Skip to content
2000
image of Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route

Abstract

Background

Cariprazine (CPZ) is a third-generation antipsychotic medication that has been approved for treating schizophrenia. This study aimed to develop a cariprazine-loaded nanostructured lipid carrier (CPZ-NLCs) to prevent first-pass metabolism and improve bioavailability and site-specific delivery from nose to the brain.

Method

The CPZ-NLCs were prepared using melt emulsification. The formulation was optimized using the Box–Behnken design (BBD); where the influence of independent variables on critical quality attributes, such as particle size and entrapment efficiency was studied.

Result

The optimized batch (F6) had a particle size of 173.3 ± 0.6 nm and an entrapment efficiency of 96.1 ± 0.57%, respectively. The release showed >96% release of CPZ from NLC within 30 min. The optimized formulation's studies revealed significantly increased CPZ permeability (>75%) in sheep nasal mucosa compared to the CPZ suspension (~26%). The ciliotoxicity study of the nasal mucosa revealed that the CPZ-NLC formulation did not affect the nasal epithelium. The intranasal administration of the formulation achieved 76.14±6.23 µg/ml concentration in the brain which was significantly higher than the oral CPZ suspension administration (30.46±7.24 µg/ml). The developed formulation was stable for 3 months.

Conclusion

The study concluded that the developed CPZ-NLC could significantly improve the bioavailability with quick delivery to the brain.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002327148240924071717
2024-10-03
2024-11-22
Loading full text...

Full text loading...

References

  1. Schizophrenia. Available from: https://www.nimh.nih.gov/health/topics/schizophrenia (Accessed on: June 2, 2023).
  2. Coffey M. Schizophrenia: A review of current research and thinking. J. Clin. Nurs. 1998 7 6 489 498 10.1046/j.1365‑2702.1998.00204.x 10222943
    [Google Scholar]
  3. Schizophrenia, WHO. 2022 Available from: https://www.who.int/news-room/fact-sheets/detail/schizophrenia (Accessed on: June 2, 2023).
  4. Stahl S.M. Laredo S. Morrissette D.A. Cariprazine as a treatment across the bipolar I spectrum from depression to mania: Mechanism of action and review of clinical data. Ther. Adv. Psychopharmacol. 2020 10 10.1177/2045125320905752 32110377
    [Google Scholar]
  5. Kiss B. Horváth A. Némethy Z. Schmidt É. Laszlovszky I. Bugovics G. Fazekas K. Hornok K. Orosz S. Gyertyán I. Ágai-Csongor É. Domány G. Tihanyi K. Adham N. Szombathelyi Z. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: In vitro and neurochemical profile. J. Pharmacol. Exp. Ther. 2010 333 1 328 340 10.1124/jpet.109.160432 20093397
    [Google Scholar]
  6. Laszlovszky I. Barabássy Á. Németh G. Cariprazine, a broad-spectrum antipsychotic for the treatment of schizophrenia: Pharmacology, Efficacy, and Safety. Adv. Ther. 2021 38 7 3652 3673 10.1007/s12325‑021‑01797‑5 34091867
    [Google Scholar]
  7. Citrome L. Cariprazine for acute and maintenance treatment of adults with schizophrenia: An evidence-based review and place in therapy. Neuropsychiatr Dis Treat. 2018 14 2563 2577 10.2147/NDT.S159704
    [Google Scholar]
  8. Cariprazine - Mechanism of Action & Psychopharmacology. Available from: https://psychscenehub.com/psychinsights/cariprazine-mechanism-of-action-psychopharmacology-clinical-application/ (Accessed on: December 1, 2023).
  9. Tai J. Han M. Lee D. Park I.-H. Lee S.H. Kim T.H. Different methods and formulations of drugs and vaccines for nasal administration. Pharmaceutics 2022 14 5 1073 10.3390/pharmaceutics14051073
    [Google Scholar]
  10. Agrawal M. Saraf S. Saraf S. Dubey S.K. Puri A. Patel R.J. Ajazuddin V. Ravichandiran V. Murty U.S. Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release 2020 321 372 415 10.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  11. Tyagi B. Verma M. Nano lipid carriers: A novel approach for nose to brain drug delivery. Current Indian Science 2023 02 10.2174/012210299X260333231120025251
    [Google Scholar]
  12. Fang C-L. Al-Suwayeh S.A. Fang J-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013 7 1 41 55 10.2174/187221013804484827 22946628
    [Google Scholar]
  13. Salvi V.R. Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol. 2019 51 255 267 10.1016/j.jddst.2019.02.017
    [Google Scholar]
  14. D’Souza A. Shegokar R. Nanostructured lipid carriers (NLCs) for drug delivery: role of liquid lipid (Oil). Curr. Drug Deliv. 2021 18 3 249 270 10.2174/1567201817666200423083807 32324512
    [Google Scholar]
  15. Haque S. Md S. Alam M.I. Sahni J.K. Ali J. Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm. 2012 38 4 387 411 10.3109/03639045.2011.608191
    [Google Scholar]
  16. Ahmad J. Rizwanullah M. Amin S. Warsi M.H. Ahmad M.Z. Barkat M.A. Nanostructured Lipid Carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr. Drug Metab. 2020 21 14 1136 1143 10.2174/1389200221666200719003304 32682366
    [Google Scholar]
  17. Intakhab Alam M. Baboota S. Ahuja A. Ali M. Ali J. Kaur Sahni J. Nanostructured lipid carrier containing CNS acting drug: Formulation, optimization and evaluation. Curr. Nanosci. 2011 7 6 1014 1027 10.2174/1573413711107061014
    [Google Scholar]
  18. Beg S. Akhter S. Box–behnken designs and their applications in pharmaceutical product development. Basics and Fundamental Principles 2021 1 77 85 10.1007/978‑981‑33‑4717‑5_7
    [Google Scholar]
  19. Jazuli I. Annu B. Nabi B. moolakkadath T. Alam T. Baboota S. Ali J. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo Studies. J. Pharm. Sci. 2019 108 9 3082 3090 10.1016/j.xphs.2019.05.001 31077685
    [Google Scholar]
  20. Singh S.K. Dadhania P. Vuddanda P.R. Jain A. Velaga S. Singh S. Intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural assessment. RSC Advances 2016 6 3 2032 2045 10.1039/C5RA19793G
    [Google Scholar]
  21. Vraylar FDA Approval History. 2015 Available from: https://www.drugs.com/history/vraylar.html (Accessed on: March 25, 2024).
  22. PubChem Compound Summary for , Cariprazine. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cariprazine (Accessed on: October 7, 2022).
  23. Reyad A.A. Mishriky R. Cariprazine: Pharmacology and use in the clinical management of psychiatric disorders. Psychiatr. Ann. 2019 49 3 129 134 10.3928/00485713‑20190213‑01
    [Google Scholar]
  24. Prakash C.K. Jain G. Patel R. Abdul A.P.J. Formulation and evaluation of mouth dissolving film of cariprazine hydrochloride. International Scientific Journal of Engineering and Management 2023 2 4 1 11 10.55041/ISJEM01297
    [Google Scholar]
  25. Cariprazine oral dissolving film composition and preparation method therefor and application thereof. 2022
    [Google Scholar]
  26. Patel N. Patel R. Dharamsi A. Design development and optimization of novel long-acting in-situ gel formulation of cariprazine hydrochloride. Life Sci. J. 2023 42 51 63
    [Google Scholar]
  27. Hamed H.E. Formulation and characterization of cariprazine nanoemulsion as oral route. Journal of Survey in Fisheries Sciences 2023 10 3S 4938 4944
    [Google Scholar]
  28. Deshkar S.S. Jadhav M.S. Shirolkar S.V. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery. Adv. Pharm. Bull. 2020 11 1 150 162 10.34172/apb.2021.016 33747862
    [Google Scholar]
  29. Anilkumar K Sakthivel K. and Venkatachalam S. Lipid-based nanocarrier drug delivery system for brain targeting through nasal route: A review. Int. J. Pharm. Sci. & Res. 2020
    [Google Scholar]
  30. Yu S. Tan G. Liu D. Yang X. Pan W. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: Design, characterization and in vitro cellular inhibition and uptake studies. RSC Advances 2017 7 27 16668 16677 10.1039/C7RA00552K
    [Google Scholar]
  31. Teng Z. Yu M. Ding Y. Zhang H. Shen Y. Jiang M. Liu P. Opoku-Damoah Y. Webster T.J. Zhou J. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int. J. Nanomedicine 2018 14 119 133 10.2147/IJN.S186899 30613141
    [Google Scholar]
  32. Sivadasu P. Gowda D.V. Subramani N.K. Vishweshwaraiah B.M. Shivanna S. Hatna S. Direct brain targeted nanostructured lipid carriers for sustained release of schizophrenic drug: Formulation, characterization and pharmacokinetic studies. Indian Journal of Pharmaceutical Education and Research 2019 54 1 73 84 10.5530/ijper.54.1.9
    [Google Scholar]
  33. Shah B. Khunt D. Bhatt H. Misra M. Padh H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: Risk assessment and QbD based optimization. J. Drug Deliv. Sci. Technol. 2016 33 37 50 10.1016/j.jddst.2016.03.008
    [Google Scholar]
  34. Nair S.C. Vinayan K.P. Mangalathillam S. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: Formulation, drug release, permeation and in vivo pharmacokinetic studies. Pharmaceutics 2021 13 10 1640 10.3390/pharmaceutics13101640 34683933
    [Google Scholar]
  35. Gokce E. Korkmaz E. Dellera E. Sandri G. Bonferoni M.C. Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine 2012 7 1841 1850 10.2147/IJN.S29710 22605933
    [Google Scholar]
  36. Salawi A. Almoshari Y. Sultan M.H. Madkhali O.A. Bakkari M.A. Alshamrani M. Safhi A.Y. Sabei F.Y. Al Hagbani T. Ali M.S. Alam M.S. Production, Characterization, and in vitro and in vivo studies of nanoemulsions containing st. john’s wort plant constituents and their potential for the treatment of depression. Pharmaceuticals (Basel) 2023 16 4 490 10.3390/ph16040490 37111247
    [Google Scholar]
  37. Ali H.H. Hussein A.A. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies. AAPS Open 2017 3 4 10.1186/s41120‑017‑0016‑7
    [Google Scholar]
  38. Desai G.N. Dandagi P.M. Kazi T.M. Nanosized intranasal delivery of novel self-assembled cubic liquid crystals: Formulation and evaluation. J. Pharm. Innov. 2022 10.1007/s12247‑022‑09695‑1
    [Google Scholar]
  39. Jojo G.M. Kuppusamy G. De A. Karri V.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer's disease using Box-Behnken design. Drug Dev Ind Pharm. 2019 45 7 1061 1072 10.1080/03639045.2019.1593439
    [Google Scholar]
  40. Madane R.G. Mahajan H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: Design, characterization, and in vivo study. Drug Deliv. 2014 23 4 1326 34 10.3109/10717544.2014.975382
    [Google Scholar]
  41. Alam P. Ezzeldin E. Iqbal M. Anwer M.K. Mostafa G.A.E. Alqarni M.H. Foudah A.I. Shakeel F. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents. RSC Advances 2020 10 4 2133 2140 10.1039/C9RA07825H 35494604
    [Google Scholar]
  42. Chiprikar P. Mastiholimath V. (2022). Method development and validation of Cariprazine hydrochloride in bulk by UV ? spectrophotometric method. Indian Journal of Novel Drug Delivery. 14 1 52 57
    [Google Scholar]
  43. Gyertyán I. Kiss B. Sághy K. Laszy J. Szabó G. Szabados T. Gémesi L.I. Pásztor G. Zájer-Balázs M. Kapás M. Csongor É.Á. Domány G. Tihanyi K. Szombathelyi Z. Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem. Int. 2011 59 6 925 935 10.1016/j.neuint.2011.07.002 21767587
    [Google Scholar]
  44. Gadhave D.G. Tagalpallewar A.A. Kokare C.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS Delivery: Optimization and hematological toxicity studies. AAPS PharmSciTech 2019 20 1 22 10.1208/s12249‑018‑1213‑y 30604305
    [Google Scholar]
  45. Pund S. Rasve G. Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur. J. Pharm. Sci. 2013 48 1-2 195 201 10.1016/j.ejps.2012.10.029 23159662
    [Google Scholar]
  46. Salade L. Wauthoz N. Goole J. Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int. J. Pharm. 2019 561 47 65 10.1016/j.ijpharm.2019.02.026 30822505
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002327148240924071717
Loading
/content/journals/cdm/10.2174/0113892002327148240924071717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test