Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-2002
  • E-ISSN:

Abstract

Objective

5-Methoxy-α-Methyltryptamine (5-MeO-AMT) is a new psychoactive substance which is abused due to its hallucinogenic and euphoric effects. This study aimed to study the metabolic characteristics of 5-MeO-AMT.

Methods

Five rats were given intraperitoneal injection at a dose of 50 mg/kg of 5-MeO-AMT, and their urine was subsequently collected at different times within 7 days. Ultra-high performance liquid chromatographytandem high-resolution mass spectrometry (UPLC-LTQ-Orbitrap) was used to detect the precise molecular weight and fragment ions of 5-MeO-AMT and its possible metabolites in the urine sample extracted with benzene-ethyl acetate.

Results

Three metabolites, including OH-5-MeO-AMT, α-Me-5-HT, and N-Acetyl-5-MeO-AMT were identified in rats’ urine. The major metabolic pathways involved O-demethylation, hydroxylation of indole ring, and Acetylation on aliphatic amines.

Conclusion

The results of this study are an important reference for the identification and screening of toxicants of 5-MeO-AMT.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002295551240628061732
2024-05-01
2024-11-07
Loading full text...

Full text loading...

References

  1. WenW. LiP. ZhangC.S. GaoL.s. GC-MS qualitative identification of oil-formulized 5-methoxy-alphamethyltryptamine, a new-type drug.Foren. Sci. Technol.2021460220821110.16467/j.1008‑3650.2021.0051
    [Google Scholar]
  2. ChinaM.P.S.P.R.o. Announcement on the inclusion of 18 substances including synthetic cannabinoids and fluamine in the Supplementary Catalogue of Controlled Non-Medicinal Narcotic Drugs and Psychotropic Drugs.Available from: https://www.mps.gov.cn/n2255079/n6865805/n7355741/n7912606/c8129610/content.html
  3. HillS.L. ThomasS.H.L. Clinical toxicology of newer recreational drugs.Clin. Toxicol.201149870571910.3109/15563650.2011.61531821970769
    [Google Scholar]
  4. GlennonR.A. ChaurasiaC. TitelerM. Binding of indolylalkylamines at 5-HT2 serotonin receptors: Examination of a hydrophobic binding region.J. Med. Chem.199033102777278410.1021/jm00172a0162213830
    [Google Scholar]
  5. TomaszewskiZ. JohnsonM.P. HuangX. NicholsD.E. Benzofuran bioisosteres of hallucinogenic tryptamines.J. Med. Chem.199235112061206410.1021/jm00089a0171534585
    [Google Scholar]
  6. RickliA. MoningO.D. HoenerM.C. LiechtiM.E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.Eur. Neuropsychopharmacol.20162681327133710.1016/j.euroneuro.2016.05.00127216487
    [Google Scholar]
  7. NagaiF. NonakaR. Satoh Hisashi KamimuraK. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain.Eur. J. Pharmacol.20075592-313213710.1016/j.ejphar.2006.11.07517223101
    [Google Scholar]
  8. LiN. LiF. WeiJ. y. QiaoY. l. LiX. y. WangY. m. XuP. DiB. A case of acute toxicity analysis of new tryptamine drugs.Chin. J. Drug. Abuse. Prev. Treat.20212704549-55157310.15900/j.cnki.zylf1995.2021.04.028
    [Google Scholar]
  9. LiN. Research progress on new psychoactive substances.Mod. Salt. Chem. Ind.20214802384010.19465/j.cnki.2095‑9710.2021.02.01834725997
    [Google Scholar]
  10. Fabregat-SafontD. Barneo-MuñozM. Martinez-GarciaF. SanchoJ.V. HernándezF. IbáñezM. Proposal of 5-methoxy- N -methyl- N -isopropyltryptamine consumption biomarkers through identification of in vivo metabolites from mice.J. Chromatogr. A201715089510510.1016/j.chroma.2017.06.01028602505
    [Google Scholar]
  11. WangR.j. XiangP. YuZ.g. ShiY. Research progress on new psychoactive tryptamines.Chin. J. Foren. Sci.2019044355
    [Google Scholar]
  12. KatagiM. KamataT. ZaitsuK. ShimaN. KamataH. NakanishiK. NishiokaH. MikiA. TsuchihashiH. Metabolism and toxicologic analysis of tryptamine-derived drugs of abuse.Ther. Drug Monit.201032332833110.1097/FTD.0b013e3181dcb40c20418800
    [Google Scholar]
  13. MeatherallR. SharmaP. Foxy, a designer tryptamine hallucinogen.J. Anal. Toxicol.200327531331710.1093/jat/27.5.31312908946
    [Google Scholar]
  14. NarimatsuS. YonemotoR. SaitoK. TakayaK. KumamotoT. IshikawaT. AsanumaM. FunadaM. KiryuK. NaitoS. YoshidaY. YamamotoS. HaniokaN. Oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes.Biochem. Pharmacol.20067191377138510.1016/j.bcp.2006.01.01516510126
    [Google Scholar]
  15. GrafingerK.E. HädenerM. KönigS. WeinmannW. Study of the in vitro and in vivo metabolism of the tryptamine 5-MeO-MiPT using human liver microsomes and real case samples.Drug Test. Anal.201810356257410.1002/dta.224528677880
    [Google Scholar]
  16. BrandtS.D. KavanaghP.V. DowlingG. TalbotB. WestphalF. MeyerM.R. MaurerH.H. HalberstadtA.L. Analytical characterization of N, N -diallyltryptamine (DALT) and 16 ring-substituted derivatives.Drug Test. Anal.20179111512610.1002/dta.197427100373
    [Google Scholar]
  17. SohY.N.A. ElliottS. An investigation of the stability of emerging new psychoactive substances.Drug Test. Anal.201467-869670410.1002/dta.157624573920
    [Google Scholar]
  18. PereiraA.S. IslamM.D.S. Gamal El-DinM. MartinJ.W. Ozonation degrades all detectable organic compound classes in oil sands process-affected water; An application of high-performance liquid chromatography/obitrap mass spectrometry.Rapid Commun. Mass Spectrom.201327212317232610.1002/rcm.668824097387
    [Google Scholar]
  19. WangY.w. Performance and application of LTQ-Orbitrap Velos dual pressure linear trap and electrostatic field orbitrap combined high-resolution mass spectrometry.Med. Instrum.201016051519
    [Google Scholar]
  20. LiY. LiuR.r. YinP.h. DongL.y. ZhangJ.y. LuJ.q. Introduction and application of two-dimensional linear ion trap electrostatic orbitrap combined high-resolution mass spectrometry (LTQ-Orbitrap).The 7th Academic Exchange Conference on Chinese Medicine Analysis of Chinese Medicine AssociationGuangzhou, Guangdong, China, 2014; pp 445-449.
    [Google Scholar]
  21. LiZ. WangF. NiuZ. LuoX. ZhangG. ChenJ. Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry.Se Pu201432547748410.3724/SP.J.1123.2013.1200425185307
    [Google Scholar]
  22. RaoY. XiangB. BramantiE. D’UlivoA. MesterZ. Determination of thiols in yeast by HPLC coupled with LTQ-orbitrap mass spectrometry after derivatization with p-(Hydroxymercuri)benzoate.J. Agric. Food Chem.20105831462146810.1021/jf903485k20063886
    [Google Scholar]
  23. TakahashiM. NagashimaM. SuzukiJ. SetoT. YasudaI. YoshidaT. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatographymass spectrometry.J. Health Sci.2008541899610.1248/jhs.54.89
    [Google Scholar]
  24. AraújoA.M. CarvalhoF. BastosM.L. Guedes de PinhoP. CarvalhoM. The hallucinogenic world of tryptamines: An updated review.Arch. Toxicol.20158981151117310.1007/s00204‑015‑1513‑x25877327
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002295551240628061732
Loading
/content/journals/cdm/10.2174/0113892002295551240628061732
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test