Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing species; however, its underlying mechanism remains unclear.

Objective

The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC.

Methods

The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined male Mdr1a gene knocked-out mice and wild-type FVB mice.

Results

The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco-2 monolayers ( < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in -/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice ( < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD) of YAC from 2.13 to 0.24 mg/kg ( < 0.05). Moreover, the concentrations of YAC in the tissues of mice were statistically higher than those in wild-type FVB mice ( < 0.05). Particularly, the brain accumulation of YAC in mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice ( < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between and wild-type FVB mice.

Conclusion

YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002302427240801072910
2024-08-06
2024-12-23
Loading full text...

Full text loading...

References

  1. LiX.P. HeJ. HeS.L. MengJ. Research progress of Aconitum vilmorinianum.Xibu Linye Kexue20174661710.16473/j.cnki.xblykx1972.2017.06.001
    [Google Scholar]
  2. NyirimigaboE. XuY. LiY. WangY. AgyemangK. ZhangY. A review on phytochemistry, pharmacology and toxicology studies of Aconitum.J. Pharm. Pharmacol.201467111910.1111/jphp.1231025244533
    [Google Scholar]
  3. XiaoP.G. WangF.P. GaoF. YanL.P. ChenD.L. LiuY. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China.Zhiwu Fenlei Xuebao200644114610.1360/aps050046
    [Google Scholar]
  4. YuX. LiuH. XuX. HuY. WangX. WenC. Pharmacokinetics of yunaconitine and indaconitine in mouse blood by UPLC-MS/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021117912284010.1016/j.jchromb.2021.12284034225245
    [Google Scholar]
  5. LiX. FuY. QiuH. XuX. LinT. HouW. ChenW. ZhangR. LiuZ. ZhuL. Clinical poisoning events involving yunaconitine may be highly correlated with metabolism-based interactions: A critical role of CYP3A4.Food Chem. Toxicol.202317911398910.1016/j.fct.2023.11398937619830
    [Google Scholar]
  6. GuoZ.J. DuanX.H. ChenC.L. YangZ.Y. TanW.H. ZhouZ.H. MaX.X. A preliminary research on the efficacy and toxicity of yunaconitine and 8-deacetylyunaconitine isolated from the processed products of Aconiti knsnezoffii Radix.Zhongguo Zhongyiyao Xinxi Zazhi20152210606310.3969/j.issn.1005‑5304.2015.10.017
    [Google Scholar]
  7. LinZ.G. CaiW. TangX.C. Anti-inflammatory and analgesic actions of yunaconitine.Zhongguo Yaolixue Yu Dulixue Zazhi198719399
    [Google Scholar]
  8. LiX.Y. JiangK.M. LinZ.Y. Immunomodulating actions of yunaconitine.Zhongguo Yaolixue Yu Dulixue Zazhi19871100104https://doi.org/CNKI:SUN:YLBS.0.1987-01-004
    [Google Scholar]
  9. HaiQ.S. MaX.X. YangY.Q. YangZ.Y. Comparation of three kinds of diterpenoid alkaloid from Aconitum bulleyanum diels in related pharmacodynamics and toxicity. J. Kunming. Med. Univ.2017381182210.3969/j.issn.1003‑4706.2017.01.004
    [Google Scholar]
  10. ShuX.K. LiJ. LiuF. LinX.J. WangX. SongC.X. Accelerated solvent extraction and pH -zone-refining counter-current chromatographic purification of yunaconitine and 8-deacetylyunaconitine fromA conitum vilmorinianum K om.J. Sep. Sci.201336162680268510.1002/jssc.20130047223784883
    [Google Scholar]
  11. ZhuD.Y. BaiD.L. TangX.C. Recent studies on traditional Chinese medicinal plants.Drug Dev. Res.201539214715710.1002/(SICI)1098‑2299(199610)39:2<147:AID‑DDR6>3.0.CO;2‑P
    [Google Scholar]
  12. ZhangR.P. ChenS.Y. ZhouJ. Structural modification of yunaconitine.Chih. Wu. Yen. Chiu.1998204474478
    [Google Scholar]
  13. TsoiO.L. YuenK.Y. LeungJ. LamR. A six-year review of adverse events related to yunaconitine and crassicauline A (2006-2011) in Hong Kong.Pharmacoepidemiol. Drug Saf.201221Suppl. 322210.1111/j.1399‑5448.2012.03324.x
    [Google Scholar]
  14. ChanT.Y.K. Aconitum alkaloid poisoning because of contamination of herbs by aconite roots.Phytother. Res.20163013810.1002/ptr.549526481590
    [Google Scholar]
  15. Identification of yunaconitine in poisoning Case: A case report.Fa Yi Xue Za Zhi202238569369610.12116/j.issn.1004‑5619.2021.31110136727196
    [Google Scholar]
  16. ZhaohongWang WangZ. WenJ. HeY. Simultaneous determination of three Aconitum alkaloids in urine by LC-MS-MS.J. Pharm. Biomed. Anal.200745114514810.1016/j.jpba.2007.04.01617555909
    [Google Scholar]
  17. KonoY. KawaharaI. ShinozakiK. NomuraI. MarutaniH. YamamotoA. FujitaT. Characterization of P-glycoprotein inhibitors for evaluating the effect of P-glycoprotein on the intestinal absorption of drugs.Pharmaceutics202113338810.3390/pharmaceutics1303038833804018
    [Google Scholar]
  18. KopeckaJ. GodelM. DeiS. GiampietroR. BelisarioD.C. AkmanM. ContinoM. TeodoriE. RigantiC. Insights into P-glycoprotein inhibitors: New inducers of immunogenic cell death.Cells202094103310.3390/cells904103332331368
    [Google Scholar]
  19. LinJ.H. YamazakiM. Role of P-glycoprotein in pharmacokinetics: Clinical implications.Clin. Pharmacokinet.2003421599810.2165/00003088‑200342010‑0000312489979
    [Google Scholar]
  20. VaalburgW. HendrikseN. ElsingaP. BartJ. VanwaardeA. P-glycoprotein activity and biological response.Toxicol. Appl. Pharmacol.20052072Suppl.25726010.1016/j.taap.2005.03.02716043202
    [Google Scholar]
  21. SilvaR. Vilas-BoasV. CarmoH. Dinis-OliveiraR.J. CarvalhoF. de Lourdes BastosM. RemiãoF. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy.Pharmacol. Ther.2015149112310.1016/j.pharmthera.2014.11.01325435018
    [Google Scholar]
  22. van AsperenJ. SchinkelA.H. BeijnenJ.H. NooijenW.J. BorstP. van TellingenO. Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient mice.J. Natl. Cancer Inst.1996881499499910.1093/jnci/88.14.9948667431
    [Google Scholar]
  23. KönigJ. MüllerF. FrommM.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects.Pharmacol. Rev.201365394496610.1124/pr.113.00751823686349
    [Google Scholar]
  24. YeL. YangX. YangZ. GaoS. YinT. LiuW. WangF. HuM. LiuZ. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells.Toxicol. Lett.20132162-3869910.1016/j.toxlet.2012.11.01123200901
    [Google Scholar]
  25. LiN. TsaoR. SuiZ. MaJ. LiuZ. LiuZ. Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model.Planta Med.201278769269710.1055/s‑0031‑129836822411726
    [Google Scholar]
  26. YangC. LiZ. ZhangT. LiuF. RuanJ. ZhangZ. Transcellular transport of aconitine across human intestinal Caco-2 cells.Food Chem. Toxicol.20135719520010.1016/j.fct.2013.03.03323562926
    [Google Scholar]
  27. YangC. ZhangT. LiZ. XuL. LiuF. RuanJ. LiuK. ZhangZ. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies.Toxicol. Appl. Pharmacol.2013273356156810.1016/j.taap.2013.09.03024120885
    [Google Scholar]
  28. ZhangJ.M. LiaoW. HeY. HeY. YanD. FuC.M. Study on intestinal absorption and pharmacokinetic characterization of diester diterpenoid alkaloids in precipitation derived from Fuzi–Gancao herb-pair decoction for its potential interaction mechanism investigation.J. Ethnopharmacol.2013147112813510.1016/j.jep.2013.02.01923506993
    [Google Scholar]
  29. ZhuL. WuJ. ZhaoM. SongW. QiX. WangY. LuL. LiuZ. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics.Toxicol. Appl. Pharmacol.2017320323910.1016/j.taap.2017.02.00828193520
    [Google Scholar]
  30. LiX. OuX. LuoG. OuX. XieY. YingM. QuW. ZuoH. QiX. WangY. LiuZ. ZhuL. Mdr1a, Bcrp and Mrp2 regulate the efficacy and toxicity of mesaconitine and hypaconitine by altering their tissue accumulation and in vivo residence.Toxicol. Appl. Pharmacol.202040911533210.1016/j.taap.2020.11533233171190
    [Google Scholar]
  31. GaoY. FanH. NieA. YangK. XingH. GaoZ. YangL. WangZ. ZhangL. Aconitine: A review of its pharmacokinetics, pharmacology, toxicology and detoxification.J. Ethnopharmacol.202229311527010.1016/j.jep.2022.11527035405250
    [Google Scholar]
  32. ZhouY.P. JiangJ.L. Study on Fuzi——VI. Pharmacological effects of aconitine and its related compounds in Fuzi.Pharmacol. Clin. Chin. Mater. Med.199285454810.13412/j.cnki.zyyl.1992.05.017
    [Google Scholar]
  33. Percie du SertN. HurstV. AhluwaliaA. AlamS. AveyM.T. BakerM. BrowneW.J. ClarkA. CuthillI.C. DirnaglU. EmersonM. GarnerP. HolgateS.T. HowellsD.W. KarpN.A. LazicS.E. LidsterK. MacCallumC.J. MacleodM. PearlE.J. PetersenO.H. RawleF. ReynoldsP. RooneyK. SenaE.S. SilberbergS.D. StecklerT. WürbelH. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.PLoS Biol.2020187e300041010.1371/journal.pbio.300041032663219
    [Google Scholar]
  34. SauerU.G. KreilingR. The Grouping and Assessment Strategy for Organic Pigments (GRAPE): Scientific evidence to facilitate regulatory decisionmaking.Regul. Toxicol. Pharmacol.201910910450110.1016/j.yrtph.2019.10450131629781
    [Google Scholar]
  35. LiY. SongW. OuX. LuoG. XieY. SunR. WangY. QiX. HuM. LiuZ. ZhuL. Breast cancer resistance protein and multidrug resistance protein 2 determine the disposition of esculetin-7-O-glucuronide and 4-methylesculetin-7-O-glucuronide.Drug Metab. Dispos.201947320321410.1124/dmd.118.08349330602435
    [Google Scholar]
  36. LiuZ.Q. JiangZ.H. LiuL. HuM. Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine.Pharm. Res.200623122768278010.1007/s11095‑006‑9100‑817063398
    [Google Scholar]
  37. ZhangL. LiT. WangR. XuJ. ZhouL. YanL. HuZ. LiH. LiuF. DuW. TongP. WuH. ZhangS. ShanL. EfferthT. Evaluation of long-time decoction-detoxicated Hei-Shun-Pian (Processed Aconitium carmichaeli Debeaux Lateral root with peel) for its acute toxicity and therapeutic effect on mono-iodoacetate induced osteoarthritis.Front. Pharmacol.202011105310.3389/fphar.2020.0105332848727
    [Google Scholar]
  38. HoffmannS. Kinsner-OvaskainenA. PrietoP. MangelsdorfI. BielerC. ColeT. Acute oral toxicity: Variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project.Regul. Toxicol. Pharmacol.201058339540710.1016/j.yrtph.2010.08.00420709128
    [Google Scholar]
  39. Food and Drugs Administration of the United States of America, Bioanalytical Method Validation Guidance for Industry.2018Available from:https://www.fda.gov/regulatory-information/search-fda-guidance documents/(accessed on 20-7-2024)
  40. GuL. MaM. ZhangY. ZhangL. ZhangS. HuangM. ZhangM. XinY. ZhengG. ChenS. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid.Regul. Toxicol. Pharmacol.201910710442010.1016/j.yrtph.2019.10442031295511
    [Google Scholar]
  41. ChenS.P.L. NgS.W. PoonW.T. LaiC.K. NganT.M.S. TseM.L. ChanT.Y.K. ChanA.Y.W. MakT.W.L. Aconite poisoning over 5 years: A case series in Hong Kong and lessons towards herbal safety.Drug Saf.201235757558710.2165/11597470‑000000000‑0000022631223
    [Google Scholar]
  42. HuJ. ZhangH.D. A case of allergic reaction caused by Yunnan Hongyao Capsule.Chin. J. Misdiagn.2007614171418
    [Google Scholar]
  43. LiuP.X. LiuP.J. ChenJ. A case of arrhythmia caused by Yunnan Hongyao Capsule. People. Mil. Surg.200604900849510.3969/j.issn.1000‑9736.2006.08.047
    [Google Scholar]
  44. ArturssonP. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells.J. Pharm. Sci.199079647648210.1002/jps.26007906041975619
    [Google Scholar]
  45. van BreemenR.B. LiY. Caco-2 cell permeability assays to measure drug absorption.Expert Opin. Drug Metab. Toxicol.20051217518510.1517/17425255.1.2.17516922635
    [Google Scholar]
  46. SakaedaT. NakamuraT. OkumuraK. MDR1 genotype-related pharmacokinetics and pharmacodynamics.Biol. Pharm. Bull.200225111391140010.1248/bpb.25.139112419946
    [Google Scholar]
  47. SakaedaT. NakamuraT. OkumuraK. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs.Pharmacogenomics20034439741010.1517/phgs.4.4.397.2274712831320
    [Google Scholar]
  48. CuiY.J. ChengX. WeaverY.M. KlaassenC.D. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice.Drug Metab. Dispos.200937120321010.1124/dmd.108.02372118854377
    [Google Scholar]
  49. SchuetzE.G. UmbenhauerD.R. YasudaK. BrimerC. NguyenL. RellingM.V. SchuetzJ.D. SchinkelA.H. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes.Mol. Pharmacol.200057118819710617694
    [Google Scholar]
  50. GangulyS. PanettaJ.C. RobertsJ.K. SchuetzE.G. Ketamine pharmacokinetics and pharmacodynamics are altered by P-glycoprotein and breast cancer resistance protein efflux transporters in mice.Drug Metab. Dispos.20184671014102210.1124/dmd.117.07836029674491
    [Google Scholar]
  51. HusainA. MakadiaV. ValicherlaG.R. RiyazuddinM. GayenJ.R. Approaches to minimize the effects of P-glycoprotein in drug transport: A review.Drug Dev. Res.202283482584110.1002/ddr.2191835103340
    [Google Scholar]
  52. KlaassenC.D. LuH. Xenobiotic transporters: Ascribing function from gene knockout and mutation studies.Toxicol. Sci.2008101218619610.1093/toxsci/kfm21417698509
    [Google Scholar]
  53. MurayamaM. ItoT. KonnoC. HikinoH. Mechanism of analgesic action of mesaconitine. I. Relationship between analgesic effect and central monoamines or opiate receptors.Eur. J. Pharmacol.19841011-2293610.1016/0014‑2999(84)90027‑X6086363
    [Google Scholar]
  54. AmeriA. The effects of Aconitum alkaloids on the central nevous system.Prog Neurobiol.199856221123510.1016/S0301‑0082(98)00037‑9
    [Google Scholar]
  55. SalehiA. GhanadianM. ZolfaghariB. JassbiA.R. FattahianM. ReisiP. CsuporD. KhanI.A. AliZ. Neuropharmacological potential of diterpenoid alkaloids.Pharmaceuticals202316574710.3390/ph1605074737242531
    [Google Scholar]
  56. FuM. WuM. QiaoY. WangZ. Toxicological mechanisms of Aconitum alkaloids.Pharmazie200661973574117020146
    [Google Scholar]
  57. ZuoH.L. LiX.C. OuX.J. YangC.H. LiuZ.Q. LiangQ. ZhuL.J. Study on the regulation of multidrug resistance protein 1a on the efficacytoxicity-in vivo exposure of benzoylmesaconine.Zhongyao Xinyao Yu Linchuang Yaoli202334795996910.19378/j.issn.1003‑9783.2023.07.012
    [Google Scholar]
  58. AkamineY. Yasui-FurukoriN. UnoT. Drug-drug interactions of P-gp substrates unrelated to CYP metabolism.Curr. Drug Metab.201920212412910.2174/138920021966618100314203630280663
    [Google Scholar]
  59. OtsukaY. PoondruS. BonateP.L. RoseR.H. JameiM. UshigomeF. MinematsuT. Physiologically-based pharmacokinetic modeling to predict drug-drug interaction of enzalutamide with combined P-gp and CYP3A substrates.J. Pharmacokinet. Pharmacodyn.202350536537610.1007/s10928‑023‑09867‑737344637
    [Google Scholar]
  60. ElmeliegyM. VourvahisM. GuoC. WangD.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drugdrug interaction studies.Clin. Pharmacokinet.202059669971410.1007/s40262‑020‑00867‑132052379
    [Google Scholar]
  61. LiM. de GraafI.A.M. de JagerM.H. GroothuisG.M.M. P-gp activity and inhibition in the different regions of human intestine ex vivo.Biopharm. Drug Dispos.201738212713810.1002/bdd.204727757966
    [Google Scholar]
  62. NguyenT.T.L. DuongV.A. MaengH.J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral absorption and bioavailability.Pharmaceutics2021137110310.3390/pharmaceutics1307110334371794
    [Google Scholar]
  63. LomovskayaO. BostianK.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use.Biochem. Pharmacol.200671791091810.1016/j.bcp.2005.12.00816427026
    [Google Scholar]
  64. PusztaiL. WagnerP. IbrahimN. RiveraE. TheriaultR. BooserD. SymmansF.W. WongF. BlumenscheinG. FlemingD.R. RouzierR. BonifaceG. HortobagyiG.N. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma.Cancer2005104468269110.1002/cncr.2122715986399
    [Google Scholar]
  65. ThomasH. ColeyH.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein.Cancer Contr.200310215916510.1177/10732748030100020712712010
    [Google Scholar]
  66. KrishnaR. MayerL.D. Multidrug resistance (MDR) in cancer.Eur. J. Pharm. Sci.200011426528310.1016/S0928‑0987(00)00114‑711033070
    [Google Scholar]
  67. AminM.L. P-glycoprotein inhibition for optimal drug delivery.Drug Targ. Insights20137DTI.S1251910.4137/DTI.S1251924023511
    [Google Scholar]
  68. BansalT. MishraG. JaggiM. KharR.K. TalegaonkarS. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats.Eur. J. Pharm. Sci.2009364-558059010.1016/j.ejps.2008.12.00519135530
    [Google Scholar]
  69. ChineyM.S. MenonR.M. BuenoO.F. TongB. SalemA.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin.Xenobiotica201848990491010.1080/00498254.2017.138177929027832
    [Google Scholar]
  70. DastvanR. MishraS. PeskovaY.B. NakamotoR.K. MchaourabH.S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors.Science2019364644168969210.1126/science.aav940631097669
    [Google Scholar]
  71. BaumertC. HilgerothA. Recent advances in the development of P-gp inhibitors.Anticancer. Agents Med. Chem.20099441543610.2174/187152061090904041519442042
    [Google Scholar]
  72. HaoD.C. GeG.B. XiaoP.G. WangP. YangL. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds.Curr. Drug Metab.201516429432110.2174/138920021666615080314463126234707
    [Google Scholar]
  73. Bello-RamírezA.M. Nava-OcampoA.A. A QSAR analysis of toxicity of Aconitum alkaloids.Fundam. Clin. Pharmacol.200418669970410.1111/j.1472‑8206.2004.00280.x15548242
    [Google Scholar]
  74. WuJ. LinN. LiF. ZhangG. HeS. ZhuY. OuR. LiN. LiuS. FengL. LiuL. LiuZ. LuL. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions.Sci. Rep.2016612534310.1038/srep2534327139035
    [Google Scholar]
  75. SadiqM.W. UchidaY. HoshiY. TachikawaM. TerasakiT. Hammarlund-UdenaesM. Validation of a P-glycoprotein (p-gp) humanized mouse model by integrating selective absolute quantification of human mdr1, mouse Mdr1a and Mdr1b protein expressions with in vivo functional analysis for blood-brain barrier transport.PLoS One2015105e011863810.1371/journal.pone.011863825932627
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002302427240801072910
Loading
/content/journals/cdm/10.2174/0113892002302427240801072910
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): brain accumulation; edema; efficacy; P-glycoprotein; toxicity; Yunaconitine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test