprazine for acute and maintenance treatment of adults with schizophrenia: An evidence-based review and place in therapy.Neuropsychiatr. Dis. Treat.2018142563257710.2147/NDT.S159704
    [Google Scholar]
  8. Cariprazine - Mechanism of Action & Psychopharmacology.Available from: https://psychscenehub.com/psychinsights/cariprazine-mechanism-of-action-psychopharmacology-clinical-application/(Accessed on: December 1, 2023).
  9. TaiJ. HanM. LeeD. ParkI-H. LeeS.H. KimT.H. Different methods and formulations of drugs and vaccines for nasal administration.Pharmaceutics2022145107310.3390/pharmaceutics14051073
    [Google Scholar]
  10. AgrawalM. SarafS. SarafS. DubeyS.K. PuriA. PatelR.J. AjazuddinV. RavichandiranV. MurtyU.S. AlexanderA. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  11. TyagiB. VermaM. Nano lipid carriers: A novel approach for nose to brain drug delivery.Current Indian Science20230210.2174/012210299X260333231120025251
    [Google Scholar]
  12. FangC-L. Al-SuwayehS.A. FangJ-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/187221013804484827 22946628
    [Google Scholar]
  13. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  14. D’SouzaA. ShegokarR. Nanostructured lipid carriers (NLCs) for drug delivery: role of liquid lipid (Oil).Curr. Drug Deliv.202118324927010.2174/1567201817666200423083807 32324512
    [Google Scholar]
  15. HaqueS. MdS. AlamM.I. SahniJ.K. AliJ. BabootaS. Nanostructure-based drug delivery systems for brain targeting.Drug Dev. Ind. Pharm.201238438741110.3109/03639045.2011.608191
    [Google Scholar]
  16. AhmadJ. RizwanullahM. AminS. WarsiM.H. AhmadM.Z. BarkatM.A. Nanostructured Lipid Carriers (NLCs): Nose-to-brain delivery and theranostic application.Curr. Drug Metab.202021141136114310.2174/1389200221666200719003304 32682366
    [Google Scholar]
  17. Intakhab AlamM. BabootaS. AhujaA. AliM. AliJ. Kaur SahniJ. Nanostructured lipid carrier containing CNS acting drug: Formulation, optimization and evaluation.Curr. Nanosci.2011761014102710.2174/1573413711107061014
    [Google Scholar]
  18. BegS. AkhterS. Box–behnken designs and their applications in pharmaceutical product development.Basics and Fundamental Principles20211778510.1007/978‑981‑33‑4717‑5_7
    [Google Scholar]
  19. JazuliI. AnnuB. NabiB. moolakkadath, T.; Alam, T.; Baboota, S.; Ali, J. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo Studies.J. Pharm. Sci.201910893082309010.1016/j.xphs.2019.05.001 31077685
    [Google Scholar]
  20. SinghS.K. DadhaniaP. VuddandaP.R. JainA. VelagaS. SinghS. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment.RSC Advances2016632032204510.1039/C5RA19793G
    [Google Scholar]
  21. Vraylar FDA Approval History.2015Available from: https://www.drugs.com/history/vraylar.html(Accessed on: March 25, 2024).
  22. PubChem Compound Summary for , Cariprazine.2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cariprazine(Accessed on: October 7, 2022).
  23. ReyadA.A. MishrikyR. Cariprazine: Pharmacology and use in the clinical management of psychiatric disorders.Psychiatr. Ann.201949312913410.3928/00485713‑20190213‑01
    [Google Scholar]
  24. PrakashC.K. JainG. PatelR. AbdulA.P.J. Formulation and evaluation of mouth dissolving film of cariprazine hydrochloride.International Scientific Journal of Engineering and Management20232411110.55041/ISJEM01297
    [Google Scholar]
  25. Cariprazine oral dissolving film composition and preparation method therefor and application thereof.2022
    [Google Scholar]
  26. PatelN. PatelR. DharamsiA. Design development and optimization of novel long-acting in-situ gel formulation of cariprazine hydrochloride.Life Sci. J.2023425163
    [Google Scholar]
  27. HamedH.E. Formulation and characterization of cariprazine nanoemulsion as oral route.J. Survey Fisheries Sci.2023103S49384944
    [Google Scholar]
  28. DeshkarS.S. JadhavM.S. ShirolkarS.V. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery.Adv. Pharm. Bull.202011115016210.34172/apb.2021.016 33747862
    [Google Scholar]
  29. AnilkumarK. SakthivelK. VenkatachalamS. Lipid-based nanocarrier drug delivery system for brain targeting through nasal route: A review.Int. J. Pharm. Sci. & Res.2020111047744783
    [Google Scholar]
  30. YuS. TanG. LiuD. YangX. PanW. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: Design, characterization and in vitro cellular inhibition and uptake studies.RSC Advances2017727166681667710.1039/C7RA00552K
    [Google Scholar]
  31. TengZ. YuM. DingY. ZhangH. ShenY. JiangM. LiuP. Opoku-DamoahY. WebsterT.J. ZhouJ. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability.Int. J. Nanomedicine20181411913310.2147/IJN.S186899 30613141
    [Google Scholar]
  32. SivadasuP. GowdaD.V. SubramaniN.K. VishweshwaraiahB.M. ShivannaS. HatnaS. Direct brain targeted nanostructured lipid carriers for sustained release of schizophrenic drug: Formulation, characterization and pharmacokinetic studies.Indian J. Pharmaceut. Educat. Res.2019541738410.5530/ijper.54.1.9
    [Google Scholar]
  33. ShahB. KhuntD. BhattH. MisraM. PadhH. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: Risk assessment and QbD based optimization.J. Drug Deliv. Sci. Technol.201633375010.1016/j.jddst.2016.03.008
    [Google Scholar]
  34. NairS.C. VinayanK.P. MangalathillamS. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: Formulation, drug release, permeation and in vivo pharmacokinetic studies.Pharmaceutics20211310164010.3390/pharmaceutics13101640 34683933
    [Google Scholar]
  35. GokceE. KorkmazE. DelleraE. SandriG. BonferoniM.C. OzerO. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications.Int. J. Nanomedicine201271841185010.2147/IJN.S29710 22605933
    [Google Scholar]
  36. SalawiA. AlmoshariY. SultanM.H. MadkhaliO.A. BakkariM.A. AlshamraniM. SafhiA.Y. SabeiF.Y. Al HagbaniT. AliM.S. AlamM.S. Production, Characterization, and in vitro and in vivo studies of nanoemulsions containing st. john’s wort plant constituents and their potential for the treatment of depression.Pharmaceuticals (Basel)202316449010.3390/ph16040490 37111247
    [Google Scholar]
  37. AliH.H. HusseinA.A. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies.AAPS Open20173410.1186/s41120‑017‑0016‑7
    [Google Scholar]
  38. DesaiG.N. DandagiP.M. KaziT.M. Nanosized intranasal delivery of novel self-assembled cubic liquid crystals: Formulation and evaluation.J. Pharm. Innov.202210.1007/s12247‑022‑09695‑1
    [Google Scholar]
  39. JojoG.M. KuppusamyG. DeA. KarriV.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design.Drug Dev. Ind. Pharm.20194571061107210.1080/03639045.2019.1593439
    [Google Scholar]
  40. MadaneR.G. MahajanH.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study.Drug Deliv.201423413263410.3109/10717544.2014.975382
    [Google Scholar]
  41. AlamP. EzzeldinE. IqbalM. AnwerM.K. MostafaG.A.E. AlqarniM.H. FoudahA.I. ShakeelF. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents.RSC Advances20201042133214010.1039/C9RA07825H 35494604
    [Google Scholar]
  42. ChiprikarP. MastiholimathV. Method development and validation of Cariprazine hydrochloride in bulk by UV? spectrophotometric method.Indian J. Nov. Drug Deliv.20221415257
    [Google Scholar]
  43. GyertyánI. KissB. SághyK. LaszyJ. SzabóG. SzabadosT. GémesiL.I. PásztorG. Zájer-BalázsM. KapásM. CsongorÉ.Á. DományG. TihanyiK. SzombathelyiZ. Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents.Neurochem. Int.201159692593510.1016/j.neuint.2011.07.002 21767587
    [Google Scholar]
  44. GadhaveD.G. TagalpallewarA.A. KokareC.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS Delivery: Optimization and hematological toxicity studies.AAPS PharmSciTech20192012210.1208/s12249‑018‑1213‑y 30604305
    [Google Scholar]
  45. PundS. RasveG. BoradeG. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa.Eur. J. Pharm. Sci.2013481-219520110.1016/j.ejps.2012.10.029 23159662
    [Google Scholar]
  46. SaladeL. WauthozN. GooleJ. AmighiK. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods.Int. J. Pharm.2019561476510.1016/j.ijpharm.2019.02.026 30822505
    [Google Scholar]
  47. ChiprikarP. MastiholimathV. BalekundriA. HP-TLC method development of cariprazine hydrochloride for applicative quantification of nanostructured lipid carriers.Chemistry Africa202371110
    [Google Scholar]
  48. ChiprikarP. MastiholimathV. Development of RP-HPLC based analytical method for determination of cariprazine hydrochloride in bulk drug and pharmaceutical dosage form using box-behnken statistical design.Anal. Chem. Lett.202313329731210.1080/22297928.2023.2242857
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002327148240924071717
Loading
/content/journals/cdm/10.2174/0113892002327148240924071717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test