Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

Ferrets exhibit similar lung physiology to humans and display similar clinical signs following influenza infection, making them a valuable model for studying high susceptibility and infection patterns. However, the metabolic fate of several common human CYP450 probe substrates in ferrets is still unknown and has not been studied.

Objective

The purpose of this study was to investigate the metabolism of nine human CYP450 probe substrates in ferret hepatocytes and explore their metabolic rate differences between ferrets and other species.

Methods

Nine substrates were individually incubated in ferret hepatocytes for up to 120 min. At each time point, 30 µL mixtures were extracted for stability analysis using LC-MS/MS methods. After a 120-minute incubation period, 400 µL of the mixtures were extracted for metabolite identification using UHPLC-Q-Exactive Plus.

Results

The metabolic clearance was determined as follows: testosterone > phenacetin > bupropion > omeprazole > midazolam > dextromethorphan > chlorzoxazone > taxol > diclofenac. Seven metabolites were identified from phenacetin. Deethylation was found to be the major pathway, and the major metabolite was matched with acetaminophen as probed with the CYP1A2 enzyme. Six metabolites were identified from diclofenac. Glucuronidation was the primary pathway, and a metabolite was found to match 4-OH-diclofenac as probed with the CYP2C9 enzyme. Twenty-two metabolites were identified from omeprazole. The major metabolic pathways included mono-oxygenation and sulfoxide to thioether conversion. No metabolite was found to match with 5-OH-omeprazole as probed with the CYP2C19 enzyme. Twenty-two metabolites were identified from dextromethorphan. Demethylation was found to be the major metabolic pathway, and one demethylation metabolite was matched with dextrorphan as probed with the CYP2D6 enzyme. Fourteen metabolites were identified from midazolam. Mono-oxygenation was found to be the primary metabolic pathway, and one of the mono-oxygenation metabolites was matched with 1-OH-midazolam as probed with the CYP3A4 enzyme. Eight metabolites were identified from testosterone. Mono-oxygenation and glucuronidation were identified as the major metabolic pathways. One mono-oxygenation was matched with 6-β-testosterone as probed with the CYP3A4 enzyme. Six metabolites were identified from taxol. Hydrolysis and mono-oxygenation were the top two metabolic pathways. No metabolite was matched with 6-α-OH-taxol as probed with the CYP2C8 enzyme. Ten metabolites were identified from bupropion. Mono-oxygenation and hydrogenation were identified as the top two metabolic pathways. No mono-oxygenation metabolite was matched with hydroxy-bupropion as probed with the CYP2B6 enzyme. Nine metabolites were identified from chlorzoxazone. Mono-oxygenation and sulfation were the top two metabolic pathways. One mono-oxygenation metabolite was matched with 6-OH-chlorzoxazone as probed with the CYP2E1 enzyme.

Conclusion

Nine human CYP probe substrates were clearly metabolized in ferret hepatocytes, demonstrating substrate-dependent metabolic rates in ferret hepatocytes and species-dependent metabolic rates in mouse, rat, dog, monkey, and human hepatocytes. Except for 6-a-5-OH-omeprazole, 6-α-OH-taxol, and hydroxy-bupropion, specific metabolites of other six probe substrates in ferret hepatocytes were detected and identified as probed with six human CYP enzymes, respectively.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002302675240903075500
2024-09-09
2025-04-19
Loading full text...

Full text loading...

References

  1. MaherJ.A. DeStefanoJ. The ferret: An animal model to study influenza virus.Lab Anim. (NY)2004339505310.1038/laban1004‑50 15457202
    [Google Scholar]
  2. van RielD. MunsterV.J. de WitE. RimmelzwaanG.F. FouchierR.A.M. OsterhausA.D.M.E. KuikenT. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals.Am. J. Pathol.200717141215122310.2353/ajpath.2007.070248 17717141
    [Google Scholar]
  3. SmithW. AndrewesC.H. LaidlawP.P. A virus obtained from influenza patients.Lancet19332225732666810.1016/S0140‑6736(00)78541‑2
    [Google Scholar]
  4. BahlK. SennJ.J. YuzhakovO. BulychevA. BritoL.A. HassettK.J. LaskaM.E. SmithM. AlmarssonÖ. ThompsonJ. RibeiroA.M. WatsonM. ZaksT. CiaramellaG. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses.Mol. Ther.20172561316132710.1016/j.ymthe.2017.03.035 28457665
    [Google Scholar]
  5. CoxR.M. WolfJ.D. LieberC.M. SourimantJ. LinM.J. BabusisD. DuPontV. ChanJ. BarrettK.T. LyeD. KallaR. ChunK. MackmanR.L. YeC. CihlarT. Martinez-SobridoL. GreningerA.L. BilelloJ.P. PlemperR.K. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets.Nat. Commun.2021121641510.1038/s41467‑021‑26760‑4 34741049
    [Google Scholar]
  6. KinsellaT.J. SchuppJ.E. DavisT.W. BerryS.E. HwangH.S. WarrenK. BalisF. BarnettJ. SandsH. Preclinical study of the systemic toxicity and pharmacokinetics of 5-iodo-2-deoxypyrimidinone-2′-deoxyribose as a radiosensitizing prodrug in two, non-rodent animal species: implications for phase I study design.Clin. Cancer Res.20006936703679 10999760
    [Google Scholar]
  7. BeigelJ.H. VoellJ. MuñozP. KumarP. BrooksK.M. ZhangJ. IversenP. HealdA. WongM. DaveyR.T. Safety, tolerability, and pharmacokinetics of radavirsen (AVI‐7100), an antisense oligonucleotide targeting influenza a M1/M2 translation.Br. J. Clin. Pharmacol.2018841253410.1111/bcp.13405 28929521
    [Google Scholar]
  8. KuehlP.J. ChandR. McDonaldJ.D. HavaD.L. DeHaanW.H. Pulmonary and regional deposition of nebulized and dry powder aerosols in ferrets.AAPS PharmSciTech201920624210.1208/s12249‑019‑1382‑3 31264190
    [Google Scholar]
  9. AdamsonR.H. BridgesJ.W. KibbyM.R. WalkerS.R. WilliamsR.T. The fate of sulphadimethoxine in primates compared with other species.Biochem. J.19701181414510.1042/bj1180041 4990585
    [Google Scholar]
  10. BridgesJ.W. FrenchM.R. SmithR.L. WilliamsR.T. The fate of benzoic acid in various species.Biochem. J.19701181475110.1042/bj1180047 4990586
    [Google Scholar]
  11. IdleJ.R. MillburnP. Tecwyn WilliamsR. Taurine conjugates as metabolites of arylacetic acids in the ferret.Xenobiotica19788425326410.3109/00498257809056147 347725
    [Google Scholar]
  12. PhillipsJ.C. GauntI.F. GangolliS.D. Studies on the metabolic fate of 32P-labelled emulsifier YN in the mouse, guinea-pig and ferret.Food Cosmet. Toxicol.1975131233010.1016/0015‑6264(75)90079‑6 1123200
    [Google Scholar]
  13. ThompsonP.I. BinghamS. AndrewsP.L.R. PatelN. JoelS.P. SlevinM.L. Morphine 6‐glucuronide: A metabolite of morphine with greater emetic potency than morphine in the ferret.Br. J. Pharmacol.199210613810.1111/j.1476‑5381.1992.tb14284.x 1324067
    [Google Scholar]
  14. RedmonJ.M. ShresthaB. CerundoloR. CourtM.H. Soy isoflavone metabolism in cats compared with other species: Urinary metabolite concentrations and glucuronidation by liver microsomes.Xenobiotica201646540641510.3109/00498254.2015.1086038 26366946
    [Google Scholar]
  15. GorrodJ.W. DamaniL.A. The metabolic N-oxidation of 3-substituted pyridines in various animal species in vivo.Eur. J. Drug Metab. Pharmacokinet.198051535710.1007/BF03189445 7389753
    [Google Scholar]
  16. HuckleK.R. HutsonD.H. MillburnP. Species differences in the metabolism of 3-phenoxybenzoic acid.Drug Metab. Dispos.198194352359 6114835
    [Google Scholar]
  17. PopeD.J. GilbertA.P. EasterD.J. ChanR.P. TurnerJ.C. GottfriedS. ParkeD.V. The metabolism of bifluranol by rat, dog and ferret.J. Pharm. Pharmacol.201133130230810.1111/j.2042‑7158.1981.tb13785.x 6116778
    [Google Scholar]
  18. EmudianugheT.S. CaldwellJ. SinclairK.A. SmithR.L. Species differences in the metabolic conjugation of clofibric acid and clofibrate in laboratory animals and man.Drug Metab. Dispos.198311297102 6133730
    [Google Scholar]
  19. Ribaya-MercadoJ.D. HolmgrenS.C. FoxJ.G. RussellR.M. Dietary β-carotene absorption and metabolism in ferrets and rats.J. Nutr.1989119466566810.1093/jn/119.4.665 2703921
    [Google Scholar]
  20. WangX.D. KrinskyN.I. MariniR.P. TangG. YuJ. HurleyR. FoxJ.G. RussellR.M. Intestinal uptake and lymphatic absorption of β-carotene in ferrets: A model for human β-carotene metabolism.Am. J. Physiol. Gastrointest. Liver Physiol.19922634G480G48610.1152/ajpgi.1992.263.4.G480 1415707
    [Google Scholar]
  21. WangX.D. RussellR.M. MariniR.P. TangG. DolnikowskiG.G. FoxJ.G. KrinskyN.I. Intestinal perfusion of β -carotene in the ferret raises retinoic acid level in portal blood.Biochim. Biophys. Acta Lipids Lipid Metab.19931167215916410.1016/0005‑2760(93)90157‑5 8466944
    [Google Scholar]
  22. WangX.D. MariniR.P. HebuterneX. FoxJ.G. KrinskyN.I. RussellR.M. Vitamin E enhances the lymphatic transport of β-carotene and its conversion to vitamin A in the ferret.Gastroenterology1995108371972610.1016/0016‑5085(95)90444‑1 7875474
    [Google Scholar]
  23. HébuterneX. WangX.D. JohnsonE.J. KrinskyN.I. RussellR.M. Intestinal absorption and metabolism of 9-cis-β-carotene in vivo: Biosynthesis of 9-cis-retinoic acid.J. Lipid Res.19953661264127310.1016/S0022‑2275(20)41134‑4 7666004
    [Google Scholar]
  24. WangX.D. KrinskyN.I. Identification and quantification of retinoic acid and other metabolites from β-carotene excentric cleavage in human intestine in vitro and ferret intestine in vivo. Methods Enzymol.,1997282111713010.1016/S0076‑6879(97)82101‑5 9330282
    [Google Scholar]
  25. OleinikV.M. Distribution of digestive enzyme activities along intestine in blue fox, mink, ferret and rat.Comp. Biochem. Physiol. A Physiol.19951121555810.1016/0300‑9629(95)00090‑T
    [Google Scholar]
  26. Reed-HagenA.E. TsuchiyaM. ShimadaK. WentlandJ.A. ObachR.S. Pharmacokinetics of ezlopitant, a novel non-peptidic neurokinin-1 receptor antagonist in preclinical species and metabolite kinetics of the pharmacologically active metabolites.Biopharm. Drug Dispos.199920942943910.1002/1099‑081X(199912)20:9<429:AID‑BDD209>3.0.CO;2‑D 10951432
    [Google Scholar]
  27. SomeM. HelanderA. Urinary excretion patterns of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol in various animal species: Implications for studies on serotonin metabolism and turnover rate.Life Sci.200271202341234910.1016/S0024‑3205(02)02043‑X 12231396
    [Google Scholar]
  28. HuskeyS.E.W. DeanB.J. BakhtiarR. SanchezR.I. TattersallF.D. RycroftW. HargreavesR. WattA.P. ChicchiG.G. KeohaneC. HoraD.F. ChiuS.H.L. Brain penetration of aprepitant, a substance P receptor antagonist, in ferrets.Drug Metab. Dispos.200331678579110.1124/dmd.31.6.785 12756213
    [Google Scholar]
  29. MinthornE. MenckenT. KingA.G. ShuA. RomingerD. GontarekR.R. HanC. BambalR. DavisC.B. Pharmacokinetics and brain penetration of casopitant, a potent and selective neurokinin-1 receptor antagonist, in the ferret.Drug Metab. Dispos.20083691846185210.1124/dmd.108.021758 18556439
    [Google Scholar]
  30. FrederickK.A. BabishJ.G. In vitro activation of the promutagens 2-acetamidofluorene, cyclophosphamide and 7,12-dimethylbenzanthracene by constitutive ferret and rat hepatic S-9 fractions.Toxicology1984311738610.1016/0300‑483X(84)90157‑4 6427977
    [Google Scholar]
  31. AharonyD. DobsonP.T. KrellR.D. In vitro metabolism of [ 3 H]-peptide leukotrienes in human and ferret lung: A comparison with the guinea pig.Biochem. Biophys. Res. Commun.1985131289289810.1016/0006‑291X(85)91323‑3 2996529
    [Google Scholar]
  32. SmithG.L. DonosoP. BauerC.J. EisnerD.A. Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart.J. Physiol.19934721112210.1113/jphysiol.1993.sp019932 8145137
    [Google Scholar]
  33. CourtM.H. Von MoltkeL.L. ShaderR. GreenblattD.J. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species.Biopharm. Drug Dispos.199718321322610.1002/(SICI)1099‑081X(199704)18:3<213:AID‑BDD15>3.0.CO;2‑0 9113344
    [Google Scholar]
  34. CourtM.H. Acetaminophen UDP‐glucuronosyltransferase in ferrets: Species and gender differences, and sequence analysis of ferret UGT1A6.J. Vet. Pharmacol. Ther.200124641542210.1046/j.1365‑2885.2001.00366.x 11903872
    [Google Scholar]
  35. LakeB.G. CollinsM.A. HarrisR.A. GangolliS.D. The induction of hepatic and extrahepatic xenobiotic metabolism in the rat and ferret by a polychlorinated biphenyl mixture (Aroclor 1254).Xenobiotica197991272373110.3109/00498257909042340 119357
    [Google Scholar]
  36. SindhuR.K. RasmussenR.E. YamamotoR. FujitaI. KikkawaY. Depression of hepatic cytochrome P450 monooxygenases after chronic environmental tobacco smoke exposure of young ferrets.Toxicol. Lett.199576322723810.1016/0378‑4274(95)80007‑Z 7762009
    [Google Scholar]
  37. SindhuR.K. RasmussenR.E. KikkawaY. Effect of environmental tobacco smoke on the metabolism of (‐)‐ trans ‐benzo[a]pyrene‐7,8‐dihydrodiol in juvenile ferret lung and liver.J. Toxicol. Environ. Health199545445346410.1080/15287399509532008 7643432
    [Google Scholar]
  38. SindhuR.K. RasmussenR.E. KikkawaY. Exposure to environmental tobacco smoke results in an increased production of (+)-anti benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide in juvenile ferret lung homogenates.J. Toxicol. Environ. Health199647652353410.1080/009841096161519 8614021
    [Google Scholar]
  39. LiuC. RussellR.M. WangX.D. Exposing ferrets to cigarette smoke and a pharmacological dose of β-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes.J. Nutr.2003133117317910.1093/jn/133.1.173 12514286
    [Google Scholar]
  40. LiuC. RussellR.M. WangX.D. α-tocopherol and ascorbic acid decrease the production of β-apo-carotenals and increase the formation of retinoids from β-carotene in the lung tissues of cigarette smoke-exposed ferrets in vitro.J. Nutr.2004134242643010.1093/jn/134.2.426 14747683
    [Google Scholar]
  41. SaengtienchaiA. IkenakaY. NakayamaS.M.M. MizukawaH. KakehiM. Bortey-SamN. DarwishW.S. TsubotaT. TerasakiM. PoapolathepA. IshizukaM. Identification of interspecific differences in phase II reactions: Determination of metabolites in the urine of 16 mammalian species exposed to environmental pyrene.Environ. Toxicol. Chem.20143392062206910.1002/etc.2656 24899081
    [Google Scholar]
  42. Drug Interactions & Labeling - Drug Development and Drug Interactions: Table of Substrates, Inhibitors and InducersFDA Center for Drug Evaluation and Research2017
    [Google Scholar]
  43. McLeanS. DaviesN.W. WatsonH. FavrettoW.A. BignallJ.C. N-hydroxyphenacetin, a new urinary metabolite of phenacetin in the rat.Drug Metab. Dispos.198193255260 6113936
    [Google Scholar]
  44. DittmannB. RennerG. 4-Acetaminophenoxyacetic acid, a new urinary metabolite of phenacetin.Naunyn Schmiedebergs Arch. Pharmacol.19772962878910.1007/BF00508458 834318
    [Google Scholar]
  45. KlutchA. LevinW. ChangR.L. VaneF. ConneyA.H. Formation of a thiomethyl metabolite of phenacetin and acetaminophen in dogs and man.Clin. Pharmacol. Ther.197824328729310.1002/cpt1978243287 688722
    [Google Scholar]
  46. MineshitaS. EggersR. KitteringhamN.R. OhnhausE.E. Determination of phenacetin and its major metabolites in human plasma and urine by high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.1986380240741310.1016/S0378‑4347(00)83671‑3 3760069
    [Google Scholar]
  47. JinH. LiS.J. XiongW.J. Determination of the concentrations of phenacetin and its metabolites in human serum and urine by LC-MS/MS method.Pharma. Care and Res.200776431435
    [Google Scholar]
  48. BüchH. HäuserH. PflegerK. RüdigerW. [Determination of phenacetin and n-acetyl-p-aminophenol as metabolites in urine].Z. Klin. Chem. Klin. Biochem.196646288290 5994634
    [Google Scholar]
  49. MitchellJ.R. PotterW.Z. HinsonJ.A. SnodgrassW.R. GilletteI. Jr Exaggerated or Unwanted Drug Actions.Handb. Exp. Pharmacol.197511383419
    [Google Scholar]
  50. DahlinD.C. MiwaG.T. LuA.Y. NelsonS.D. N-acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen.Proc. Natl. Acad. Sci. USA19848151327133110.1073/pnas.81.5.1327 6424115
    [Google Scholar]
  51. VendemialeG. GrattaglianoI. AltomareE. TurturroN. GuerrieriF. Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat.Biochem. Pharmacol.19965281147115410.1016/0006‑2952(96)00414‑5 8937421
    [Google Scholar]
  52. SparidansR.W. LagasJ.S. SchinkelA.H. SchellensJ.H.M. BeijnenJ.H. Liquid chromatography–tandem mass spectrometric assay for diclofenac and three primary metabolites in mouse plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088721-2778210.1016/j.jchromb.2008.07.012 18674973
    [Google Scholar]
  53. OdaS. ShiraiY. AkaiS. NakajimaA. TsuneyamaK. YokoiT. Toxicological role of an acyl glucuronide metabolite in diclofenac‐induced acute liver injury in mice.J. Appl. Toxicol.201737554555310.1002/jat.3388 27671914
    [Google Scholar]
  54. GrilloM.P. HuaF. KnutsonC.G. WareJ.A. LiC. Mechanistic studies on the bioactivation of diclofenac: Identification of diclofenac-S-acyl-glutathione in vitro in incubations with rat and human hepatocytes.Chem. Res. Toxicol.200316111410141710.1021/tx034038b 14615966
    [Google Scholar]
  55. TangW. StearnsR.A. BandieraS.M. ZhangY. RaabC. BraunM.P. DeanD.C. PangJ. LeungK.H. DossG.A. StraussJ.R. KweiG.Y. RushmoreT.H. ChiuS.H. BaillieT.A. Studies on cytochrome P-450-mediated bioactivation of diclofenac in rats and in human hepatocytes: Identification of glutathione conjugated metabolites.Drug Metab. Dispos.1999273365372 10064567
    [Google Scholar]
  56. MadsenK.G. SkonbergC. JurvaU. CornettC. HansenS.H. JohansenT.N. OlsenJ. Bioactivation of diclofenac in vitro and in vivo: Correlation to electrochemical studies.Chem. Res. Toxicol.20082151107111910.1021/tx700419d 18419141
    [Google Scholar]
  57. SyedM. SkonbergC. HansenS.H. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).Toxicol. In Vitro20163119310210.1016/j.tiv.2015.11.020 26627130
    [Google Scholar]
  58. ShinS.H. ParkY. ParkM.H. ByeonJ.J. LeeB. ChoiJ. ShinY.G. Profiling and identification of omeprazole metabolites in mouse brain and plasma by isotope ratio-monitoring liquid chromatography-mass spectrometric method.Life (Basel)202010711510.3390/life10070115 32707673
    [Google Scholar]
  59. ZhaoL. LouY.Q. In vitro studies on omeprazole metabolism in ratliver microsomes.Acta Pharmacol. Sin.1995304248253
    [Google Scholar]
  60. KobayashiK. ChibaK. TaniM. KuroiwaY. IshizakiT. Development and preliminary application of a high-performance liquid chromatographic assay for omeprazole metabolism in human liver microsomes.J. Pharm. Biomed. Anal.199412683984410.1016/S0731‑7085(94)80025‑1 7918787
    [Google Scholar]
  61. RenbergL. SimonssonR. HoffmannK.J. Identification of two main urinary metabolites of [14C]omeprazole in humans.Drug Metab. Dispos.19891716976 2566473
    [Google Scholar]
  62. KobayashiK. ChibaK. SohnD.R. KatoY. IshizakiT. Simultaneous determination of omeprazole and its metabolites in plasma and urine by reversed-phase high-performance liquid chromatography with an alkaline-resistant polymer-coated C18 column.J. Chromatogr., Biomed. Appl.1992579229930510.1016/0378‑4347(92)80395‑7 1429977
    [Google Scholar]
  63. AkikoO. HidekoK. FumikoM. ShigeoO. HiromitsuY. Determination of omeprazole and its metabolites in human plasma as a probe for CYP2C19 phenotype.Anal. Chem. (Japan)2001171871872
    [Google Scholar]
  64. LöfgrenS. HagbjörkA.L. EkmanS. Fransson-SteenR. TereliusY. Metabolism of human cytochrome P450 marker substrates in mouse: A strain and gender comparison.Xenobiotica200434981183410.1080/00498250412331285463 15742976
    [Google Scholar]
  65. XuR. XuT. WangZ. ZhanH. ChenX. WangX. HuL. ZhangX. Simultaneous determination of dextromethorphan and dextrophan in rat plasma by LC-MS/MS and its application to a pharmacokinetic study.Pharmazie201267648548910.1691/ph.2012.1631 22822534
    [Google Scholar]
  66. GorskiJ.C. JonesD.R. WrightonS.A. HallS.D. Characterization of dextromethorphan N-demethylation by human liver microsomes.Biochem. Pharmacol.199448117318210.1016/0006‑2952(94)90237‑2 8043020
    [Google Scholar]
  67. SchmidB. BircherJ. PreisigR. KüpferA. Polymorphic dextromethorphan metabolism: Co-segregation of oxidative O-demethylation with debrisoquin hydroxylation.Clin. Pharmacol. Ther.198538661862410.1038/clpt.1985.235 4064464
    [Google Scholar]
  68. LutzU. BittnerN. LutzR.W. LutzW.K. Metabolite profiling in human urine by LC–MS/MS: Method optimization and application for glucuronides from dextromethorphan metabolism.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2008871234935610.1016/j.jchromb.2008.04.018 18458004
    [Google Scholar]
  69. KimJ.Y. SuhS.I. PaengK.J. InM.K. Determination of dextromethorphan and its metabolite dextrorphan in human hair by gas chromatography-mass spectrometry.Chromatographia20046011-1270370710.1365/s10337‑004‑0433‑3
    [Google Scholar]
  70. MarvalinC. DenouxM. PérardS. RoyS. AzeradR. Microbial production of phase I and phase II metabolites of midazolam.Xenobiotica201242328529310.3109/00498254.2011.622417 22022919
    [Google Scholar]
  71. WarringtonJ.S. PokuJ.W. von MoltkeL.L. ShaderR.I. HarmatzJ.S. GreenblattD.J. Effects of age on in vitro midazolam biotransformation in male CD-1 mouse liver microsomes.J. Pharmacol. Exp. Ther.2000292310241031 10688619
    [Google Scholar]
  72. PerloffM.D. Von MoltkeL.L. GreenblattD.J. Differential metabolism of midazolam in mouse liver and intestine microsomes: A comparison of cytochrome P450 activity and expression.Xenobiotica2003334365377 12745872
    [Google Scholar]
  73. MartignoniM. GroothuisG. de KanterR. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine.Drug Metab. Dispos.20063461047105410.1124/dmd.105.009035 16565172
    [Google Scholar]
  74. MiyakeM. KondoS. KogaT. YodaN. NakazatoS. EmotoC. MukaiT. ToguchiH. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs.Eur. J. Pharm. Biopharm.20181221495310.1016/j.ejpb.2017.09.015 28974435
    [Google Scholar]
  75. HylandR. OsborneT. PayneA. KempshallS. LoganY.R. EzzeddineK. JonesB. In vitro and in vivo glucuronidation of midazolam in humans.Br. J. Clin. Pharmacol.200967444545410.1111/j.1365‑2125.2009.03386.x 19371318
    [Google Scholar]
  76. FriedrichG. RoseT. WawkuschewskiA. Kafert-KastingS. LaubeB. ArsenievL. RisslerK. Determination of testosterone metabolites in rat hepatocytes with and without cryopreservation by on-line SPE column-switching LC and MS detection.Chromatographia2008671-2313910.1365/s10337‑007‑0485‑2
    [Google Scholar]
  77. FarthingM.J. VinsonG.P. EdwardsC.R. DawsonA.M. Testosterone metabolism by the rat gastrointestinal tract, in vitro and in vivo.Gut198223322623410.1136/gut.23.3.226 6950919
    [Google Scholar]
  78. YamamotoY. OsawaY. KirdaniR.Y. SandbergA.A. Testosterone metabolites in dog bile.Steroids197831223324710.1016/0039‑128X(78)90116‑2 663966
    [Google Scholar]
  79. MonderC. MarshallD.E. LaughlinL.S. BlyeR.P. Studies on the metabolism of testosterone trans-4-n-butylcyclohexanoic acid in the cynomolgus monkey, Macaca fascicularis.J. Steroid Biochem. Mol. Biol.1994505-630531110.1016/0960‑0760(94)90136‑8 7918117
    [Google Scholar]
  80. FriedrichG. RoseT. RisslerK. Determination of testosterone metabolites in human hepatocytes.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20037841496110.1016/S1570‑0232(02)00754‑7 12504182
    [Google Scholar]
  81. FabregatA. MarcosJ. VenturaR. CasalsG. JimenezW. ReichenbachV. SeguraJ. PozoO.J. Formation of Δ1 and Δ6 testosterone metabolites by human hepatocytes.Steroids2015951667210.1016/j.steroids.2014.12.006 25541059
    [Google Scholar]
  82. SparreboomA. van TellingenO. NoojienW.J. BeijnenJ.H. Determination of paclitaxel and metabolites in mouse plasma, tissues, urine and faeces by semi-automated reversed-phase high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.1995664238339110.1016/0378‑4347(94)00495‑Q 7780591
    [Google Scholar]
  83. WalleT. KumarG.N. McMlllanJ.M. ThornburgK.R. WalleU.K. Taxol metabolism in rat hepatocytes.Biochem. Pharmacol.19934691661166410.1016/0006‑2952(93)90336‑U 7902091
    [Google Scholar]
  84. GréenH. VretenbrantK. NorlanderB. PetersonC. Measurement of paclitaxel and its metabolites in human plasma using liquid chromatography/ion trap mass spectrometry with a sonic spray ionization interface.Rapid Commun. Mass Spectrom.200620142183218910.1002/rcm.2567 16791868
    [Google Scholar]
  85. HuizingM.T. SparreboomA. RosingH. van TellingenO. PinedoH.M. BeijnenJ.H. Quantification of paclitaxel metabolites in human plasma by high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.1995674226126810.1016/0378‑4347(95)00308‑8 8788155
    [Google Scholar]
  86. BhattacharyaC. KirbyD. Van StipdonkM. StratfordR.E. Comparison of in vitro stereoselective metabolism of bupropion in human, monkey, rat, and mouse liver microsomes.Eur. J. Drug Metab. Pharmacokinet.201944226127410.1007/s13318‑018‑0516‑4 30298475
    [Google Scholar]
  87. BorgesV. YangE. DunnJ. HenionJ. High-throughput liquid chromatography–tandem mass spectrometry determination of bupropion and its metabolites in human, mouse and rat plasma using a monolithic column.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2004804227728710.1016/j.jchromb.2004.01.024 15081921
    [Google Scholar]
  88. MehvarR. VuppugallaR. Hepatic disposition of the cytochrome P450 2E1 marker chlorzoxazone and its hydroxylated metabolite in isolated perfused rat livers.J. Pharm. Sci.20069571414142410.1002/jps.20503 16724323
    [Google Scholar]
  89. TanakaE. ShimamotoA. NakamuraT. TeraoK. MisawaS. Differences in chlorzoxazone metabolism in full mature male and female Sprague–Dawley rat, Beagle dog and Cynomolgus monkey liver.Hum. Exp. Toxicol.200019212212510.1191/096032700678815738 10773842
    [Google Scholar]
  90. QuesnotN. BucherS. GadeC. VlachM. VeneE. ValençaS. GicquelT. HolstH. RobinM.A. LoyerP. Production of chlorzoxazone glucuronides via cytochrome P4502E1 dependent and independent pathways in human hepatocytes.Arch. Toxicol.201892103077309110.1007/s00204‑018‑2300‑2 30151596
    [Google Scholar]
  91. WittL. SuzukiY. HohmannN. MikusG. HaefeliW.E. BurhenneJ. Ultrasensitive quantification of the CYP2E1 probe chlorzoxazone and its main metabolite 6-hydroxychlorzoxazone in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry after chlorzoxazone microdosing.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20161027120721310.1016/j.jchromb.2016.05.049 27300008
    [Google Scholar]
  92. WaddingtonF. NauntonM. ThomasJ. Paracetamol and analgesic nephropathy: Are you kidneying me?Int. Med. Case Rep. J.2014811510.2147/IMCRJ.S71471 25548527
    [Google Scholar]
  93. NichollsA.W. WilsonI.D. GodejohannM. NicholsonJ.K. ShockcorJ.P. Identification of phenacetin metabolites in human urine after administration of phenacetin-C 2 H 3: Measurement of futile metabolic deacetylation via HPLC/MS-SPE-NMR and HPLC-ToF MS.Xenobiotica200636761562910.1080/00498250600711113 16864507
    [Google Scholar]
  94. KingC. TangW. NguiJ. TephlyT. BraunM. Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac.Toxicol. Sci.2001611495310.1093/toxsci/61.1.49 11294973
    [Google Scholar]
  95. DoradoP. BereczR. CáceresM.C. LLerena, A. Analysis of diclofenac and its metabolites by high-performance liquid chromatography: Relevance of CYP2C9 genotypes in diclofenac urinary metabolic ratios.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003789243744210.1016/S1570‑0232(03)00137‑5 12742136
    [Google Scholar]
  96. MuellerD. Müller-VieiraU. BiemelK.M. TascherG. NüsslerA.K. NoorF. Biotransformation of diclofenac and effects on the metabolome of primary human hepatocytes upon repeated dose exposure.Eur. J. Pharm. Sci.201245571672410.1016/j.ejps.2012.01.014 22330146
    [Google Scholar]
  97. Al-ShdefatR. HailatM. KharshidA.M. SaadhM.J. HamedM.F. AnwerM.K. Abdel-HalimH. DayyihW.A. Evidence of human metabolites of omeprazole and its structure elucidation by using HPLC-MS.J. Mol. Struct.20211230112990210.1016/j.molstruc.2021.129902
    [Google Scholar]
  98. NevadoJ.J.B. PeñalvoG.C. DoradoR.M.R. RobledoV.R. Simultaneous determination of omeprazole and their main metabolites in human urine samples by capillary electrophoresis using electrospray ionization-mass spectrometry detection.J. Pharm. Biomed. Anal.201492121121910.1016/j.jpba.2013.12.020 24530982
    [Google Scholar]
  99. SchadelM. WuD. OttonS.V. KalowW. SellersE.M. Pharmacokinetics of dextromethorphan and metabolites in humans: Influence of the CYP2D6 phenotype and quinidine inhibition.J. Clin. Psychopharmacol.199515426326910.1097/00004714‑199508000‑00005 7593709
    [Google Scholar]
  100. TakashimaT. MuraseS. IwasakiK. ShimadaK. Evaluation of dextromethorphan metabolism using hepatocytes from CYP2D6 poor and extensive metabolizers.Drug Metab. Pharmacokinet.200520317718210.2133/dmpk.20.177 15988119
    [Google Scholar]
  101. SilvaA.R. Dinis-OliveiraR.J. Pharmacokinetics and pharmacodynamics of dextromethorphan: Clinical and forensic aspects.Drug Metab. Rev.202052225828210.1080/03602532.2020.1758712 32393072
    [Google Scholar]
  102. FabreG. RahmaniR. PlacidiM. CombalbertJ. CovoJ. CanoJ.P. CoulangeC. DucrosM. RampalM. Characterization of midazolam metabolism using human hepatic musomal fractions and hepatocytes in suspension obtained by perfusing whole human livers.Biochem. Pharmacol.198837224389439710.1016/0006‑2952(88)90622‑3 3196361
    [Google Scholar]
  103. WesselsA.M.A. BolhuisM.S. BultW. NijstenM.W.N. KneyberM.C.J. TouwD.J. A fast and simple method for the simultaneous analysis of midazolam, 1-hydroxymidazolam, 4-hydroxymidazolam and 1-hydroxymidazolam glucuronide in human serum, plasma and urine.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20211162112247610.1016/j.jchromb.2020.122476 33385770
    [Google Scholar]
  104. GereckeM. Chemical structure and properties of midazolam compared with other benzodiazepines.Br. J. Clin. Pharmacol.198316S1Suppl. 111S16S10.1111/j.1365‑2125.1983.tb02266.x 6138062
    [Google Scholar]
  105. LiX.F. MaM. ChengA. ZhengJ. TamY.K. Determination of testosterone and its metabolites using liquid chromatography with elevated column temperature and flow-rate gradient.Anal. Chim. Acta2002457216517110.1016/S0003‑2670(02)00051‑X
    [Google Scholar]
  106. LiC.Y. BasitA. GuptaA. GáborikZ. KisE. PrasadB. Major glucuronide metabolites of testosterone are primarily transported by MRP2 and MRP3 in human liver, intestine and kidney.J. Steroid Biochem. Mol. Biol.2019191110535010.1016/j.jsbmb.2019.03.027 30959153
    [Google Scholar]
  107. RoyerI. AlvinerieP. WrightM. MonsarratB. HoL.K. ArmandJ.P. Paclitaxel metabolites in human plasma and urine: Identification of 6α‐hydroxytaxol, 7‐epitaxol and taxol hydrolysis products using liquid chromatography/atmospheric‐pressure chemical ionization mass spectrometry.Rapid Commun. Mass Spectrom.19959649550210.1002/rcm.1290090605 7606045
    [Google Scholar]
  108. ConnarnJ.N. LuoR. WindakJ. ZhangX. BabiskinA. KellyM. HarringtonG. EllingrodV.L. KamaliM. McInnisM. SunD. Identification of non‐reported bupropion metabolites in human plasma.Biopharm. Drug Dispos.201637955056010.1002/bdd.2046 27723114
    [Google Scholar]
  109. OnoS. HatanakaT. HottaH. TsutsuiM. SatohT. GonzalezF.J. Chlorzoxazone is metabolized by human CYP1A2 as well as by human CYP2E1.Pharmacogenetics19955314315010.1097/00008571‑199506000‑00002 7550365
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002302675240903075500
Loading
/content/journals/cdm/10.2174/0113892002302675240903075500
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test