Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Objective

Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its metabolism. This study aims to profile the metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and high-resolution extracted ion chromatograms for rapid and systematic analysis.

Methods

Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin were also proposed.

Results

In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin .

Conclusion

The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002299923240801092101
2024-08-06
2024-12-23
Loading full text...

Full text loading...

/deliver/fulltext/cdm/25/5/CDM-25-5-04.html?itemId=/content/journals/cdm/10.2174/0113892002299923240801092101&mimeType=html&fmt=ahah

References

  1. PonnapalliM.G. AnnamS.C.H.V.A.R. RaviralaS. SukkiS. AnkireddyM. TunikiV.R. Unusual isomeric corniculatolides from mangrove, Aegiceras corniculatum.J. Nat. Prod.201275227527910.1021/np200789s 22316191
    [Google Scholar]
  2. BandaranayakeW.M. Traditional and medicinal uses of mangroves.Mangroves Salt Marshes19982313314810.1023/A:1009988607044
    [Google Scholar]
  3. PateraN.A. TriandalaS.M. PuteraN.A. ShoffaP.M. YuniarR.D.R. DheaK.V. FaradillaR.N. DevijantiR.R. Anti-periodontopathogenic ability of mangrove Leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study.Eur. J. Dent.20231701465610.1055/s‑0041‑1741374 35453169
    [Google Scholar]
  4. JanmanchiH. RajuA. DeganiM.S. RayM.K. RajanM.G.R. Antituberculosis, antibacterial and antioxidant activities of Aegiceras corniculatum, a mangrove plant and effect of various extraction processes on its phytoconstituents and bioactivity.S. Afr. J. Bot.201711342142710.1016/j.sajb.2017.09.019
    [Google Scholar]
  5. Advances in medicinal research of Aegiceras corniculatum. J. Liaoning.Uni. Trad. Chinese20171911114117
    [Google Scholar]
  6. DingL. DahseH.M. HertweckC. cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum.J. Nat. Prod.201275461762110.1021/np2008544 22439674
    [Google Scholar]
  7. Das GitishreeG.S. KishoreM.Y. KumarP.J. Mangrove plants: A potential source for anticancer drugs.Indian J. Geo-Mar. Sci.2015445666672
    [Google Scholar]
  8. LiY. DongC. XuM.J. LinW.H. New alkylated benzoquinones from mangrove plant Aegiceras corniculatum with anticancer activity.J. Asian Nat. Prod. Res.202022212113010.1080/10286020.2018.1540604 30614270
    [Google Scholar]
  9. VinhL.B. NguyetN.T.M. YangS.Y. KimJ.H. ThanhN.V. CuongN.X. NamN.H. MinhC.V. HwangI. KimY.H. Cytotoxic triterpene saponins from the mangrove Aegiceras corniculatum.Nat. Prod. Res.201933562863410.1080/14786419.2017.1402320 29143535
    [Google Scholar]
  10. HuaL. HaoE. TanD. Du ZhengcaiF.X. HouX. DengJ. Anti-prostate cancer activities of n-butanol entract in Aegiceras corniculatum leaves in vitro.J. Chinese Medi. Mat.201841819751979
    [Google Scholar]
  11. TanD. HuaL. DengJ. HaoE. YiX. FengX. WeiL. XiaZ. XuW. XieJ. HouX. Screening antitumor activity of four mangrove plants in Guangxi coastal area.Guangxi Zhi Wu2018381012671276
    [Google Scholar]
  12. LuoH. HaoE. TanD. WeiW. XieJ. FengX. DuZ. HuangC. BaiG. HouY. ChengC. YiX. WangY. HouX. DengJ. Apoptosis effect of Aegiceras corniculatum on human colorectal cancer via activation of FoxO signaling pathway.Food Chem. Toxicol.201913411086110.1016/j.fct.2019.110861 31585132
    [Google Scholar]
  13. García-SosaK. Sánchez-MedinaA. ÁlvarezS.L. ZacchinoS. VeitchN.C. Simá-PolancoP. Peña-RodriguezL.M. Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea.Nat. Prod. Res.201125121185118910.1080/14786419.2010.511215 21740284
    [Google Scholar]
  14. Sánchez-MedinaA. Peña-RodríguezL.M. May-PatF. KaragianisG. WatermanP.G. MalletA.I. HabtemariamS. Identification of Sakurasosaponin as a cytotoxic principle from Jacquinia flammea.Nat. Prod. Commun.20105336536810.1177/1934578X1000500304 20420308
    [Google Scholar]
  15. SongI.S. JeongY.J. KimJ. SeoK.H. BaekN.I. KimY. KimC.S. JangS.W. Pharmacological inhibition of androgen receptor expression induces cell death in prostate cancer cells.Cell. Mol. Life Sci.202077224663467310.1007/s00018‑019‑03429‑2 31894360
    [Google Scholar]
  16. SeoY. LimC. LeeJ. KimJ. KimY. LeeP. JangS.W. Sakurasosaponin inhibits lung cancer cell proliferation by inducing autophagy via AMPK activation.Oncol. Lett.202326650156010.3892/ol.2023.14088 37920436
    [Google Scholar]
  17. BakyM.H. ElsaidM.B. FaragM.A. Phytochemical and biological diversity of triterpenoid saponins from family Sapotaceae: A comprehensive review.Phytochemistry202220211334510.1016/j.phytochem.2022.113345 35952770
    [Google Scholar]
  18. WeiS. WeiZ. JieZ. TaoZ. LiuS. YuL. MaB. Metabolism of saponins from Traditional Chinese medicines: A review.Acta Pharmaceu. Sinica.2018531016091619
    [Google Scholar]
  19. PanH. YaoC. YangW. YaoS. HuangY. ZhangY. WuW. GuoD. An enhanced strategy integrating offline two-dimensional separation and step-wise precursor ion list-based raster-mass defect filter: Characterization of indole alkaloids in five botanical origins of Uncariae Ramulus Cum Unicis as an exemplary application.J. Chromatogr. A2018156312413410.1016/j.chroma.2018.05.066 29880214
    [Google Scholar]
  20. DongF. WangS. YangA. LiQ. WangY. DaiL. TaoY. WeiX. ZhangJ. Systematic screening and characterization of cardamonin metabolites using UHPLC-Q-Exactive Orbitrap MS after oral administration to rats.Arab. J. Chem.202013128768878210.1016/j.arabjc.2020.10.007
    [Google Scholar]
  21. YuC. WangF. LiuX. MiaoJ. TangS. JiangQ. TangX. GaoX. Corydalis Rhizoma as a model for herb-derived trace metabolites exploration: A cross-mapping strategy involving multiple doses and samples.J. Pharm. Anal.202111330831910.1016/j.jpha.2020.03.006 34277119
    [Google Scholar]
  22. WeiW.L. LiH.J. YangW.Z. QuH. LiZ.W. YaoC.L. HouJ.J. WuW.Y. GuoD.A. An integrated strategy for comprehensive characterization of metabolites and metabolic profiles of bufadienolides from Venenum bufonis in rats.J. Pharm. Anal.202212113614410.1016/j.jpha.2021.02.003 35573889
    [Google Scholar]
  23. ShangZ. CaiW. CaoY. WangF. WangZ. LuJ. ZhangJ. An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery.J. Pharm. Biomed. Anal.201714638740110.1016/j.jpba.2017.09.012 28918329
    [Google Scholar]
  24. YuY. YaoC. GuoD. Insight into chemical basis of Traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-Mass spectrometry.Acta Pharm. Sin. B20211161469149210.1016/j.apsb.2021.02.017 34221863
    [Google Scholar]
  25. WeiW. LiS. HaoE. PanX. XieJ. DuZ. HouX. DengJ. Rapid chemical profiling of compound huanggen granules and absorbed prototypes in cynomolgus monkey plasma by integrating uhplc-q-tof-ms e method and data post-processing strategy.Curr. Drug Metab.202223865266510.2174/1389200223666220817112937 35980053
    [Google Scholar]
  26. SlenoL. The use of mass defect in modern mass spectrometry.J. Mass Spectrom.201247222623610.1002/jms.2953 22359333
    [Google Scholar]
  27. ZhuM. MaL. ZhangD. RayK. ZhaoW. HumphreysW.G. SkilesG. SandersM. ZhangH. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data.Drug Metab. Dispos.200634101722173310.1124/dmd.106.009241 16815965
    [Google Scholar]
  28. Navarro del HierroJ. HerreraT. FornariT. RegleroG. MartinD. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities.J. Funct. Foods20184048449710.1016/j.jff.2017.11.032
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002299923240801092101
Loading
/content/journals/cdm/10.2174/0113892002299923240801092101
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test