Skip to content
2000
image of Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative
Stress in Preterm Neonatal Renal and Hepatic Functions

Abstract

Aims

To explore the relationship between oxidative stress biomarkers and the occurrence of acute kidney injury (AKI) alongside notable liver function disturbances in preterm neonates.

Background

Given the immaturity of kidneys and incomplete liver development in preterm neonates, oxidative stress poses a considerable threat to their renal and hepatic health.

Objective

To find out the association between various oxidative stress biomarkers and polymorphisms of antioxidant enzymes with renal and live functions.

Methods

In this cross-sectional study, we gathered umbilical cord blood and peripheral blood samples for assessing oxidative stress biomarkers and identifying single nucleotide polymorphisms (SNPs) in antioxidant enzymes. Utilizing enzyme-linked immunosorbent assay kits, we quantified these oxidative stress biomarkers. Receiver-operating characteristics curve analysis was employed to ascertain the predictive capacity of these biomarkers, denoted by the area-under-the-curve (AUC).

Results

Our findings revealed that umbilical cord heat-shock proteins emerged as robust predictors of neonatal AKI (AUC: 0.92; 95% CI: 0.8-1) with a defined cut-off concentration of 1.8 ng/mL. Likewise, umbilical cord 8-hydroxy-2-deoxy guanosine demonstrated significant predictability for liver function alterations (AUC: 0.7; 95% CI: 0.6-0.9) at a cut-off concentration of 2487.6 pg/mL.

Conclusions

We observed significant associations between SNPs in endothelial nitric oxide synthase and catalase with both AKI and impaired liver functions. Prospective studies are warranted to validate these findings, with a particular focus on exploring potential antioxidant interventions aimed at mitigating AKI and liver function abnormalities.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002328584240923095216
2024-10-08
2025-01-24
Loading full text...

Full text loading...

References

  1. Branagan A. Costigan C.S. Stack M. Slagle C. Molloy E.J. Management of acute kidney injury in extremely low birth weight infants. Front Pediatr. 2022 10 867715 10.3389/fped.2022.867715 35433560
    [Google Scholar]
  2. Bateman D.A. Thomas W. Parravicini E. Polesana E. Locatelli C. Lorenz J.M. Serum creatinine concentration in very-low-birth-weight infants from birth to 34–36 wk postmenstrual age. Pediatr. Res. 2015 77 5 696 702 10.1038/pr.2015.25 25675426
    [Google Scholar]
  3. Elmas A.T. Tabel Y. Özdemir R. Risk factors and mortality rate in premature babies with acute kidney injury. J. Clin. Lab. Anal. 2018 32 7 e22441 10.1002/jcla.22441 29604124
    [Google Scholar]
  4. Jetton J.G. Boohaker L.J. Sethi S.K. Wazir S. Rohatgi S. Soranno D.E. Chishti A.S. Woroniecki R. Mammen C. Swanson J.R. Sridhar S. Wong C.S. Kupferman J.C. Griffin R.L. Askenazi D.J. Selewski D.T. Sarkar S. Kent A. Fletcher J. Abitbol C.L. DeFreitas M. Duara S. Charlton J.R. Guillet R. D’Angio C. Mian A. Rademacher E. Mhanna M.J. Raina R. Kumar D. Ambalavanan N. Arikan A.A. Rhee C.J. Goldstein S.L. Nathan A.T. Bhutada A. Rastogi S. Bonachea E. Ingraham S. Mahan J. Nada A. Brophy P.D. Colaizy T.T. Klein J.M. Cole F.S. Davis T.K. Dower J. Milner L. Smith A. Fuloria M. Reidy K. Kaskel F.J. Gien J. Gist K.M. Hanna M.H. Hingorani S. Starr M. Joseph C. DuPont T. Ohls R. Staples A. Khokhar S. Perazzo S. Ray P.E. Revenis M. Synnes A. Wintermark P. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017 1 3 184 194 10.1016/S2352‑4642(17)30069‑X 29732396
    [Google Scholar]
  5. Gallo D. de Bijl-Marcus K.A. Alderliesten T. Lilien M. Groenendaal F. Early Acute Kidney Injury in Preterm and Term Neonates: Incidence, Outcome, and Associated Clinical Features. Neonatology 2021 118 2 174 179 10.1159/000513666 33780939
    [Google Scholar]
  6. Lee C.C. Chan O.W. Lai M.Y. Hsu K.H. Wu T.W. Lim W.H. Wang Y.C. Lien R. Incidence and outcomes of acute kidney injury in extremely-low-birth-weight infants. PLoS One 2017 12 11 e0187764 10.1371/journal.pone.0187764 29108006
    [Google Scholar]
  7. Fekete A. Treszl A. Tóth-Heyn P. Vannay Á. Tordai A. Tulassay T. Vásárhelyi B. Association between heat shock protein 72 gene polymorphism and acute renal failure in premature neonates. Pediatr. Res. 2003 54 4 452 455 10.1203/01.PDR.0000083024.05819.47 12840151
    [Google Scholar]
  8. Goligorsky M.S. Brodsky S.V. Noiri E. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int. 2002 61 3 855 861 10.1046/j.1523‑1755.2002.00233.x 11849438
    [Google Scholar]
  9. Zangaladze A. Cai C.L. Marcelino M. Aranda J.V. Beharry K.D. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol. 2021 22 1 299 10.1186/s12882‑021‑02507‑7 34481475
    [Google Scholar]
  10. Taysi S. Tascan A.S. Ugur M.G. Demir M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini Rev. Med. Chem. 2019 19 3 178 193 10.2174/1389557518666181015151350 30324879
    [Google Scholar]
  11. Kartal İ. Abbasoglu A. Taysi S. Comparison of Three Different Cord Clamping Techniques Regarding Oxidative-Antioxidative Capacity in Term Newborns. Am. J. Perinatol. 2022 ••• 10.1055/a‑1739‑3529 35026851
    [Google Scholar]
  12. Ratliff B.B. Abdulmahdi W. Pawar R. Wolin M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal. 2016 25 3 119 146 10.1089/ars.2016.6665 26906267
    [Google Scholar]
  13. Tain Y.L. Lee W.C. Hsu C.N. Lee W.C. Huang L.T. Lee C.T. Lin C.Y. Asymmetric dimethylarginine is associated with developmental programming of adult kidney disease and hypertension in offspring of streptozotocin-treated mothers. PLoS One 2013 8 2 e55420 10.1371/journal.pone.0055420 23408977
    [Google Scholar]
  14. Tain Y.L. Hsieh C.S. Lin I.C. Chen C.C. Sheen J.M. Huang L.T. Effects of maternal l-citrulline supplementation on renal function and blood pressure in offspring exposed to maternal caloric restriction: The impact of nitric oxide pathway. Nitric Oxide 2010 23 1 34 41 10.1016/j.niox.2010.03.005 20371384
    [Google Scholar]
  15. DeFreitas M.J. Katsoufis C.P. Benny M. Young K. Kulandavelu S. Ahn H. Sfakianaki A. Abitbol C.L. Educational Review: The Impact of Perinatal Oxidative Stress on the Developing Kidney. Front Pediatr. 2022 10 853722 10.3389/fped.2022.853722 35844742
    [Google Scholar]
  16. Giusti B. Vestrini A. Poggi C. Magi A. Pasquini E. Abbate R. Dani C. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic. Res. 2012 46 9 1130 1139 10.3109/10715762.2012.692787 22574884
    [Google Scholar]
  17. Sridharan K. Al Jufairi M. Hejab A.A.M. Al Madhoob A. Al Marzooq R. Taha S. Jaber Mulla Aljishi M. Abdulhadi A. Al Ansari E. Ali M.A. Naser M.A.A. Al Segai O. Dunne K. Evaluation of Genetic Polymorphisms of the Antioxidant Enzymes and Biomarkers of Oxidative Stress in Preterm Neonates With Respiratory Distress Syndrome Receiving External Surfactant. Biomark. Insights 2022 17 10.1177/11772719221137608 36386121
    [Google Scholar]
  18. Quinn J.A. Munoz F.M. Gonik B. Frau L. Cutland C. Mallett-Moore T. Kissou A. Wittke F. Das M. Nunes T. Pye S. Watson W. Ramos A.M.A. Cordero J.F. Huang W.T. Kochhar S. Buttery J. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016 34 49 6047 6056 10.1016/j.vaccine.2016.03.045 27743648
    [Google Scholar]
  19. Selewski D.T. Charlton J.R. Jetton J.G. Guillet R. Mhanna M.J. Askenazi D.J. Kent A.L. Neonatal Acute Kidney Injury. Pediatrics 2015 136 2 e463 e473 10.1542/peds.2014‑3819 26169430
    [Google Scholar]
  20. Hightower L.E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991 66 2 191 197 10.1016/0092‑8674(91)90611‑2 1855252
    [Google Scholar]
  21. Welch W.J. How cells respond to stress. Sci. Am. 1993 268 5 56 64 10.1038/scientificamerican0593‑56 8097593
    [Google Scholar]
  22. Kim M. Park S.W. Kim M. Chen S.W.C. Gerthoffer W.T. D’Agati V.D. Lee H.T. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 2010 299 2 F347 F358 10.1152/ajprenal.00194.2010
    [Google Scholar]
  23. Guo Q. Du X. Zhao Y. Zhang D. Yue L. Wang Z. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats. Mol. Med. Rep. 2014 10 6 2875 2881 10.3892/mmr.2014.2641 25322861
    [Google Scholar]
  24. Matsumoto T. Urushido M. Ide H. Ishihara M. Hamada-Ode K. Shimamura Y. Ogata K. Inoue K. Taniguchi Y. Taguchi T. Horino T. Fujimoto S. Terada Y. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS One 2015 10 5 e0126229 10.1371/journal.pone.0126229 25962073
    [Google Scholar]
  25. Perrone S. Mussap M. Longini M. Fanos V. Bellieni C.V. Proietti F. Cataldi L. Buonocore G. Oxidative kidney damage in preterm newborns during perinatal period. Clin. Biochem. 2007 40 9-10 656 660 10.1016/j.clinbiochem.2007.01.012 17320066
    [Google Scholar]
  26. Buonocore G. Perrone S. Longini M. Vezzosi P. Marzocchi B. Paffetti P. Bracci R. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr. Res. 2002 52 1 46 49 10.1203/00006450‑200207000‑00010 12084846
    [Google Scholar]
  27. Yzydorczyk C. Comte B. Cambonie G. Lavoie J.C. Germain N. Ting Shun Y. Wolff J. Deschepper C. Touyz R.M. Lelièvre-Pegorier M. Nuyt A.M. Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension 2008 52 5 889 895 10.1161/HYPERTENSIONAHA.108.116251 18852387
    [Google Scholar]
  28. Wang H.H. Oxidative Stress and Potential Renal Damage in Neonates. Pediatr. Neonatol. 2015 56 4 209 210 10.1016/j.pedneo.2015.03.003 25910519
    [Google Scholar]
  29. Ortega-Loubon C. Martínez-Paz P. García-Morán E. Tamayo-Velasco Á. López-Hernández F.J. Jorge-Monjas P. Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J. Clin. Med. 2021 10 14 3039 10.3390/jcm10143039 34300206
    [Google Scholar]
  30. Popov A.F. Hinz J. Schulz E.G. Schmitto J.D. Wiese C.H. Quintel M. Seipelt R. Schoendube F.A. The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction. Eur. J. Cardiothorac. Surg. 2009 36 4 651 656 10.1016/j.ejcts.2009.04.049 19523844
    [Google Scholar]
  31. Stafford-Smith M. Podgoreanu M. Swaminathan M. Phillips-Bute B. Mathew J.P. Hauser E.H. Winn M.P. Milano C. Nielsen D.M. Smith M. Morris R. Newman M.F. Schwinn D.A. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. Am. J. Kidney Dis. 2005 45 3 519 530 10.1053/j.ajkd.2004.11.021 15754274
    [Google Scholar]
  32. Cichoż-Lach H. Michalak A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014 20 25 8082 8091 10.3748/wjg.v20.i25.8082 25009380
    [Google Scholar]
  33. Ramachandran A. Jaeschke H. Oxidative stress and acute hepatic injury. Curr. Opin. Toxicol. 2018 7 17 21 10.1016/j.cotox.2017.10.011 29399645
    [Google Scholar]
  34. Li S. Tan H.Y. Wang N. Zhang Z.J. Lao L. Wong C.W. Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015 16 11 26087 26124 10.3390/ijms161125942 26540040
    [Google Scholar]
  35. Lee J.W. Davis J.M. Future applications of antioxidants in premature infants. Curr. Opin. Pediatr. 2011 23 2 161 166 10.1097/MOP.0b013e3283423e51 21150443
    [Google Scholar]
  36. Davis J.M. Welty S.E. Maturation of the Fetal Antioxidant System and the Unique Susceptibility of the Newborn Infant to Oxidative Stress. Systems Biology of Free Radicals and Antioxidants Springer: Berlin, Heidelberg 2014 10.1007/978‑3‑642‑30018‑9_41
    [Google Scholar]
  37. Miller N.J. Rice-Evans C. Davies M.J. Gopinathan V. Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.) 1993 84 4 407 412 10.1042/cs0840407 8482045
    [Google Scholar]
  38. Rogers S. Witz G. Anwar M. Hiatt M. Hegyi T. Antioxidant capacity and oxygen radical diseases in the preterm newborn. Arch. Pediatr. Adolesc. Med. 2000 154 6 544 548 10.1001/archpedi.154.6.544 10850499
    [Google Scholar]
  39. Sousa V.C.S.D. Carmo R.F. Vasconcelos L.R.S. Aroucha D.C.B.L. Pereira L.M.M.B. Moura P. Cavalcanti M.S.M. Association of Catalase and Glutathione Peroxidase 1 Polymorphisms with Chronic Hepatitis C Outcome. Ann. Hum. Genet. 2016 80 3 145 153 10.1111/ahg.12152 26990426
    [Google Scholar]
  40. Kuo J. Akison L.K. Chatfield M.D. Trnka P. Moritz K.M. Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy. J. Nephrol. 2022 35 8 2001 2014 10.1007/s40620‑022‑01307‑y 35384606
    [Google Scholar]
  41. Ma N. Chen X. Johnston L.J. Ma X. Gut microbiota‐stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. iMeta 2022 1 4 e54 10.1002/imt2.54 38867904
    [Google Scholar]
  42. Liu C. Ma N. Feng Y. Zhou M. Li H. Zhang X. Ma X. From probiotics to postbiotics: Concepts and applications. Animal Research and One Health 2023 1 1 92 114 10.1002/aro2.7
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002328584240923095216
Loading
/content/journals/cdm/10.2174/0113892002328584240923095216
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: preterm neonates ; DNA adducts ; Oxidative stress biomarkers ; antioxidant enzymes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test