Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-2002
  • E-ISSN:

Abstract

Background

The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid-Induced Osteoporosis (GIOP) by regulating metabolism remains unclear.

Methods

This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation.

Results

Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity.

Conclusion

In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002308141240628071541
2024-05-01
2024-11-07
Loading full text...

Full text loading...

References

  1. CompstonJ. Glucocorticoid-induced osteoporosis: An update.Endocrine201861171610.1007/s12020‑018‑1588‑229691807
    [Google Scholar]
  2. LaneN.E. Glucocorticoid-induced osteoporosis: New insights into the pathophysiology and treatments.Curr. Osteoporos. Rep.20191711710.1007/s11914‑019‑00498‑x30685820
    [Google Scholar]
  3. HuK. AdachiJ.D. Glucocorticoid induced osteoporosis.Expert Rev. Endocrinol. Metab.201914425926610.1080/17446651.2019.161713131094232
    [Google Scholar]
  4. YanbeiyZ.A. HansenK.E. Denosumab in the treatment of glucocorticoid-induced osteoporosis: A systematic review and meta-analysis.Drug Des. Devel. Ther.2019132843285210.2147/DDDT.S14865431616133
    [Google Scholar]
  5. LiB. WangY. GongS. YaoW. GaoH. LiuM. WeiM. Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics.Phytomedicine202210215419810.1016/j.phymed.2022.15419835636175
    [Google Scholar]
  6. SiZ. ZhouS. ShenZ. LuanF. High-throughput metabolomics discovers metabolic biomarkers and pathways to evaluating the efficacy and exploring potential mechanisms of osthole against osteoporosis based on UPLC/Q-TOF-MS coupled with multivariate data analysis.Front. Pharmacol.20201174110.3389/fphar.2020.0074132670052
    [Google Scholar]
  7. XuY. ChenS. YuT. QiaoJ. SunG. High-throughput metabolomics investigates anti-osteoporosis activity of oleanolic acid via regulating metabolic networks using ultra-performance liquid chromatography coupled with mass spectrometry.Phytomedicine201851687610.1016/j.phymed.2018.09.23530466629
    [Google Scholar]
  8. WangT. WangY. ZhuangX. LuanF. ZhaoC. CordeiroM.N.D.S. Interaction of coumarin phytoestrogens with ERα and ERβ: A molecular dynamics simulation study.Molecules2020255116510.3390/molecules2505116532150902
    [Google Scholar]
  9. LiY.P. WuB. LiangJ. LiF. Isopsoralen ameliorates H2O2-induced damage in osteoblasts via activating the Wnt/β-catenin pathway.Exp. Ther. Med.20191831899190610.3892/etm.2019.774131410152
    [Google Scholar]
  10. WangJ. LiS.F. WangT. SunC.H. WangL. HuangM.J. ChenJ. ZhengS.W. WangN. ZhangY.J. ChenT.Y. Isopsoralen-mediated suppression of bone marrow adiposity and attenuation of the adipogenic commitment of bone marrow-derived mesenchymal stem cells.Int. J. Mol. Med.201739352753810.3892/ijmm.2017.288028204811
    [Google Scholar]
  11. YangZ. HuangJ. LiuS. ZhaoY. ShenZ. WangY. BianQ. The osteoprotective effect of psoralen in ovariectomy-induced osteoporotic rats via stimulating the osteoblastic differentiation from bone mesenchymal stem cells.Menopause201219101040104810.1097/gme.0b013e3182507e1822781784
    [Google Scholar]
  12. ZhouQ. GuanZ. LiuS. XuanY. HanG. ChenH. JinX. TaoK. GuanZ. The effects of metformin and alendronate in attenuating bone loss and improving glucose metabolism in diabetes mellitus mice.Aging202214127228510.18632/aging.20372935027504
    [Google Scholar]
  13. LiH. WangY. WangY. LiuA. SuX. MaZ. WangL. ZhangZ. LvS. MiaoJ. CuiH. Mechanical study of alisol B 23-acetate on methionine and choline deficient diet-induced nonalcoholic steatohepatitis based on untargeted metabolomics.Biomed. Chromatogr.2024381e576310.1002/bmc.576337858975
    [Google Scholar]
  14. PfeiferA. KilićA. HoffmannL.S. Regulation of metabolism by cGMP.Pharmacol. Ther.20131401819110.1016/j.pharmthera.2013.06.00123756133
    [Google Scholar]
  15. ShenY.W. ChengY.A. LiY. LiZ. YangB.Y. LiX. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction.Phytomedicine202311015460710.1016/j.phymed.2022.15460736610352
    [Google Scholar]
  16. JhaS.S. Glucocorticoid-Induced Osteoporosis (GIOP).Indian J. Orthop.202357S1Suppl. 118119110.1007/s43465‑023‑01037‑838107807
    [Google Scholar]
  17. ChopraB. DhingraA.K. DharK.L. Psoralea corylifolia L. (Buguchi) — Folklore to modern evidence: Review.Fitoterapia201390445610.1016/j.fitote.2013.06.01623831482
    [Google Scholar]
  18. ChatterjeeM. FaotF. CorreaC. KerckhofsJ. VandammeK. Is the jaw bone micro-structure altered in response to osteoporosis and bisphosphonate treatment? A Micro-CT analysis.Int. J. Mol. Sci.20212212655910.3390/ijms2212655934207275
    [Google Scholar]
  19. ChenM. FuW. XuH. LiuC. Pathogenic mechanisms of glucocorticoid-induced osteoporosis.Cytokine Growth Factor Rev.202370546610.1016/j.cytogfr.2023.03.00236906448
    [Google Scholar]
  20. ImaiK. Alendronate sodium hydrate (oral jelly) for the treatment of osteoporosis: Review of a novel, easy to swallow formulation.Clin. Interv. Aging2013868168810.2147/CIA.S3719923766643
    [Google Scholar]
  21. WangL. ZhangH.Y. GaoB. ShiJ. HuangQ. HanY.H. HuY.Q. LuW.G. ZhaoZ.J. LiuB.H. JieQ. YangL. LuoZ.J. Tetramethylpyrazine protects against glucocorticoid-induced apoptosis by promoting autophagy in mesenchymal stem cells and improves bone mass in glucocorticoid-induced osteoporosis rats.Stem Cells Dev.201726641943010.1089/scd.2016.023327917698
    [Google Scholar]
  22. ChenZ. XueJ. ShenT. BaG. YuD. FuQ. Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosis in vivo and in vitro.Clin. Exp. Pharmacol. Physiol.201643226827610.1111/1440‑1681.1251326515751
    [Google Scholar]
  23. TolbaM.F. El-SerafiA.T. OmarH.A. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals.Toxicol. Appl. Pharmacol.2017324263510.1016/j.taap.2017.03.02128363435
    [Google Scholar]
  24. LuH. YanH.W. Long-term effect of cervus and cucumis polypeptide combined with zoledronic acid in treating glucocorticoids-induced osteoporosis and the effect on bone mineral density.Chinese Gen. Prac201720S1224226
    [Google Scholar]
  25. LingC. MiaoZ. XiaoM. ZhouH. JiangZ. FuY. XiongF. ZuoL. LiuY. WuY. JingL. DongH.L. ChenG. DingD. WangC. ZengF. ZhuH. HeY. ZhengJ.S. ChenY. The association of gut microbiota with osteoporosis is mediated by amino acid metabolism: Multiomics in a large cohort.J. Clin. Endocrinol. Metab.202110610e3852e386410.1210/clinem/dgab49234214160
    [Google Scholar]
  26. MiyamotoK. HirayamaA. SatoY. IkedaS. MaruyamaM. SogaT. TomitaM. NakamuraM. MatsumotoM. YoshimuraN. MiyamotoT. A metabolomic profile predictive of new osteoporosis or sarcopenia development.Metabolites202111527810.3390/metabo1105027833924750
    [Google Scholar]
  27. LuX. ChenY. WangH. BaiY. ZhaoJ. ZhangX. LiangL. ChenY. YeC. LiY. ZhangY. LiY. MaT. Integrated lipidomics and transcriptomics characterization upon aging-related changes of lipid species and pathways in human bone marrow mesenchymal stem cells.J. Proteome Res.20191852065207710.1021/acs.jproteome.8b0093630827117
    [Google Scholar]
  28. QianC. WangQ. QiaoY. XuZ. ZhangL. XiaoH. LinZ. WuM. XiaW. YangH. BaiJ. GengD. Arachidonic acid in aging: New roles for old players.J. Adv. Res.2024S2090-1232(24)00180-210.1016/j.jare.2024.05.00338710468
    [Google Scholar]
  29. LiangW.D. HuangP.J. XiongL.H. ZhouS. YeR.Y. LiuJ.R. WeiH. LaiR.Y. Metabolomics and its application in the mechanism analysis on diabetic bone metabolic abnormality.Eur. Rev. Med. Pharmacol. Sci.202024189591960033015802
    [Google Scholar]
  30. ZhangX. XuH. LiG.H.Y. LongM.T. CheungC.L. VasanR.S. HsuY.H. KielD.P. LiuC.T. Metabolomics insights into osteoporosis through association with bone mineral density.J. Bone Miner. Res.202036472973810.1002/jbmr.424033434288
    [Google Scholar]
  31. YangK. LiJ. TaoL. Purine metabolism in the development of osteoporosis.Biomed. Pharmacother.202215511378410.1016/j.biopha.2022.11378436271563
    [Google Scholar]
  32. Kazemzadeh-NarbatM. AnnabiN. TamayolA. OkluR. GhanemA. KhademhosseiniA. Adenosine-associated delivery systems.J. Drug Target.2015237-858059610.3109/1061186X.2015.105880326453156
    [Google Scholar]
  33. AlabedS. SabouniA. ProvidenciaR. AtallahE. QintarM. ChicoT.J.A. Adenosine versus intravenous calcium channel antagonists for supraventricular tachycardia.Cochrane Libr.2017201710CD00515410.1002/14651858.CD005154.pub429025197
    [Google Scholar]
  34. AtifM. AlsrhaniA. NazF. ImranM. ImranM. UllahM.I. AlameenA.A.M. GondalT.A. RazaQ. Targeting adenosine receptors in neurological diseases.Cell. Reprogram.2021232577210.1089/cell.2020.008733861641
    [Google Scholar]
  35. DaW. TaoL. ZhuY. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis.Front. Endocrinol.20211267538510.3389/fendo.2021.67538534054735
    [Google Scholar]
  36. NewmanH. VargheseS. Extracellular adenosine signaling in bone health and disease.Curr. Opin. Pharmacol.20237010237810.1016/j.coph.2023.10237837044008
    [Google Scholar]
  37. KasterM.P. BudniJ. GazalM. CunhaM.P. SantosA.R.S. RodriguesA.L.S. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A2A receptors.Purinergic Signal.20139348148610.1007/s11302‑013‑9361‑823613131
    [Google Scholar]
  38. DewulfJ.P. MarieS. NassogneM.C. Disorders of purine biosynthesis metabolism.Mol. Genet. Metab.2022136319019810.1016/j.ymgme.2021.12.01634998670
    [Google Scholar]
  39. SchallN. GarciaJ.J. KalyanaramanH. ChinaS.P. LeeJ.J. SahR.L. PfeiferA. PilzR.B. Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing.JCI Insight202059e13535510.1172/jci.insight.13535532315291
    [Google Scholar]
  40. KimS.M. YuenT. IqbalJ. RubinM.R. ZaidiM. The NO–cGMP–PKG pathway in skeletal remodeling.Ann. N. Y. Acad. Sci.202114871213010.1111/nyas.1448632860248
    [Google Scholar]
  41. MiyazawaT. OgawaY. ChushoH. YasodaA. TamuraN. KomatsuY. PfeiferA. HofmannF. NakaoK. Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification.Endocrinology200214393604361010.1210/en.2002‑22030712193576
    [Google Scholar]
  42. ShrivatsA.R. HsuE. AverickS. KlimakM. WattA.C.S. DeMaioM. MatyjaszewskiK. HollingerJ.O. Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells.Clin. Orthop. Relat. Res.201547362139214910.1007/s11999‑014‑4073‑025448327
    [Google Scholar]
  43. MaW.W. HuangW-Z. LiL-D. XiangH-Z. LyuH-Y. XiongY. HuangX. Study on the mechanism of Guilu Erxian gum in the treatment of osteoporosis based on network pharmacology and cell experiment.Trad Med Res20238126910.53388/TMR20230704002
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002308141240628071541
Loading
/content/journals/cdm/10.2174/0113892002308141240628071541
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test