Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hydroxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little information available on the metabolic profiles of CYP450 enzymes in rats.

Objective

This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and .

Methods

Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats, liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway .

Results

Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5”-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples.

Conclusion

The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2-OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002308509240711100502
2024-07-19
2024-12-23
Loading full text...

Full text loading...

References

  1. ShiM.Z. XingT.Y. ChenJ.J. JiangB. XiaoX. YangJ. ZhuJ. GuoC. HuJ.D. HanY.L. Effect of Xiao-Ai-Ping injection on paclitaxel pharmacokinetics in rats by LC–MS/MS method.J. Pharm. Biomed. Anal.201917472873310.1016/j.jpba.2019.07.003 31299453
    [Google Scholar]
  2. MurphyW.K. FossellaF.V. WinnR.J. ShinD.M. HynesH.E. GrossH.M. DavillaE. LeimertJ. DhingraH. RaberM.N. KrakoffI.H. HongW.K. Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer.J. Natl. Cancer Inst.199385538438810.1093/jnci/85.5.384 8094466
    [Google Scholar]
  3. GatzemeierU. HeckmayrM. NeuhaussR. SchlüterI. PawelJ.V. WagnerH. DrepsA. Phase II study with paclitaxel for the treatment of advanced inoperable non-small cell lung cancer.Lung Cancer199512Suppl. 2S101S10610.1016/S0169‑5002(10)80008‑X 7551941
    [Google Scholar]
  4. MunjalN.S. ShuklaR. SinghT.R. Physicochemical characterization of paclitaxel prodrugs with cytochrome 3A4 to correlate solubility and bioavailability implementing molecular docking and simulation studies.J. Biomol. Struct. Dyn.202240135983599510.1080/07391102.2021.1875881 33491578
    [Google Scholar]
  5. XiaoB. HuangZ. LiL. HouL. YaoD. MoB. Paclitaxel inhibits proliferation by negatively regulating Cdk1-cell cycle axis in rat airway smooth muscle cells.J. Asthma2024311910.1080/02770903.2024.2349599 38696283
    [Google Scholar]
  6. ZhangH. XingC. YanB. LeiH. GuanY. ZhangS. KangY. PangJ. Paclitaxel overload supramolecular oxidative stress nanoamplifier with a CDK12 inhibitor for enhanced cancer therapy.Biomacromolecules20242563685370210.1021/acs.biomac.4c00260 38779908
    [Google Scholar]
  7. BarbutiA. ChenZ.S. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy.Cancers (Basel)2015742360237110.3390/cancers7040897 26633515
    [Google Scholar]
  8. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y 31223315
    [Google Scholar]
  9. AlqahtaniF.Y. AleanizyF.S. El TahirE. AlkahtaniH.M. AlQuadeibB.T. Paclitaxel.Profiles Drug Subst. Excip. Relat. Methodol.20194420523810.1016/bs.podrm.2018.11.001 31029218
    [Google Scholar]
  10. YangQ. ZuC. LiW. WuW. GeY. WangL. WangL. LiY. ZhaoX. Enhanced water solubility and oral bioavailability of paclitaxel crystal powders through an innovative antisolvent precipitation process: antisolvent crystallization using ionic liquids as solvent.Pharmaceutics20201211100810.3390/pharmaceutics12111008 33105832
    [Google Scholar]
  11. TanX. LiS. ShengR. ZhangQ. LiC. LiuL. ZhangY. GeL. Biointerfacial giant capsules with high paclitaxel loading and magnetic targeting for breast tumor therapy.J. Colloid Interface Sci.20236331055106810.1016/j.jcis.2022.11.151 36516681
    [Google Scholar]
  12. DaiY. ZhangY. ZhangL. SongZ. Synthesis and biological evaluation of paclitaxel-aminoguanidine conjugates for suppressing breast cancer.Curr. Org. Synth.202320889089610.2174/1570179420666230327090545 36974410
    [Google Scholar]
  13. FalahM. RayanM. RayanA. A novel paclitaxel conjugate with higher efficiency and lower toxicity: A new drug candidate for cancer treatment.Int. J. Mol. Sci.20192019496510.3390/ijms20194965 31597361
    [Google Scholar]
  14. WangX. ZhouJ. WangY. ZhuZ. LuY. WeiY. ChenL. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions.Eur. J. Cancer20104681474148010.1016/j.ejca.2010.02.002 20207133
    [Google Scholar]
  15. ZhangQ. WangJ. ZhangH. LiuD. MingL. LiuL. DongY. JianB. CaiD. The anticancer efficacy of paclitaxel liposomes modified with low-toxicity hydrophobic cell-penetrating peptides in breast cancer: An in vitro and in vivo evaluation.RSC Advances2018843240842409310.1039/C8RA03607A 35539172
    [Google Scholar]
  16. MartignoniM. GroothuisG.M.M. de KanterR. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction.Expert Opin. Drug Metab. Toxicol.20062687589410.1517/17425255.2.6.875 17125407
    [Google Scholar]
  17. LinchaV.R. HsiaoC.H. ZhaoJ. LiC. ChowD.S.L. Sensitive and rapid UHPLC–MS/MS assay for simultaneous quantifications of calcipotriol and paclitaxel in rat whole blood and plasma samples.J. Pharm. Biomed. Anal.202119211368510.1016/j.jpba.2020.113685 33099115
    [Google Scholar]
  18. JoshiA. GuoJ. HolleranJ.L. KieselB. TaylorS. ChristnerS. PariseR.A. MillerB.M. IvyS.P. ChuE. VenkataramananR. BeumerJ.H. Evaluation of the pharmacokinetic drug-drug interaction potential of iohexol, a renal filtration marker.Cancer Chemother. Pharmacol.202086453554510.1007/s00280‑020‑04145‑6 32948918
    [Google Scholar]
  19. MaL.M. XuF. WangJ.Z. ShangM.Y. LiuG.X. CaiS.Q. In vivo metabolism of 8,2′-diprenylquercetin 3-methyl ether and the distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn.Fitoterapia201913710419110.1016/j.fitote.2019.104191 31163200
    [Google Scholar]
  20. ShenD. MaN. YangY. LiuX. QinZ. LiS. JiaoZ. KongX. LiJ. UPLC-Q-TOF/MS-based plasma metabolomics to evaluate the effects of aspirin eugenol ester on blood stasis in rats.Molecules20192413238010.3390/molecules24132380 31252591
    [Google Scholar]
  21. ChenZ. LiuS. ZhouH. WangM. PeiS. WangR. LiuZ. UPLC-Q-TOF/MS based serum and urine metabolomics strategy to analyze the mechanism of nervonic acid in treating Alzheimer’s disease.J. Pharm. Biomed. Anal.202424011593010.1016/j.jpba.2023.115930 38157740
    [Google Scholar]
  22. LeeY.K. HanS.Y. ChinY.W. ChoiY.H. Effects of cysteine on the pharmacokinetics of paclitaxel in rats.Arch. Pharm. Res.201235350951610.1007/s12272‑012‑0314‑5 22477198
    [Google Scholar]
  23. Jamis-DowC.A. KleckerR.W. KatkiA.G. CollinsJ.M. Metabolism of taxol by human and rat liver in vitro: A screen for drug interactions and interspecies differences.Cancer Chemother. Pharmacol.199536210711410.1007/BF00689193 7767945
    [Google Scholar]
  24. GutI. OjimaI. VaclavikovaR. SimekP. HorskyS. LinhartI. SoucekP. KondrovaE. KuznetsovaL.V. ChenJ. Metabolism of new-generation taxanes in human, pig, minipig and rat liver microsomes.Xenobiotica200636977279210.1080/00498250600829220 16971343
    [Google Scholar]
  25. NakajimaM. FujikiY. KyoS. KanayaT. NakamuraM. MaidaY. TanakaM. InoueM. YokoiT. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1.J. Clin. Pharmacol.200545667468210.1177/0091270005276204 15901749
    [Google Scholar]
  26. Fernandez-PeralboM.A. Priego-CapoteF. Luque de CastroM.D. Casado-AdamA. Arjona-SanchezA. Munoz-CasaresF.C. LC-MS/MS quantitative analysis of paclitaxel and its major metabolites in serum, plasma and tissue from women with ovarian cancer after intraperitoneal chemotherapy.J. Pharm. Biomed. Anal.20149113113710.1016/j.jpba.2013.12.028
    [Google Scholar]
  27. CresteilT. MonsarratB. AlvinerieP. TréluyerJ.M. VieiraI. WrightM. Taxol metabolism by human liver microsomes: Identification of cytochrome P450 isozymes involved in its biotransformation.Cancer Res.199454238639210.1016/0304‑3835(94)90136‑8 7903909
    [Google Scholar]
  28. ChristnerS.M. PariseR.A. IvyP.S. TawbiH. ChuE. BeumerJ.H. Quantitation of paclitaxel, and its 6-alpha-OH and 3-para-OH metabolites in human plasma by LC–MS/MS.J. Pharm. Biomed. Anal.2019172263210.1016/j.jpba.2019.04.027 31022613
    [Google Scholar]
  29. NakayamaA. TsuchiyaK. XuL. MatsumotoT. MakinoT. Drug-interaction between paclitaxel and goshajinkigan extract and its constituents.J. Nat. Med.2022761596710.1007/s11418‑021‑01552‑8 34304352
    [Google Scholar]
  30. VaclavikovaR. SoucekP. SvobodovaL. AnzenbacherP. SimekP. GuengerichF.P. GutI. Different in vitro metabolism of paclitaxel and docetaxel in humans, rats, pigs, and minipigs.Drug Metab. Dispos.200432666667410.1124/dmd.32.6.666 15155559
    [Google Scholar]
  31. VáclavíkováR. HorskýS. ŠimekP. GutI. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants.Naunyn Schmiedebergs Arch. Pharmacol.2003368320020910.1007/s00210‑003‑0781‑9 12920504
    [Google Scholar]
  32. CresteilT. MonsarratB. DuboisJ. SonnierM. AlvinerieP. GueritteF. Regioselective metabolism of taxoids by human CYP3A4 and 2C8: Structure-activity relationship.Drug Metab. Dispos.200230443844510.1124/dmd.30.4.438 11901098
    [Google Scholar]
  33. ZhaoY. LiangF. XieY. DuanY.T. AndeadelliA. PaterakiI. MakrisA.M. PomorskiT.G. StaerkD. KampranisS.C. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 Enzyme.J. Am. Chem. Soc.2024146180181010.1021/jacs.3c10864 38129385
    [Google Scholar]
  34. YueD. HiraoH. Mechanism of selective aromatic hydroxylation in the metabolic transformation of paclitaxel catalyzed by human CYP3A4.J. Chem. Inf. Model.202363247826783610.1021/acs.jcim.3c01630 38039955
    [Google Scholar]
  35. KohY. BuczkoE. DufauM.L. Requirement of phenylalanine 343 for the preferential delta 4-lyase versus delta 5-lyase activity of rat CYP17.J. Biol. Chem.199326824182671827110.1016/S0021‑9258(17)46839‑6 8349703
    [Google Scholar]
  36. ShadleyJ.D. DivakaranK. MunsonK. HinesR.N. DouglasK. McCarverD.G. Identification and functional analysis of a novel human CYP2E1 far upstream enhancer.Mol. Pharmacol.20077161630163910.1124/mol.106.031302 17353354
    [Google Scholar]
  37. ManikandanP. NaginiS. Cytochrome P450 structure, function and clinical significance: A review.Curr. Drug Targets2018191385410.2174/1389450118666170125144557 28124606
    [Google Scholar]
  38. KnightsK.M. StresserD.M. MinersJ.O. CrespiC.L. In vitro drug metabolism using liver microsomes.Curr. Protoc. Pharmacol.2004747.8.17.8.2410.1002/0471141755.ph0708s23
    [Google Scholar]
  39. ZhaoM. MaJ. LiM. ZhangY. JiangB. ZhaoX. HuaiC. ShenL. ZhangN. HeL. QinS. Cytochrome P450 enzymes and drug metabolism in humans.Int. J. Mol. Sci.202122231280810.3390/ijms222312808 34884615
    [Google Scholar]
  40. TaniguchiR. KumaiT. MatsumotoN. WatanabeM. KamioK. SuzukiS. KobayashiS. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4.J. Pharmacol. Sci.2005971839010.1254/jphs.FP0040603 15655291
    [Google Scholar]
  41. HendrikxJ.J.M.A. LagasJ.S. RosingH. SchellensJ.H.M. BeijnenJ.H. SchinkelA.H. P‐glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel.Int. J. Cancer2013132102439244710.1002/ijc.27912 23090875
    [Google Scholar]
  42. SaidA.M. MansourY.E. SolimanR.R. IslamR. FatahalaS.S. Design, synthesis, molecular modeling, in vitro and in vivo biological evaluation of potent anthranilamide derivatives as dual P-glycoprotein and CYP3A4 inhibitors.Eur. J. Med. Chem.202427311649210.1016/j.ejmech.2024.116492 38762918
    [Google Scholar]
  43. HendrikxJ.J.M.A. LagasJ.S. WagenaarE. RosingH. SchellensJ.H.M. BeijnenJ.H. SchinkelA.H. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation.Br. J. Cancer2014110112669267610.1038/bjc.2014.222 24781280
    [Google Scholar]
  44. MonsarratB. ChatelutE. RoyerI. AlvinerieP. DuboisJ. DezeuseA. RocheH. CrosS. WrightM. CanalP. Modification of paclitaxel metabolism in a cancer patient by induction of cytochrome P450 3A4.Drug Metab. Dispos.1998263229233 9492385
    [Google Scholar]
  45. WalleT. WalleU.K. KumarG.N. BhallaK.N. Taxol metabolism and disposition in cancer patients.Drug Metab. Dispos.1995234506512 7600920
    [Google Scholar]
  46. ZhaoY. ChenY. LiR. ZhengT. HuangM. GaoY. LiZ. WuH. An ultra‐performance liquid chromatography–quadrupole time‐of‐flight tandem mass spectrometry method based on a four‐step analysis strategy to investigate metabolites of Qi‐Yu‐San‐Long decoction in rat plasma.Rapid Commun. Mass Spectrom.2023371e941910.1002/rcm.9419 36260057
    [Google Scholar]
  47. WangL. ShaoL. HuangS. LiuZ. ZhangW. HuK. HuangW.H. Metabolic characteristics of ginsenosides from Panax ginseng in rat feces mediated by gut microbiota.J. Pharm. Biomed. Anal.202423711578610.1016/j.jpba.2023.115786 37837893
    [Google Scholar]
  48. SunE. LiX. XuF. LiM. DingK. WangL. WeiY. JiaX. Characterization of metabolites of sagittatoside B in rats using UPLC-QTOF-MS spectrometry.Nat. Prod. Res.2023111010.1080/14786419.2023.2172006 36724800
    [Google Scholar]
  49. MortierK.A. ZhangG.F. Van PeteghemC.H. LambertW.E. Adduct formation in quantitative bioanalysis: Effect of ionization conditions on paclitaxel.J. Am. Soc. Mass Spectrom.200415458559210.1016/j.jasms.2003.12.013 15047063
    [Google Scholar]
  50. TongX. ZhouJ. TanY. Determination of paclitaxel in rat plasma by LC-MS-MS.J. Chromatogr. Sci.200644526627110.1093/chromsci/44.5.266 16774712
    [Google Scholar]
  51. BhattacharyaS. SarkarP. KhanamJ. PalT.K. Simultaneous determination of paclitaxel and lansoprazole in rat plasma by LC–MS/MS method and its application to a preclinical pharmacokinetic study of investigational PTX-LAN-PLGA nanoformulation.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2019112433133910.1016/j.jchromb.2019.06.031 31276955
    [Google Scholar]
  52. FanY.X.C.X. MaZ.Y. GaoZ.W. ZhongD.F. Determination of paclitaxel and hydroxylated metabolites in rat plasma with lithium adduct ion by LC-MS/MS.J. Chin. Mass. Spectr. Soc.201334313714410.7538/zpxb.2013.34.03.0137
    [Google Scholar]
  53. LiD. CaoZ. LiaoX. YangP. LiuL. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel–tetrandrine interaction and its application to a pharmacokinetic study.Talanta201616025626710.1016/j.talanta.2016.07.022 27591612
    [Google Scholar]
  54. WestinS. SonneveldE. van der LeedeB.M. van der SaagP.T. GustafssonJ.Å. ModeA. CYP2C7 expression in rat liver and hepatocytes: Regulation by retinoids.Mol. Cell. Endocrinol.1997129216917910.1016/S0303‑7207(97)04055‑0 9202400
    [Google Scholar]
  55. SunD. JiangH. WuH. YangY. KaleyG. HuangA. A novel vascular EET synthase: Role of CYP2C7.Am. J. Physiol. Regul. Integr. Comp. Physiol.20113016R1723R173010.1152/ajpregu.00382.2011 21940400
    [Google Scholar]
  56. OinonenT. RonisM. WigellT. TohmoK. BadgerT. LindrosK.O. Growth hormone-regulated periportal expression of CYP2C7 in rat liver.Biochem. Pharmacol.200059558358910.1016/S0006‑2952(99)00344‑5 10660124
    [Google Scholar]
  57. HanY.L. LiD. YangQ.J. ZhouZ.Y. LiuL.Y. LiB. LuJ. GuoC. In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein.Molecules20141955748576010.3390/molecules19055748 24802986
    [Google Scholar]
  58. ZhuS. SunC. CaiZ. LiY. LiuW. LuanY. WangC. Effective therapy of advanced breast cancer through synergistic anticancer by paclitaxel and P-glycoprotein inhibitor.Mater. Today Bio20242610102910.1016/j.mtbio.2024.101029 38545262
    [Google Scholar]
  59. HabashyK.J. DmelloC. ChenL. ArrietaV.A. KimK.S. GouldA. YoungbloodM.W. BouchouxG. BurdettK.B. ZhangH. CanneyM. StuppR. SonabendA.M. Paclitaxel and carboplatin in combination with low-intensity pulsed ultrasound for glioblastoma.Clin. Cancer Res.20243081619162910.1158/1078‑0432.CCR‑23‑2367 38295144
    [Google Scholar]
  60. OkumaY. NomuraS. Sakakibara-KonishiJ. TsukitaY. MurakamiS. HosomiY. TamboY. KogureY. YoshiokaH. TamiyaM. NinomiyaK. IwamaE. Artemis: A multicenter, open-label, single-arm, phase ii study to evaluate the efficacy and safety of first-line carboplatin/paclitaxel/lenvatinib/pembrolizumab combination for previously untreated advanced or recurrent thymic carcinomas.Clin. Lung Cancer202425438939410.1016/j.cllc.2024.02.002 38413246
    [Google Scholar]
  61. ZhaoS. SuL. HuangF. ZhuoC. YeZ. LiH. YinY. GaoP. ZhuY. LinR. Phase I trial of apatinib and paclitaxel+oxaliplatin+5‐FU/levoleucovorin for treatment‐naïve advanced gastric cancer.Cancer Sci.202411551611162110.1111/cas.16110 38354746
    [Google Scholar]
  62. MonsarratB. MarielE. CrosS. GarèsM. GuénardD. Guéritte-VoegeleinF. WrightM. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile.Drug Metab. Dispos.1990186895901 1981534
    [Google Scholar]
  63. MonsarratB. AlvinerieP. WrightM. DuboisJ. Guéritte-VoegeleinF. GuénardD. DonehowerR.C. RowinskyE.K. Hepatic metabolism and biliary excretion of Taxol in rats and humans.J. Natl. Cancer Inst. Monogr.1993153946 7912528
    [Google Scholar]
  64. LeeA.K. AhnC.Y. KimE.J. KwonJ.W. KimS.G. ChungS.J. ShimC.K. LeeM.G. Effects of cysteine on the pharmacokinetics of itraconazole in rats with protein‐calorie malnutrition.Biopharm. Drug Dispos.2003242637010.1002/bdd.337 12619051
    [Google Scholar]
  65. HussJ.M. WangS.I. KasperC.B. Differential glucocorticoid responses of CYP3A23 and CYP3A2 are mediated by selective binding of orphan nuclear receptors.Arch. Biochem. Biophys.1999372232133210.1006/abbi.1999.1496 10600171
    [Google Scholar]
  66. KuangZ.M. HuangZ.J. LiY. YangG.P. LiuM.L. YuanH. Revealing the contribution of Cytochrome P450 to salt-sensitive hypertension using DNA microarray.Eur. Rev. Med. Pharmacol. Sci.2013172331483156 24338455
    [Google Scholar]
  67. SparreboomA. HuizingM.T. BoesenJ.J.B. NooijenW.J. van TellingenO. BeijnenJ.H. Isolation, purification, and biological activity of mono- and dihydroxylated paclitaxel metabolites from human feces.Cancer Chemother. Pharmacol.199536429930410.1007/BF00689047 7628049
    [Google Scholar]
  68. SonnichsenD.S. LiuQ. SchuetzE.G. SchuetzJ.D. PappoA. RellingM.V. Variability in human cytochrome P450 paclitaxel metabolism.J. Pharmacol. Exp. Ther.19952752566575 7473140
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002308509240711100502
Loading
/content/journals/cdm/10.2174/0113892002308509240711100502
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test