Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background

The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).

Objective

The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.

Methods

Conventional co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.

Results

No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.

Conclusion

The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002300657240521094732
2024-05-01
2025-01-24
Loading full text...

Full text loading...

References

  1. PastisN.J. YarmusL.B. SchippersF. OstroffR. ChenA. AkulianJ. WahidiM. ShojaeeS. TannerN.T. CallahanS.P. FeldmanG. LorchD.G.Jr NdukwuI. PritchettM.A. SilvestriG.A. Safety and efficacy of remimazolam compared with placebo and midazolam for moderate sedation during bronchoscopy.Chest2019155113714610.1016/j.chest.2018.09.015 30292760
    [Google Scholar]
  2. RexD.K. BhandariR. DestaT. DeMiccoM.P. SchaefferC. EtzkornK. BarishC.F. PruittR. CashB.D. QuirkD. TiongcoF. SullivanS. BernsteinD. A phase III study evaluating the efficacy and safety of remimazolam (CNS 7056) compared with placebo and midazolam in patients undergoing colonoscopy.Gastrointest. Endosc.2018883427437.e610.1016/j.gie.2018.04.2351 29723512
    [Google Scholar]
  3. WesolowskiA.M. ZaccagninoM.P. MalaperoR.J. KayeA.D. UrmanR.D. Remimazolam: Pharmacologic considerations and clinical role in anesthesiology.Pharmacotherapy20163691021102710.1002/phar.1806 27496519
    [Google Scholar]
  4. PetersenK.U. SchmalixW. PesicM. StöhrT. KopsM.S. Impact of concurrent remifentanil on the sedative effects of remimazolam, midazolam and propofol in cynomolgus monkeys.Eur. J. Pharmacol.202189017363910.1016/j.ejphar.2020.173639 33065095
    [Google Scholar]
  5. HerL. ZhuH.J. Carboxylesterase 1 and precision pharmacotherapy: Pharmacogenetics and nongenetic regulators.Drug Metab. Dispos.202048323024410.1124/dmd.119.089680 31871135
    [Google Scholar]
  6. VellingaR. KoomenJ.V. EleveldD.J. StöhrT. PesicM. Struys, MMRF; Colin, PJ Target controlled infusion of remimazolam in healthy volunteers shows some acute tolerance.Anesthesiol.2023140220721910.1097/ALN.0000000000004811 37889844
    [Google Scholar]
  7. KameueT. The influence of different volatile inhaled anesthetics on the plasma protein binding of lidocaine. Masui.Japanese1991403421430 2072495
    [Google Scholar]
  8. SchmalixW. PetersenK.U. PesicM. StöhrT. The metabolism of the new benzodiazepine remimazolam.Curr. Drug Metab.202425216417310.2174/0113892002300657240521094732
    [Google Scholar]
  9. FDA In vitro drug interaction studies - cytochrome p450 enzymeand transporter-mediated drug interactions guidance for industry.2020Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions
  10. Yung-ChiC. PrusoffW.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction.Biochem. Pharmacol.197322233099310810.1016/0006‑2952(73)90196‑2 4202581
    [Google Scholar]
  11. Drug development and drug interactions. table of substrates,inhibitors and inducers.2016Available from: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
  12. Guideline on the investigation of bioequivalence.2010Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf
  13. ObachR.S. WalskyR.L. VenkatakrishnanK. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions.Drug Metab. Dispos.200735224625510.1124/dmd.106.012633 17093004
    [Google Scholar]
  14. BerryL. ZhaoZ. An examination of IC50 and IC50-shift experiments in assessing time-dependent inhibition of CYP3A4, CYP2D6 and CYP2C9 in human liver microsomes.Drug Metab. Lett.200821515910.2174/187231208783478407 19356071
    [Google Scholar]
  15. GrimmS.W. EinolfH.J. HallS.D. HeK. LimH.K. LingK.H.J. LuC. NomeirA.A. SeibertE. SkordosK.W. TonnG.R. Van HornR. WangR.W. WongY.N. YangT.J. ObachR.S. The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: A perspective of the pharmaceutical research and manufacturers of America.Drug Metab. Dispos.20093771355137010.1124/dmd.109.026716 19359406
    [Google Scholar]
  16. Guideline on the investigation of drug interactions.2013Available from: https://www.ema.europa.eu/en/investigation-drug-interactions-scientific-guideline
  17. BenetL.Z. HoenerB.A. Changes in plasma protein binding have little clinical relevance.Clin. Pharmacol. Ther.200271311512110.1067/mcp.2002.121829 11907485
    [Google Scholar]
  18. OhmoriJ. MaedaS. HiguchiH. IshiiM. AraiY. TomoyasuY. KohjitaniA. ShimadaM. MiyawakiT. Propofol increases the rate of albumin unbound free midazolam in serum albumin solution.J. Anesth.201125461862010.1007/s00540‑011‑1176‑6 21630018
    [Google Scholar]
  19. YoshidaK. ZhaoP. ZhangL. AbernethyD.R. RekićD. ReynoldsK.S. GaletinA. HuangS.M. In vitro in vivo extrapolation of metabolism and transporter mediated drug-drug interactions - Overview of basic prediction methods.J. Pharm. Sci.201710692209221310.1016/j.xphs.2017.04.045 28456729
    [Google Scholar]
  20. GiacominiK.M. HuangS.M. TweedieD.J. BenetL.Z. BrouwerK.L.R. ChuX. DahlinA. EversR. FischerV. HillgrenK.M. HoffmasterK.A. IshikawaT. KepplerD. KimR.B. LeeC.A. NiemiM. PolliJ.W. SugiyamaY. SwaanP.W. WareJ.A. WrightS.H. Wah YeeS. Zamek-GliszczynskiM.J. ZhangL. Membrane transporters in drug development.Nat. Rev. Drug Discov.20109321523610.1038/nrd3028 20190787
    [Google Scholar]
  21. PrestonC.L. Stockley’s Drug Interaction Twelfth EditionRoyal Pharmaceutical Society.2019204810.1016/j.xphs.2017.04.045 28456729
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002300657240521094732
Loading
/content/journals/cdm/10.2174/0113892002300657240521094732
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test