Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Aims

To explore the relationship between oxidative stress biomarkers and the occurrence of acute kidney injury (AKI) alongside notable liver function disturbances in preterm neonates.

Background

Given the immaturity of kidneys and incomplete liver development in preterm neonates, oxidative stress poses a considerable threat to their renal and hepatic health.

Objective

To find out the association between various oxidative stress biomarkers and polymorphisms of antioxidant enzymes with renal and live functions.

Methods

In this cross-sectional study, we gathered umbilical cord blood and peripheral blood samples for assessing oxidative stress biomarkers and identifying single nucleotide polymorphisms (SNPs) in antioxidant enzymes. Utilizing enzyme-linked immunosorbent assay kits, we quantified these oxidative stress biomarkers. Receiver-operating characteristics curve analysis was employed to ascertain the predictive capacity of these biomarkers, denoted by the area-under-the-curve (AUC).

Results

Our findings revealed that umbilical cord heat-shock proteins emerged as robust predictors of neonatal AKI (AUC: 0.92; 95% CI: 0.8-1) with a defined cut-off concentration of 1.8 ng/mL. Likewise, umbilical cord 8-hydroxy-2-deoxy guanosine demonstrated significant predictability for liver function alterations (AUC: 0.7; 95% CI: 0.6-0.9) at a cut-off concentration of 2487.6 pg/mL.

Conclusions

We observed significant associations between SNPs in endothelial nitric oxide synthase and catalase with both AKI and impaired liver functions. Prospective studies are warranted to validate these findings, with a particular focus on exploring potential antioxidant interventions aimed at mitigating AKI and liver function abnormalities.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002328584240923095216
2024-10-04
2025-04-23
Loading full text...

Full text loading...

References

  1. BranaganA. CostiganC.S. StackM. SlagleC. MolloyE.J. Management of acute kidney injury in extremely low birth weight infants.Front Pediatr.20221086771510.3389/fped.2022.86771535433560
    [Google Scholar]
  2. BatemanD.A. ThomasW. ParraviciniE. PolesanaE. LocatelliC. LorenzJ.M. Serum creatinine concentration in very-low-birth-weight infants from birth to 34–36 wk postmenstrual age.Pediatr. Res.201577569670210.1038/pr.2015.2525675426
    [Google Scholar]
  3. ElmasA.T. TabelY. ÖzdemirR. Risk factors and mortality rate in premature babies with acute kidney injury.J. Clin. Lab. Anal.2018327e2244110.1002/jcla.2244129604124
    [Google Scholar]
  4. JettonJ.G. BoohakerL.J. SethiS.K. WazirS. RohatgiS. SorannoD.E. ChishtiA.S. WoronieckiR. MammenC. SwansonJ.R. SridharS. WongC.S. KupfermanJ.C. GriffinR.L. AskenaziD.J. SelewskiD.T. SarkarS. KentA. FletcherJ. AbitbolC.L. DeFreitasM. DuaraS. CharltonJ.R. GuilletR. D’AngioC. MianA. RademacherE. MhannaM.J. RainaR. KumarD. AmbalavananN. ArikanA.A. RheeC.J. GoldsteinS.L. NathanA.T. BhutadaA. RastogiS. BonacheaE. IngrahamS. MahanJ. NadaA. BrophyP.D. ColaizyT.T. KleinJ.M. ColeF.S. DavisT.K. DowerJ. MilnerL. SmithA. FuloriaM. ReidyK. KaskelF.J. GienJ. GistK.M. HannaM.H. HingoraniS. StarrM. JosephC. DuPontT. OhlsR. StaplesA. KhokharS. PerazzoS. RayP.E. RevenisM. SynnesA. WintermarkP. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study.Lancet Child Adolesc. Health20171318419410.1016/S2352‑4642(17)30069‑X29732396
    [Google Scholar]
  5. GalloD. de Bijl-MarcusK.A. AlderliestenT. LilienM. GroenendaalF. Early acute kidney injury in preterm and term neonates: Incidence, outcome, and associated clinical features.Neonatology2021118217417910.1159/00051366633780939
    [Google Scholar]
  6. LeeC.C. ChanO.W. LaiM.Y. HsuK.H. WuT.W. LimW.H. WangY.C. LienR. Incidence and outcomes of acute kidney injury in extremely-low-birth-weight infants.PLoS One20171211e018776410.1371/journal.pone.018776429108006
    [Google Scholar]
  7. FeketeA. TreszlA. Tóth-HeynP. VannayÁ. TordaiA. TulassayT. VásárhelyiB. Association between heat shock protein 72 gene polymorphism and acute renal failure in premature neonates.Pediatr. Res.200354445245510.1203/01.PDR.0000083024.05819.4712840151
    [Google Scholar]
  8. GoligorskyM.S. BrodskyS.V. NoiriE. Nitric oxide in acute renal failure: NOS versus NOS.Kidney Int.200261385586110.1046/j.1523‑1755.2002.00233.x11849438
    [Google Scholar]
  9. ZangaladzeA. CaiC.L. MarcelinoM. ArandaJ.V. BeharryK.D. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat.BMC Nephrol.202122129910.1186/s12882‑021‑02507‑734481475
    [Google Scholar]
  10. TaysiS. TascanA.S. UgurM.G. DemirM. Radicals, Oxidative/Nitrosative Stress and Preeclampsia.Mini Rev. Med. Chem.201919317819310.2174/138955751866618101515135030324879
    [Google Scholar]
  11. Kartalİ. AbbasogluA. TaysiS. Comparison of three different cord clamping techniques regarding oxidative-antioxidative capacity in term newborns.Am. J. Perinatol.202210.1055/a‑1739‑352935026851
    [Google Scholar]
  12. RatliffB.B. AbdulmahdiW. PawarR. WolinM.S. Oxidant mechanisms in renal injury and disease.Antioxid. Redox Signal.201625311914610.1089/ars.2016.666526906267
    [Google Scholar]
  13. TainY.L. LeeW.C. HsuC.N. LeeW.C. HuangL.T. LeeC.T. LinC.Y. Asymmetric dimethylarginine is associated with developmental programming of adult kidney disease and hypertension in offspring of streptozotocin-treated mothers.PLoS One201382e5542010.1371/journal.pone.005542023408977
    [Google Scholar]
  14. TainY.L. HsiehC.S. LinI.C. ChenC.C. SheenJ.M. HuangL.T. Effects of maternal l-citrulline supplementation on renal function and blood pressure in offspring exposed to maternal caloric restriction: The impact of nitric oxide pathway.Nitric Oxide2010231344110.1016/j.niox.2010.03.00520371384
    [Google Scholar]
  15. DeFreitasM.J. KatsoufisC.P. BennyM. YoungK. KulandaveluS. AhnH. SfakianakiA. AbitbolC.L. Educational review: The impact of perinatal oxidative stress on the developing kidney.Front Pediatr.20221085372210.3389/fped.2022.85372235844742
    [Google Scholar]
  16. GiustiB. VestriniA. PoggiC. MagiA. PasquiniE. AbbateR. DaniC. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants.Free Radic. Res.20124691130113910.3109/10715762.2012.69278722574884
    [Google Scholar]
  17. SridharanK. Al JufairiM. HejabA.A.M. Al MadhoobA. Al MarzooqR. TahaS. Jaber Mulla AljishiM. AbdulhadiA. Al AnsariE. AliM.A. NaserM.A.A. Al SegaiO. DunneK. Evaluation of genetic polymorphisms of the antioxidant enzymes and biomarkers of oxidative stress in preterm neonates with respiratory distress syndrome receiving external surfactant.Biomark. Insights20221710.1177/1177271922113760836386121
    [Google Scholar]
  18. QuinnJ.A. MunozF.M. GonikB. FrauL. CutlandC. Mallett-MooreT. KissouA. WittkeF. DasM. NunesT. PyeS. WatsonW. RamosA.M.A. CorderoJ.F. HuangW.T. KochharS. ButteryJ. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data.Vaccine201634496047605610.1016/j.vaccine.2016.03.04527743648
    [Google Scholar]
  19. SelewskiD.T. CharltonJ.R. JettonJ.G. GuilletR. MhannaM.J. AskenaziD.J. KentA.L. Neonatal acute kidney injury.Pediatrics20151362e463e47310.1542/peds.2014‑381926169430
    [Google Scholar]
  20. HightowerL.E. Heat shock, stress proteins, chaperones, and proteotoxicity.Cell199166219119710.1016/0092‑8674(91)90611‑21855252
    [Google Scholar]
  21. WelchW.J. How cells respond to stress.Sci. Am.19932685566410.1038/scientificamerican0593‑568097593
    [Google Scholar]
  22. KimM. ParkS.W. KimM. ChenS.W.C. GerthofferW.T. D’AgatiV.D. LeeH.T. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice.Am. J. Physiol. Renal Physiol.20102992F347F35810.1152/ajprenal.00194.2010
    [Google Scholar]
  23. GuoQ. DuX. ZhaoY. ZhangD. YueL. WangZ. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats.Mol. Med. Rep.20141062875288110.3892/mmr.2014.264125322861
    [Google Scholar]
  24. MatsumotoT. UrushidoM. IdeH. IshiharaM. Hamada-OdeK. ShimamuraY. OgataK. InoueK. TaniguchiY. TaguchiT. HorinoT. FujimotoS. TeradaY. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury.PLoS One2015105e012622910.1371/journal.pone.012622925962073
    [Google Scholar]
  25. PerroneS. MussapM. LonginiM. FanosV. BellieniC.V. ProiettiF. CataldiL. BuonocoreG. Oxidative kidney damage in preterm newborns during perinatal period.Clin. Biochem.2007409-1065666010.1016/j.clinbiochem.2007.01.01217320066
    [Google Scholar]
  26. BuonocoreG. PerroneS. LonginiM. VezzosiP. MarzocchiB. PaffettiP. BracciR. Oxidative stress in preterm neonates at birth and on the seventh day of life.Pediatr. Res.2002521464910.1203/00006450‑200207000‑0001012084846
    [Google Scholar]
  27. YzydorczykC. ComteB. CambonieG. LavoieJ.C. GermainN. Ting ShunY. WolffJ. DeschepperC. TouyzR.M. Lelièvre-PegorierM. NuytA.M. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood.Hypertension200852588989510.1161/HYPERTENSIONAHA.108.11625118852387
    [Google Scholar]
  28. WangH.H. Oxidative stress and potential renal damage in neonates.Pediatr. Neonatol.201556420921010.1016/j.pedneo.2015.03.00325910519
    [Google Scholar]
  29. Ortega-LoubonC. Martínez-PazP. García-MoránE. Tamayo-VelascoÁ. López-HernándezF.J. Jorge-MonjasP. TamayoE. Genetic susceptibility to acute kidney injury.J. Clin. Med.20211014303910.3390/jcm1014303934300206
    [Google Scholar]
  30. PopovA.F. HinzJ. SchulzE.G. SchmittoJ.D. WieseC.H. QuintelM. SeipeltR. SchoendubeF.A. The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction.Eur. J. Cardiothorac. Surg.200936465165610.1016/j.ejcts.2009.04.04919523844
    [Google Scholar]
  31. Stafford-SmithM. PodgoreanuM. SwaminathanM. Phillips-ButeB. MathewJ.P. HauserE.H. WinnM.P. MilanoC. NielsenD.M. SmithM. MorrisR. NewmanM.F. SchwinnD.A. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery.Am. J. Kidney Dis.200545351953010.1053/j.ajkd.2004.11.02115754274
    [Google Scholar]
  32. Cichoż-LachH. MichalakA. Oxidative stress as a crucial factor in liver diseases.World J. Gastroenterol.201420258082809110.3748/wjg.v20.i25.808225009380
    [Google Scholar]
  33. RamachandranA. JaeschkeH. Oxidative stress and acute hepatic injury.Curr. Opin. Toxicol.20187172110.1016/j.cotox.2017.10.01129399645
    [Google Scholar]
  34. LiS. TanH.Y. WangN. ZhangZ.J. LaoL. WongC.W. FengY. The role of oxidative stress and antioxidants in liver diseases.Int. J. Mol. Sci.20151611260872612410.3390/ijms16112594226540040
    [Google Scholar]
  35. LeeJ.W. DavisJ.M. Future applications of antioxidants in premature infants.Curr. Opin. Pediatr.201123216116610.1097/MOP.0b013e3283423e5121150443
    [Google Scholar]
  36. DavisJ.M. WeltyS.E. Maturation of the Fetal Antioxidant System and the Unique Susceptibility of the Newborn Infant to Oxidative Stress.Systems Biology of Free Radicals and AntioxidantsSpringer: Berlin, Heidelberg201410.1007/978‑3‑642‑30018‑9_41
    [Google Scholar]
  37. MillerN.J. Rice-EvansC. DaviesM.J. GopinathanV. MilnerA. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.Clin. Sci. (Lond.)199384440741210.1042/cs08404078482045
    [Google Scholar]
  38. RogersS. WitzG. AnwarM. HiattM. HegyiT. Antioxidant capacity and oxygen radical diseases in the preterm newborn.Arch. Pediatr. Adolesc. Med.2000154654454810.1001/archpedi.154.6.54410850499
    [Google Scholar]
  39. SousaV.C.S.D. CarmoR.F. VasconcelosL.R.S. ArouchaD.C.B.L. PereiraL.M.M.B. MouraP. CavalcantiM.S.M. Association of catalase and glutathione peroxidase 1 polymorphisms with chronic hepatitis C outcome.Ann. Hum. Genet.201680314515310.1111/ahg.1215226990426
    [Google Scholar]
  40. KuoJ. AkisonL.K. ChatfieldM.D. TrnkaP. MoritzK.M. Serum and urinary biomarkers to predict acute kidney injury in premature infants: A systematic review and meta-analysis of diagnostic accuracy.J. Nephrol.20223582001201410.1007/s40620‑022‑01307‑y35384606
    [Google Scholar]
  41. MaN. ChenX. JohnstonL.J. MaX. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis.iMeta202214e5410.1002/imt2.5438867904
    [Google Scholar]
  42. LiuC. MaN. FengY. ZhouM. LiH. ZhangX. MaX. From probiotics to postbiotics: Concepts and applications.Anim. res. one health2023119211410.1002/aro2.7
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002328584240923095216
Loading
/content/journals/cdm/10.2174/0113892002328584240923095216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test