Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30–40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002312369240703102215
2024-05-01
2025-01-24
Loading full text...

Full text loading...

References

  1. KivistöK.T. KroemerH.K. EichelbaumM. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: Implications for drug interactions.Br. J. Clin. Pharmacol.199540652353010.1111/j.1365‑2125.1995.tb05796.x8703657
    [Google Scholar]
  2. PreissnerS. SimmacoM. GentileG. PreissnerR. Personalized cancer therapy considering cytochrome p450 variability.Adv. Pharmacol.20157411313010.1016/bs.apha.2015.03.00426233905
    [Google Scholar]
  3. FujitaK. Cytochrome P450 and anticancer drugs.Curr. Drug Metab.200671233710.2174/13892000677483258716454691
    [Google Scholar]
  4. ZaalE.A. BerkersC.R. The influence of metabolism on drug response in cancer.Front. Oncol.2018850010.3389/fonc.2018.0050030456204
    [Google Scholar]
  5. WangF. ZhangX. WangY. ChenY. LuH. MengX. YeX. ChenW. Activation/inactivation of anticancer drugs by cyp3a4: Influencing factors for personalized cancer therapy.Drug Metab. Dispos.202351554355910.1124/dmd.122.00113136732076
    [Google Scholar]
  6. ZhaoM. MaJ. LiM. ZhangY. JiangB. ZhaoX. HuaiC. ShenL. ZhangN. HeL. QinS. Cytochrome p450 enzymes and drug metabolism in humans.Int. J. Mol. Sci.202122231280810.3390/ijms22231280834884615
    [Google Scholar]
  7. StippM.C. AccoA. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review.Cancer Chemother. Pharmacol.202187329530910.1007/s00280‑020‑04181‑233112969
    [Google Scholar]
  8. AlzahraniA.M. RajendranP. The multifarious link between cytochrome P450s and cancer.Oxid Med Cell Longev.20202020302838710.1155/2020/3028387
    [Google Scholar]
  9. HaidarC. JehaS. Drug interactions in childhood cancer.Lancet Oncol.2011121929910.1016/S1470‑2045(10)70105‑420869315
    [Google Scholar]
  10. SlatterJ.G. SuP. SamsJ.P. SchaafL.J. WienkersL.C. Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions.Drug Metab. Dispos.19972510115711649321519
    [Google Scholar]
  11. AlmazrooO.A. MiahM.K. VenkataramananR. Drug metabolism in the liver.Clin. Liver Dis.201721112010.1016/j.cld.2016.08.00127842765
    [Google Scholar]
  12. PlanchardD. JänneP.A. ChengY. YangJ.C.H. YanagitaniN. KimS.W. SugawaraS. YuY. FanY. GeaterS.L. LaktionovK. LeeC.K. ValdiviezoN. AhmedS. MaurelJ.M. AndrasinaI. GoldmanJ. GhiorghiuD. RukazenkovY. ToddA. KobayashiK. Osimertinib with or without chemotherapy in egfr-mutated advanced nsclc.N. Engl. J. Med.2023389211935194810.1056/NEJMoa230643437937763
    [Google Scholar]
  13. TariqB. OuY.C. SternJ.C. MundraV. Wong DooN. WalkerP. LewisK.L. LinC. NovotnyW. SahasranamanS. OpatS. A phase 1, open-label, randomized drug–drug interaction study of zanubrutinib with moderate or strong CYP3A inhibitors in patients with B-cell malignancies.Leuk. Lymphoma202364232933810.1080/10428194.2022.215082036480811
    [Google Scholar]
  14. HoyS.M. Tazemetostat: First Approval.Drugs202080551352110.1007/s40265‑020‑01288‑x32166598
    [Google Scholar]
  15. CortésJ. KimS.B. ChungW.P. ImS.A. ParkY.H. HeggR. KimM.H. TsengL.M. PetryV. ChungC.F. IwataH. HamiltonE. CuriglianoG. XuB. HuangC.S. KimJ.H. ChiuJ.W.Y. PedriniJ.L. LeeC. LiuY. CathcartJ. BakoE. VermaS. HurvitzS.A. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer.N. Engl. J. Med.2022386121143115410.1056/NEJMoa211502235320644
    [Google Scholar]
  16. MarkhamA. Pamiparib: First Approval.Drugs202181111343134810.1007/s40265‑021‑01552‑834287805
    [Google Scholar]
  17. LiewerS. HuddlestonA. Alisertib: A review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors.Expert Opin. Investig. Drugs201827110511210.1080/13543784.2018.141738229260599
    [Google Scholar]
  18. VishwanathanK. DickinsonP.A. SoK. ThomasK. ChenY.M. De Castro CarpeñoJ. DingemansA.M.C. KimH.R. KimJ.H. KrebsM.G. Chih-Hsin YangJ. BuiK. WeilertD. HarveyR.D. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib.Br. J. Clin. Pharmacol.20188461156116910.1111/bcp.1353429381826
    [Google Scholar]
  19. ErbaH.P. MontesinosP. KimH.J. PatkowskaE. VrhovacR. ŽákP. WangP.N. MitovT. HanyokJ. KamelY.M. RohrbachJ.E.C. LiuL. BenzohraA. LesegretainA. CortesJ. PerlA.E. SekeresM.A. DombretH. AmadoriS. WangJ. LevisM.J. SchlenkR.F. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2023401103881571158310.1016/S0140‑6736(23)00464‑637116523
    [Google Scholar]
  20. DasT. AnandU. PandeyS.K. AshbyC.R.Jr AssarafY.G. ChenZ.S. DeyA. Therapeutic strategies to overcome taxane resistance in cancer.Drug Resist. Updat.20215510075410.1016/j.drup.2021.10075433691261
    [Google Scholar]
  21. MakhovP. GolovineK. CanterD. KutikovA. SimhanJ. CorlewM.M. UzzoR.G. KolenkoV.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity.Prostate201272666166710.1002/pros.2146921796656
    [Google Scholar]
  22. HuizingM.T. MisserV.H.S. PietersR.C. ten Bokkel HuininkW.W. VeenhofC.H.N. VermorkenJ.B. PinedoH.M. BeijnenJ.H. Taxanes: A new class of antitumor agents.Cancer Invest.199513438140410.3109/073579095090319197627725
    [Google Scholar]
  23. HendrikxJ.J.M.A. LagasJ.S. WagenaarE. RosingH. SchellensJ.H.M. BeijnenJ.H. SchinkelA.H. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation.Br. J. Cancer2014110112669267610.1038/bjc.2014.22224781280
    [Google Scholar]
  24. van HerwaardenA.E. WagenaarE. van der KruijssenC.M.M. van WaterschootR.A.B. SmitJ.W. SongJ.Y. van der ValkM.A. van TellingenO. van der HoornJ.W.A. RosingH. BeijnenJ.H. SchinkelA.H. Knockout of cytochrome P450 3A yields new mouse models for understanding xenobiotic metabolism.J. Clin. Invest.2007117113583359210.1172/JCI3343517975676
    [Google Scholar]
  25. HendrikxJ.J.M.A. LagasJ.S. RosingH. SchellensJ.H.M. BeijnenJ.H. SchinkelA.H. P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel.Int. J. Cancer2013132102439244710.1002/ijc.2791223090875
    [Google Scholar]
  26. van WaterschootR.A.B. LagasJ.S. WagenaarE. van der KruijssenC.M.M. van HerwaardenA.E. SongJ.Y. RooswinkelR.W. van TellingenO. RosingH. BeijnenJ.H. SchinkelA.H. Absence of both cytochrome P450 3A and P-glycoprotein dramatically increases docetaxel oral bioavailability and risk of intestinal toxicity.Cancer Res.200969238996900210.1158/0008‑5472.CAN‑09‑291519920203
    [Google Scholar]
  27. van EijkM. BoosmanR.J. SchinkelA.H. HuitemaA.D.R. BeijnenJ.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes.Cancer Chemother. Pharmacol.201984348749910.1007/s00280‑019‑03905‑331309254
    [Google Scholar]
  28. ChoiJ.S. PiaoY.J. KangK.W. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin.Arch. Pharm. Res.201134460761310.1007/s12272‑011‑0411‑x21544726
    [Google Scholar]
  29. MoudiM. GoR. YienC.Y. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  30. MartinoE. CasamassimaG. CastiglioneS. CellupicaE. PantaloneS. PapagniF. RuiM. SicilianoA.M. CollinaS. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead.Bioorg. Med. Chem. Lett.201828172816282610.1016/j.bmcl.2018.06.04430122223
    [Google Scholar]
  31. AroraR.D. MenezesR.G. Vinca alkaloid toxicityStatPearls2022
    [Google Scholar]
  32. BöhmeA. GanserA. HoelzerD. Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL.Ann. Hematol.199571631131210.1007/BF016979858534764
    [Google Scholar]
  33. TobeS.W. SiuL.L. JamalS.A. SkoreckiK.L. MurphyG.F. WarnerE. Vinblastine and erythromycin: an unrecognized serious drug interaction.Cancer Chemother. Pharmacol.199535318819010.1007/BF006865467805175
    [Google Scholar]
  34. DelordJ.P. PuozzoC. LefresneF. BugatR. Combination chemotherapy of vinorelbine and cisplatin: a phase I pharmacokinetic study in patients with metastatic solid tumors.Anticancer Res.200929255356019331202
    [Google Scholar]
  35. GrallaR.J. GatzemeierU. GebbiaV. HuberR. O’BrienM. PuozzoC. Oral vinorelbine in the treatment of non-small cell lung cancer: Rationale and implications for patient management.Drugs200767101403141010.2165/00003495‑200767100‑0000317600389
    [Google Scholar]
  36. MittalB. TulsyanS. KumarS. MittalR.D. AgarwalG. Cytochrome P450 in cancer susceptibility and treatment.Adv. Clin. Chem.2015717713910.1016/bs.acc.2015.06.00326411412
    [Google Scholar]
  37. CohenP. CrossD. JänneP.A. Kinase drug discovery 20 years after imatinib: Progress and future directions.Nat. Rev. Drug Discov.202120755156910.1038/s41573‑021‑00195‑434002056
    [Google Scholar]
  38. PengB. LloydP. SchranH. Clinical pharmacokinetics of imatinib.Clin. Pharmacokinet.200544987989410.2165/00003088‑200544090‑0000116122278
    [Google Scholar]
  39. FryeR. FitzgeraldS. LagattutaT. HruskaM. EgorinM. Effect of St John’s wort on imatinib mesylate pharmacokinetics.Clin. Pharmacol. Ther.200476432332910.1016/j.clpt.2004.06.00715470331
    [Google Scholar]
  40. RahmanA.F.M.M. KorashyH.M. KassemM.G. Gefitinib.Profiles Drug Subst. Excip. Relat. Methodol.20143923926410.1016/B978‑0‑12‑800173‑8.00005‑224794908
    [Google Scholar]
  41. CrisciS. AmitranoF. SaggeseM. MutoT. SarnoS. MeleS. VitaleP. RongaG. BerrettaM. Di FranciaR. Overview of current targeted anti-cancer drugs for therapy in onco-hematology.Medicina (Kaunas)201955841410.3390/medicina5508041431357735
    [Google Scholar]
  42. MinH.Y. LeeH.Y. Molecular targeted therapy for anticancer treatment.Exp. Mol. Med.202254101670169410.1038/s12276‑022‑00864‑336224343
    [Google Scholar]
  43. InczeE. MangóK. FeketeF. KissÁ.F. PótiÁ. HarkóT. MoldvayJ. SzütsD. MonostoryK. Potential association of cytochrome P450 copy number alteration in tumour with chemotherapy resistance in lung adenocarcinoma patients.Int. J. Mol. Sci.202324171338010.3390/ijms24171338037686184
    [Google Scholar]
  44. ZhangJ. TianQ. Yung ChanS. Chuen LiS. ZhouS. DuanW. ZhuY.Z. Metabolism and transport of oxazaphosphorines and the clinical implications.Drug Metab. Rev.200537461170310.1080/0360253050036402316393888
    [Google Scholar]
  45. KerbuschT. de KrakerJ. KeizerH.J. van PuttenJ.W.G. GroenH.J.M. JansenR.L.H. SchellensJ.H.M. BeijnenJ.H. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites.Clin. Pharmacokinet.2001401416210.2165/00003088‑200140010‑0000411236809
    [Google Scholar]
  46. GilbertC.J. PetrosW.P. VredenburghJ. HusseinA. RossM. RubinP. FehdrauR. CavanaughC. BerryD. McKinstryC. PetersW.P. Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer.Cancer Chemother. Pharmacol.199842649750310.1007/s0028000508519788577
    [Google Scholar]
  47. NguyenT.A. TychopoulosM. BichatF. ZimmermannC. FlinoisJ.P. DiryM. AhlbergE. DelaforgeM. CorcosL. BeauneP. DansetteP. AndréF. de WaziersI. Improvement of cyclophosphamide activation by CYP2B6 mutants: From in silico to ex vivo.Mol. Pharmacol.20087341122113310.1124/mol.107.04286118212249
    [Google Scholar]
  48. BlackledgeG. AverbuchS. Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors.Br. J. Cancer200490356657210.1038/sj.bjc.660155014760365
    [Google Scholar]
  49. JinY. DestaZ. StearnsV. WardB. HoH. LeeK.H. SkaarT. StornioloA.M. LiL. ArabaA. BlanchardR. NguyenA. UllmerL. HaydenJ. LemlerS. WeinshilboumR.M. RaeJ.M. HayesD.F. FlockhartD.A. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment.J. Natl. Cancer Inst.2005971303910.1093/jnci/dji00515632378
    [Google Scholar]
  50. StearnsV. UllmerL. LópezJ.F. SmithY. IsaacsC. HayesD.F. Hot flushes.Lancet200236093481851186110.1016/S0140‑6736(02)11774‑012480376
    [Google Scholar]
  51. IkedaK. YoshisueK. MatsushimaE. NagayamaS. KobayashiK. TysonC.A. ChibaK. KawaguchiY. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro.Clin. Cancer Res.20006114409441511106261
    [Google Scholar]
  52. DraperA.J. MadanA. ParkinsonA. Inhibition of coumarin 7-hydroxylase activity in human liver microsomes.Arch. Biochem. Biophys.19973411476110.1006/abbi.1997.99649143352
    [Google Scholar]
  53. CresteilT. MonsarratB. AlvinerieP. TréluyerJ.M. VieiraI. WrightM. Taxol metabolism by human liver microsomes: Identification of cytochrome P450 isozymes involved in its biotransformation.Cancer Res.19945423863927903909
    [Google Scholar]
  54. ZhangY. LiuY. XieS. XuX. XuR. Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay.Pharm. Biol.202260162162610.1080/13880209.2022.204886235289238
    [Google Scholar]
  55. MonsarratB. MarielE. CrosS. GarèsM. GuénardD. Guéritte-VoegeleinF. WrightM. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile.Drug Metab. Dispos.19901868959011981534
    [Google Scholar]
  56. AndoY. FuseE. FiggW.D. Thalidomide metabolism by the CYP2C subfamily.Clin. Cancer Res.2002861964197312060642
    [Google Scholar]
  57. BaldwinR.M. OhlssonS. PedersenR.S. MwinyiJ. Ingelman-SundbergM. EliassonE. BertilssonL. Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers.Br. J. Clin. Pharmacol.200865576777410.1111/j.1365‑2125.2008.03104.x18294333
    [Google Scholar]
  58. FlemingR.A. An overview of cyclophosphamide and ifosfamide pharmacology.Pharmacotherapy1997175P2146S154S10.1002/j.1875‑9114.1997.tb03817.x9322882
    [Google Scholar]
  59. AllenL.M. CreavenP.J. Pharmacokinetics of ifosfamide.Clin. Pharmacol. Ther.197517449249810.1002/cpt19751744921122690
    [Google Scholar]
  60. BoddyA.V. Murray YuleS. Metabolism and pharmacokinetics of oxazaphosphorines.Clin. Pharmacokinet.200038429130410.2165/00003088‑200038040‑0000110803453
    [Google Scholar]
  61. KiyotaniK. MushirodaT. NakamuraY. ZembutsuH. Pharmacogenomics of tamoxifen: Roles of drug metabolizing enzymes and transporters.Drug Metab. Pharmacokinet.201227112213110.2133/dmpk.DMPK‑11‑RV‑08422041137
    [Google Scholar]
  62. DestaZ. WardB.A. SoukhovaN.V. FlockhartD.A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6.J. Pharmacol. Exp. Ther.200431031062107510.1124/jpet.104.06560715159443
    [Google Scholar]
  63. StearnsV. JohnsonM.D. RaeJ.M. MorochoA. NovielliA. BhargavaP. HayesD.F. DestaZ. FlockhartD.A. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine.J. Natl. Cancer Inst.200395231758176410.1093/jnci/djg10814652237
    [Google Scholar]
  64. SquirewellE.J. QinX. DuffelM.W. Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase 2A1 (hSULT2A1).Drug Metab. Dispos.201442111843185010.1124/dmd.114.05970925157097
    [Google Scholar]
  65. ChangB.Y. KimS.A. MallaB. KimS.Y. The effect of selective estrogen receptor modulators (serms) on the tamoxifen resistant breast cancer cells.Toxicol. Res.2011272859310.5487/TR.2011.27.2.08524278556
    [Google Scholar]
  66. BelandF.A. MarquesM.M. Gamboa da CostaG. PhillipsD.H. Tamoxifen-DNA adduct formation in human endometrium.Chem Res Toxicol.200518101507150910.1021/tx050255w
    [Google Scholar]
  67. RowinskyE.K. OnettoN. CanettaR.M. ArbuckS.G. Taxol: The first of the taxanes, an important new class of antitumor agents.Semin. Oncol.19921966466621361079
    [Google Scholar]
  68. SparreboomA. van TellingenO. NooijenW.J. BeijnenJ.H. Preclinical pharmacokinetics of paclitaxel and docetaxel.Anticancer Drugs19989111710.1097/00001813‑199801000‑000019491787
    [Google Scholar]
  69. BardelmeijerH.A. OuwehandM. BuckleT. HuismanM.T. SchellensJ.H. BeijnenJ.H. van TellingenO. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by ritonavir.Cancer Res.200262216158616412414642
    [Google Scholar]
  70. LagasJ.S. VlamingM.L. van TellingenO. WagenaarE. JansenR.S. RosingH. BeijnenJ.H. SchinkelA.H. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics.Clin. Cancer Res.200612206125613210.1158/1078‑0432.CCR‑06‑135217062689
    [Google Scholar]
  71. BaldwinS.J. ClarkeS.E. CheneryR.J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone.Br. J. Clin. Pharmacol.199948342443210.1046/j.1365‑2125.1999.00030.x10510156
    [Google Scholar]
  72. KostrubskyV.E. LewisL.D. WoodS.G. SinclairP.R. WrightonS.A. SinclairJ.F. Effect of Taxol on cytochrome P450 3A and acetaminophen toxicity in cultured rat hepatocytes: Comparison to dexamethasone.Toxicol. Appl. Pharmacol.19971421798610.1006/taap.1996.80239007036
    [Google Scholar]
  73. RahmanA. KorzekwaK.R. GroganJ. GonzalezF.J. HarrisJ.W. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8.Cancer Res.19945421554355467923194
    [Google Scholar]
  74. RoyerI. MonsarratB. SonnierM. WrightM. CresteilT. Metabolism of docetaxel by human cytochromes P450: Interactions with paclitaxel and other antineoplastic drugs.Cancer Res.199656158658548776
    [Google Scholar]
  75. BartlettJ.B. DredgeK. DalgleishA.G. The evolution of thalidomide and its IMiD derivatives as anticancer agents.Nat. Rev. Cancer20044431432210.1038/nrc132315057291
    [Google Scholar]
  76. KajitaJ. FuseE. KuwabaraT. KobayashiH. The contribution of cytochrome P450 to the metabolism of tegafur in human liver.Drug Metab. Pharmacokinet.200318530330910.2133/dmpk.18.30315618749
    [Google Scholar]
  77. Zhou-PanX.R. SéréeE. ZhouX.J. PlacidiM. MaurelP. BarraY. RahmaniR. Involvement of human liver cytochrome P450 3A in vinblastine metabolism: Drug interactions.Cancer Res.19935321512151268221648
    [Google Scholar]
  78. RahmaniR. ZhouX.J. Pharmacokinetics and metabolism of vinca alkaloids.Cancer Surv.1993172692818137344
    [Google Scholar]
  79. HuangZ. RoyP. WaxmanD.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.Biochem. Pharmacol.200059896197210.1016/S0006‑2952(99)00410‑410692561
    [Google Scholar]
  80. ChangT.K. WeberG.F. CrespiC.L. WaxmanD.J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes.Cancer Res.19935323562956378242617
    [Google Scholar]
  81. MckillopD. McCormickA.D. MillarA. MilesG.S. PhillipsP.J. HutchisonM. Cytochrome P450-dependent metabolism of gefitinib.Xenobiotica2005351395010.1080/0049825040002646415788367
    [Google Scholar]
  82. CreweH.K. EllisS.W. LennardM.S. TuckerG.T. Variable contribution of cytochromes p450 2d6, 2c9 and 3a4 to the 4-hydroxylation of tamoxifen by human liver microsomes.Biochem. Pharmacol.199753217117810.1016/S0006‑2952(96)00650‑89037249
    [Google Scholar]
  83. CohenM.H. WilliamsG. JohnsonJ.R. DuanJ. GobburuJ. RahmanA. BensonK. LeightonJ. KimS.K. WoodR. RothmannM. ChenG. UK.M. StatenA.M. PazdurR. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia.Clin. Cancer Res.20028593594212006504
    [Google Scholar]
  84. LundO.E. von BarsewischB. GreiteJ.H. MagoleyR. Retinal vasculitis: Classification and therapeutic attempts.Mod. Probl. Ophthalmol.197920419420548776
    [Google Scholar]
  85. ShouM. MartinetM. KorzekwaK.R. KrauszK.W. GonzalezF.J. GelboinH.V. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: Enzyme specificity, interindividual distribution and metabolic contribution in human liver.Pharmacogenetics19988539140110.1097/00008571‑199810000‑000049825831
    [Google Scholar]
  86. DaigoS. TakahashiY. FujiedaM. AriyoshiN. YamazakiH. KoizumiW. TanabeS. SaigenjiK. NagayamaS. IkedaK. NishiokaY. KamatakiT. A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur.Pharmacogenetics200212429930610.1097/00008571‑200206000‑0000512042667
    [Google Scholar]
  87. DaiD. ZeldinD.C. BlaisdellJ.A. ChanasB. CoulterS.J. GhanayemB.I. GoldsteinJ.A. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid.Pharmacogenetics200111759760710.1097/00008571‑200110000‑0000611668219
    [Google Scholar]
  88. MalaiyandiV. SellersE.M. TyndaleR.F. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence.Clin. Pharmacol. Ther.200577314515810.1016/j.clpt.2004.10.01115735609
    [Google Scholar]
  89. BerardinelliF. MasiA. AntocciaA. Nbn gene polymorphisms and cancer susceptibility: A systemic review.Curr. Genomics201314742544010.2174/1389202911314666001224396275
    [Google Scholar]
  90. MandelJ.S. BondJ.H. ChurchT.R. SnoverD.C. BradleyG.M. SchumanL.M. EdererF. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota colon cancer control study.N. Engl. J. Med.1993328191365137110.1056/NEJM1993051332819018474513
    [Google Scholar]
  91. XuC. GoodzS. SellersE.M. TyndaleR.F. CYP2A6 genetic variation and potential consequences.Adv. Drug Deliv. Rev.200254101245125610.1016/S0169‑409X(02)00065‑012406643
    [Google Scholar]
  92. KamatakiT. FujiedaM. KiyotaniK. IwanoS. KunitohH. Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk.Biochem. Biophys. Res. Commun.2005338130631010.1016/j.bbrc.2005.08.26816176798
    [Google Scholar]
  93. FujiedaM. YamazakiH. SaitoT. KiyotaniK. GyamfiM.A. SakuraiM. Dosaka-AkitaH. SawamuraY. YokotaJ. KunitohH. KamatakiT. Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers.Carcinogenesis200425122451245810.1093/carcin/bgh25815308589
    [Google Scholar]
  94. RotgerM. TegudeH. ColomboS. CavassiniM. FurrerH. DécosterdL. BlievernichtJ. SausseleT. GünthardH.F. SchwabM. EichelbaumM. TelentiA. ZangerU.M. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals.Clin. Pharmacol. Ther.200781455756610.1038/sj.clpt.610007217235330
    [Google Scholar]
  95. WangJ. SönnerborgA. RaneA. JosephsonF. LundgrenS. StåhleL. Ingelman-SundbergM. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz.Pharmacogenet. Genomics200616319119810.1097/01.fpc.0000189797.03845.9016495778
    [Google Scholar]
  96. PoetaJ. LindenR. AntunesM.V. RealL. MenezesA.M. RibeiroJ.P. SprinzE. Plasma concentrations of efavirenz are associated with body weight in HIV-positive individuals.J. Antimicrob. Chemother.201166112601260410.1093/jac/dkr36021890538
    [Google Scholar]
  97. CavacoI. Strömberg-NörklitJ. KanekoA. MsellemM.I. DahomaM. RibeiroV.L. BjorkmanA. GilJ.P. CYP2C8 polymorphism frequencies among malaria patients in Zanzibar.Eur. J. Clin. Pharmacol.2005611151810.1007/s00228‑004‑0871‑815785959
    [Google Scholar]
  98. LeeS. RoyF. GalmariniC.M. AccardiR. MichelonJ. VillerA. CrosE. DumontetC. SyllaB.S. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia.Oncogene200423132287229710.1038/sj.onc.120738514730347
    [Google Scholar]
  99. EidensM. WeiseA. KlemmM. FleischerM. PrauseS. Development and validation of a rapid and reliable real-time PCR method for CYP3A5 genotyping.Clin. Lab.20156103+04/201535336210.7754/Clin.Lab.2014.14082725975003
    [Google Scholar]
  100. DalyA.K. AithalG.P. LeathartJ.B.S. SwainsburyR.A. DangT.S. DayC.P. Genetic susceptibility to diclofenac-induced hepatotoxicity: Contribution of UGT2B7, CYP2C8, and ABCC2 genotypes.Gastroenterology2007132127228110.1053/j.gastro.2006.11.02317241877
    [Google Scholar]
  101. HuangC-S. ShenC-Y. ChangK-J. HsuS-M. ChernH-D. Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal chinese women in Taiwan.Br. J. Cancer199980111838184310.1038/sj.bjc.669060810468307
    [Google Scholar]
  102. IshibeN. HankinsonS.E. ColditzG.A. SpiegelmanD. WillettW.C. SpeizerF.E. KelseyK.T. HunterD.J. Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses’ Health Study.Cancer Res.19985846676719485019
    [Google Scholar]
  103. TaioliE. TrachmanJ. ChenX. TonioloP. GarteS.J. A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women.Cancer Res.19955517375737587641189
    [Google Scholar]
  104. KrajinovicM. GhadirianP. RicherC. SinnettH. GandiniS. PerretC. LacroixA. LabudaD. SinnettD. Genetic susceptibility to breast cancer in French-Canadians: Role of carcinogen-metabolizing enzymes and gene-environment interactions.Int. J. Cancer200192222022510.1002/1097‑0215(200102)9999:9999<::AID‑IJC1184>3.0.CO;2‑H11291049
    [Google Scholar]
  105. ZhengW. XieD.W. JinF. ChengJ.R. DaiQ. WenW.Q. ShuX.O. GaoY.T. Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer.Cancer Epidemiol. Biomarkers Prev.20009214715010698474
    [Google Scholar]
  106. Floriano-SanchezE. RodriguezN.C. BandalaC. Coballase-UrrutiaE. Lopez-CruzJ. CYP3A4 expression in breast cancer and its association with risk factors in Mexican women.Asian Pac. J. Cancer Prev.20141583805380910.7314/APJCP.2014.15.8.380524870798
    [Google Scholar]
  107. SlatteryM.L. SamowtizW. MaK. MurtaughM. SweeneyC. LevinT.R. NeuhausenS. CYP1A1, cigarette smoking, and colon and rectal cancer.Am. J. Epidemiol.2004160984285210.1093/aje/kwh29815496536
    [Google Scholar]
  108. SachseC. SmithG. WilkieM.J. BarrettJ.H. WaxmanR. SullivanF. FormanD. BishopD.T. WolfC.R. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer.Carcinogenesis200223111839185010.1093/carcin/23.11.183912419832
    [Google Scholar]
  109. TranahG.J. ChanA.T. GiovannucciE. MaJ. FuchsC. HunterD.J. Epoxide hydrolase and CYP2C9 polymorphisms, cigarette smoking, and risk of colorectal carcinoma in the Nurse's health study and the physician's health study.Mol. Carcinog.2005441213010.1002/mc.2011215924351
    [Google Scholar]
  110. MartínezC. García-MartínE. LaderoJ.M. SastreJ. Garcia-GamitoF. Diaz-RubioM. AgúndezJ.A. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk.Carcinogenesis20012281323132610.1093/carcin/22.8.132311470765
    [Google Scholar]
  111. KissI. SándorJ. PajkosG. BognerB. HegedüsG. EmberI. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes.Anticancer Res.2000201B51952210769717
    [Google Scholar]
  112. TsuchiyaY. BaezS. CalvoA. PruyasM. NakamuraK. KiyoharaC. OyamaM. IkegamiK. YamamotoM. Evidence that genetic variants of metabolic detoxication and cell cycle control are not related to gallbladder cancer risk in Chilean women.Int. J. Biol. Markers2010252757810.1177/17246008100250020320544687
    [Google Scholar]
  113. SrivastavaA. PandeyS.N. ChoudhuriG. MittalB. Role of genetic variant A-204C of cholesterol 7α-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer.Mol. Genet. Metab.2008941838910.1016/j.ymgme.2007.11.01418178499
    [Google Scholar]
  114. SrivastavaK. SrivastavaA. SharmaK.L. MittalB. Candidate gene studies in gallbladder cancer: A systematic review and meta-analysis.Mutat. Res. Rev. Mutat. Res.20117281-2677910.1016/j.mrrev.2011.06.00221708280
    [Google Scholar]
  115. SongN. TanW. XingD. LinD. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: A case-control study in China.Carcinogenesis2001221111610.1093/carcin/22.1.1111159735
    [Google Scholar]
  116. TanW. ChenG.F. XingD.Y. SongC.Y. KadlubarF.F. LinD.X. Frequency ofCYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population.Int. J. Cancer20019529610110.1002/1097‑0215(20010320)95:2<96::AID‑IJC1017>3.0.CO;2‑211241319
    [Google Scholar]
  117. KamatakiT. NunoyaK. SakaiY. KushidaH. FujitaK. Genetic polymorphism of CYP2A6 in relation to cancer.Mutat. Res.19994281-212513010.1016/S1383‑5742(99)00040‑X10517986
    [Google Scholar]
  118. MiyamotoM. UmetsuY. Dosaka-AkitaH. SawamuraY. YokotaJ. KunitohH. NemotoN. SatoK. AriyoshiN. KamatakiT. CYP2A6 gene deletion reduces susceptibility to lung cancer.Biochem. Biophys. Res. Commun.1999261365866010.1006/bbrc.1999.108910441482
    [Google Scholar]
  119. YehK.T. ChenJ.C. ChenC.M. WangY.F. LeeT.P. ChangJ.G. CYP3A5*1 is an inhibitory factor for lung cancer in Taiwanese.Kaohsiung J. Med. Sci.200319520120610.1016/S1607‑551X(09)70425‑512822676
    [Google Scholar]
  120. BocciaS. LauretisA.D. GianfagnaF. DuijnC.M. RicciardiG. CYP2E1PstI/RsaI polymorphism and interaction with tobacco, alcohol and GSTs in gastric cancer susceptibility: A meta-analysis of the literature.Carcinogenesis200728110110610.1093/carcin/bgl12416837478
    [Google Scholar]
  121. WuM.S. ChenC.J. LinM.T. WangH.P. ShunC.T. SheuJ.C. LinJ.T. Genetic polymorphisms of cytochrome P450 2E1, glutathione S-transferase M1 and T1, and susceptibility to gastric carcinoma in Taiwan.Int. J. Colorectal Dis.200217533834310.1007/s00384‑001‑0383‑212172927
    [Google Scholar]
  122. ParkG.T. LeeO.Y. KwonS.J. LeeC.G. YoonB.C. HahmJ.S. LeeM.H. Hoo LeeD. KeeC.S. SunH.S. Analysis of CYP2E1 polymorphism for the determination of genetic susceptibility to gastric cancer in Koreans.J. Gastroenterol. Hepatol.200318111257126310.1046/j.1440‑1746.2003.03167.x14535982
    [Google Scholar]
  123. NishimotoI.N. HanaokaT. SugimuraH. NaguraK. IharaM. LiX.J. AraiT. HamadaG.S. KowalskiL.P. TsuganeS. Cytochrome P450 2E1 polymorphism in gastric cancer in Brazil: Case-control studies of Japanese Brazilians and non-Japanese Brazilians.Cancer Epidemiol. Biomarkers Prev.20009767568010919737
    [Google Scholar]
  124. RothM.J. AbnetC.C. JohnsonL.L. MarkS.D. DongZ.W. TaylorP.R. DawseyS.M. QiaoY.L. Polymorphic variation of CYP1A1 is associated with the risk of gastric cardia cancer: A prospective case?cohort study of cytochrome P-450 1A1 and GST enzymes.Cancer Causes Control200415101077108310.1007/s10552‑004‑2233‑315801491
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002312369240703102215
Loading
/content/journals/cdm/10.2174/0113892002312369240703102215
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; CYP3A4; CYPs; drug efflux; drug metabolism; drug resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test