Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2542-579X
  • E-ISSN: 2542-5803

Abstract

The use of zirconia-based ceramics to produce monolithic restorations has increased due to improvements in the optical properties of the materials. Traditionally, zirconia-based ceramics were veneered with porcelain or glass-ceramic and were not directly exposed to the oral environment. Therefore, there are several doubts regarding the wear of the monolithic zirconia restoration and their antagonists. Additionally, different surface treatments are recommended to promote a smooth surface, including glaze and several polishing protocols. To support the correct clinical application, it is important to understand the advantages and limitations of each surface treatment.

The aim of this short literature review is to investigate the factors that may affect the wear of monolithic zirconia restorations in service and their antagonists.

Pubmed/Medline database was accessed to review the literature from a 10-year period using the keywords: zirconia, monolithic, prosthesis, wear. Both clinical and studies were included in the review.

Studies investigated the effect of several surface treatments, including grinding with diamond-burs, polishing and glazing, on the surface roughness, phase transformation and wear capacity of monolithic zirconia. The wear behavior of monolithic zirconia was frequently compared to the wear behavior of other ceramics, such as feldspathic porcelain, lithium disilicate-based glass-ceramic and leucite-reinforced glass-ceramic. Human tooth, ceramics and resin composites were used as antagonist in the investigations. Only short-term clinical studies are available (up to 2 years).

Literature findings suggest that zirconia monolithic restorations are wear resistant and unlikely to cause excessive wear to the antagonist, especially when compared to feldspathic porcelain and glass-ceramics. Monolithic zirconia should be polished rather than glazed. Yet, none of the polishing systems studied was able to completely restore the initial surface conditions of zirconia after being adjusted with burs. More clinical evidence of the antagonist tooth wear potential of monolithic zirconia is needed.

Loading

Article metrics loading...

/content/journals/cdent/10.2174/2542579X02666200206111259
2020-06-06
2025-02-19
Loading full text...

Full text loading...

References

  1. KellyJ.R. BenettiP. Ceramic materials in dentistry: historical evolution and current practice.Aust. Dent. J.201156Suppl. 1849610.1111/j.1834‑7819.2010.01299.x 21564119
    [Google Scholar]
  2. DenryI. KellyJ.R. State of the art of zirconia for dental applications.Dent. Mater.200824329930710.1016/j.dental.2007.05.007 17659331
    [Google Scholar]
  3. KellyJ.R. DenryI. Stabilized zirconia as a structural ceramic: an overview.Dent. Mater.200824328929810.1016/j.dental.2007.05.005 17624420
    [Google Scholar]
  4. BorbaM. de AraújoM.D. FukushimaK.A. Effect of the microstructure on the lifetime of dental ceramics.Dent. Mater.201127771072110.1016/j.dental.2011.04.003 21536324
    [Google Scholar]
  5. ZhangY. LawnB.R. Evaluating dental zirconia.Dent. Mater.2018 30172379
    [Google Scholar]
  6. ZhangY. LawnB.R. Novel Zirconia Materials in Dentistry.J. Dent. Res.201897214014710.1177/0022034517737483 29035694
    [Google Scholar]
  7. HeffernanM.J. AquilinoS.A. Diaz-ArnoldA.M. HaseltonD.R. StanfordC.M. VargasM.A. Relative translucency of six all-ceramic systems. Part I: core materials.J. Prosthet. Dent.20028814910.1067/mpr.2002.126794 12239472
    [Google Scholar]
  8. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006; 27(4): 535-4310.1016/j.biomaterials.2005.07.03416143387
  9. BorbaM. de AraújoM.D. de LimaE. Flexural strength and failure modes of layered ceramic structures.Dent. Mater.201127121259126610.1016/j.dental.2011.09.008 21982199
    [Google Scholar]
  10. MeirellesP.D. SpigolonY.O. BorbaM. BenettiP. Leucite and cooling rate effect on porcelain-zirconia mechanical behavior.Dent. Mater.20163212e382e38810.1016/j.dental.2016.09.018 27707502
    [Google Scholar]
  11. BorbaM. DuanY. GriggsJ.A. CesarP.F. Della BonaÁ. Effect of ceramic infrastructure on the failure behavior and stress distribution of fixed partial dentures.Dent. Mater.201531441342210.1016/j.dental.2015.01.008 25657090
    [Google Scholar]
  12. HeffernanM.J. AquilinoS.A. Diaz-ArnoldA.M. HaseltonD.R. StanfordC.M. VargasM.A. Relative translucency of six all-ceramic systems. Part II: core and veneer materials.J. Prosthet. Dent.2002881101510.1067/mpr.2002.126795 12239473
    [Google Scholar]
  13. BassoG.R. MoraesR.R. BorbaM. DuanY. GriggsJ.A. Della BonaA. Reliability and failure behavior of CAD-on fixed partial dentures.Dent. Mater.201632562463010.1016/j.dental.2016.01.013 26897479
    [Google Scholar]
  14. AlessandrettiR. BorbaM. BenettiP. CorazzaP.H. RibeiroR. Della BonaA. Reliability and mode of failure of bonded monolithic and multilayer ceramics.Dent. Mater.201733219119710.1016/j.dental.2016.11.014 27986280
    [Google Scholar]
  15. BassoG.R. KodamaA.B. PimentelA.H. Masking Colored Substrates Using Monolithic and Bilayer CAD-CAM Ceramic Structures.Oper. Dent.201742438739510.2341/16‑247‑L 28402734
    [Google Scholar]
  16. PjeturssonB.E. SailerI. MakarovN.A. ZwahlenM. ThomaD.S. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs.Dent. Mater.201531662463910.1016/j.dental.2015.02.013 25935732
    [Google Scholar]
  17. SailerI. MakarovN.A. ThomaD.S. ZwahlenM. PjeturssonB.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs).Dent. Mater.201531660362310.1016/j.dental.2015.02.011 25842099
    [Google Scholar]
  18. PangZ. ChughtaiA. SailerI. ZhangY. A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses.Dent. Mater.201531101198120610.1016/j.dental.2015.07.003 26233469
    [Google Scholar]
  19. KimJ. DhitalS. ZhivagoP. KaizerM.R. ZhangY. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.J. Mech. Behav. Biomed. Mater.20188220220910.1016/j.jmbbm.2018.03.020 29621687
    [Google Scholar]
  20. RinkeS. WehleJ. SchulzX. BürgersR. RödigerM. Prospective Evaluation of Posterior Fixed Zirconia Dental Prostheses: 10-Year Clinical Results.Int. J. Prosthodont.2018311354210.11607/ijp.5283 29316569
    [Google Scholar]
  21. ZhangF. InokoshiM. BatukM. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.Dent. Mater.20163212e327e33710.1016/j.dental.2016.09.025 27697332
    [Google Scholar]
  22. CamposilvanE. LeoneR. GremillardL. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications.Dent. Mater.201834687989010.1016/j.dental.2018.03.006 29598882
    [Google Scholar]
  23. StawarczykB. FrevertK. EnderA. RoosM. SenerB. WimmerT. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear.J. Mech. Behav. Biomed. Mater.20165912813810.1016/j.jmbbm.2015.11.040 26751707
    [Google Scholar]
  24. MaoL. KaizerM.R. ZhaoM. GuoB. SongY.F. ZhangY. Graded ultra-translucent zirconia (5y-psz) for strength and functionalities.J. Dent. Res.201897111222122810.1177/0022034518771287 29694258
    [Google Scholar]
  25. YanJ. KaizerM.R. ZhangY. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias.J. Mech. Behav. Biomed. Mater.20188817017510.1016/j.jmbbm.2018.08.023 30173069
    [Google Scholar]
  26. ZhangF. ReveronH. SpiesB.C. Van MeerbeekB. ChevalierJ. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations.Acta Biomater.201991243410.1016/j.actbio.2019.04.043 31034947
    [Google Scholar]
  27. RenL. JanalM.N. ZhangY. Sliding contact fatigue of graded zirconia with external esthetic glass.J. Dent. Res.20119091116112110.1177/0022034511412075 21666105
    [Google Scholar]
  28. ZhangY. ChaiH. LawnB.R. Graded structures for all-ceramic restorations.J. Dent. Res.201089441742110.1177/0022034510363245 20200413
    [Google Scholar]
  29. ZhangY. ChaiH. LeeJ.J. LawnB.R. Chipping resistance of graded zirconia ceramics for dental crowns.J. Dent. Res.201291331131510.1177/0022034511434356 22232142
    [Google Scholar]
  30. ZhangY. KimJ.W. Graded structures for damage resistant and aesthetic all-ceramic restorations.Dent. Mater.200925678179010.1016/j.dental.2009.01.002 19187955
    [Google Scholar]
  31. ZhangY. MaL. Optimization of ceramic strength using elastic gradients.Acta Mater.20095792721272910.1016/j.actamat.2009.02.037 20161019
    [Google Scholar]
  32. ZhangY. SunM.J. ZhangD. Designing functionally graded materials with superior load-bearing properties.Acta Biomater.2012831101110810.1016/j.actbio.2011.11.033 22178651
    [Google Scholar]
  33. KolakarnprasertN. KaizerM.R. KimD.K. ZhangY. New multi-layered zirconias: Composition, microstructure and translucency.Dent. Mater.201935579780610.1016/j.dental.2019.02.017 30853208
    [Google Scholar]
  34. UedaK. GüthJ.F. ErdeltK. StimmelmayrM. KappertH. BeuerF. Light transmittance by a multi-coloured zirconia material.Dent. Mater. J.201534331031410.4012/dmj.2014‑238 25904173
    [Google Scholar]
  35. ZhangY. Making yttria-stabilized tetragonal zirconia translucent.Dent. Mater.201430101195120310.1016/j.dental.2014.08.375 25193781
    [Google Scholar]
  36. HeintzeS.D. How to qualify and validate wear simulation devices and methods.Dent. Mater.200622871273410.1016/j.dental.2006.02.002 16574212
    [Google Scholar]
  37. HeintzeS.D. CavalleriA. ForjanicM. ZellwegerG. RoussonV. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro.Dent. Mater.200824443344910.1016/j.dental.2007.06.016 17720238
    [Google Scholar]
  38. HeintzeS.D. CavalleriA. ForjanicM. ZellwegerG. RoussonV. A comparison of three different methods for the quantification of the in vitro wear of dental materials.Dent. Mater.200622111051106210.1016/j.dental.2005.08.010 16386293
    [Google Scholar]
  39. HeintzeS.D. FaouziM. RoussonV. OzcanM. Correlation of wear in vivo and six laboratory wear methods.Dent. Mater.201228996197310.1016/j.dental.2012.04.006 22698644
    [Google Scholar]
  40. PengZ. Izzat Abdul RahmanM. ZhangY. YinL. Wear behavior of pressable lithium disilicate glass ceramic.J. Biomed. Mater. Res. B Appl. Biomater.2016104596897810.1002/jbm.b.33447 25980530
    [Google Scholar]
  41. HeintzeS.D. ZappiniG. RoussonV. Wear of ten dental restorative materials in five wear simulators--results of a round robin test.Dent. Mater.200521430431710.1016/j.dental.2004.05.003 15766577
    [Google Scholar]
  42. HeintzeS.D. ZellwegerG. CavalleriA. FerracaneJ. Influence of the antagonist material on the wear of different composites using two different wear simulation methods.Dent. Mater.200622216617510.1016/j.dental.2005.04.012 16087228
    [Google Scholar]
  43. ZurekA.D. AlfaroM.F. WeeA.G. Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials.J. Prosthodont.2019282e510e51810.1111/jopr.12782 29508487
    [Google Scholar]
  44. HeintzeS.D. ReichlF.X. HickelR. Wear of dental materials: Clinical significance and laboratory wear simulation methods -A review.Dent. Mater. J.201938334335310.4012/dmj.2018‑140 30918233
    [Google Scholar]
  45. AmerR. KürklüD. KateebE. SeghiR.R. Three-body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments.J. Prosthet. Dent.201411251151115510.1016/j.prosdent.2013.12.021 24836531
    [Google Scholar]
  46. PreisV. SchmalzbauerM. BougeardD. Schneider-FeyrerS. RosentrittM. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation.J. Dent.201543113313910.1016/j.jdent.2014.08.011 25174949
    [Google Scholar]
  47. MoresR.T. BorbaM. CorazzaP.H. Della BonaÁ. BenettiP. Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.J. Prosthet. Dent.2017118451151610.1016/j.prosdent.2016.12.012 28343675
    [Google Scholar]
  48. AmerR. KürklüD. JohnstonW. Effect of simulated mastication on the surface roughness of three ceramic systems.J. Prosthet. Dent.2015114226026510.1016/j.prosdent.2015.02.018 25957241
    [Google Scholar]
  49. RupawalaA. MusaniS.I. MadanshettyP. DugalR. ShahU.D. ShethE.J. A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems.J. Indian Prosthodont. Soc.2017171814 28216839
    [Google Scholar]
  50. KaizerM.R. GierthmuehlenP.C. Dos SantosM.B. CavaS.S. ZhangY. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics.Ceram. Int.20174314109991100510.1016/j.ceramint.2017.05.141 29097830
    [Google Scholar]
  51. Amaya-PajaresS.P. RitterA.V. Vera ResendizC. HensonB.R. CulpL. DonovanT.E. Effect of Finishing and Polishing on the Surface Roughness of Four Ceramic Materials after Occlusal Adjustment.J. Esthet. Restor. Dent.201628638239610.1111/jerd.12222 27264939
    [Google Scholar]
  52. KaizerM.R. BanoS. BorbaM. GargV. Dos SantosM.B.F. ZhangY. Wear Behavior of Graded Glass/Zirconia Crowns and Their Antagonists.J. Dent. Res.201998443744210.1177/0022034518820918 30744472
    [Google Scholar]
  53. KaizerM.R. MoraesR.R. CavaS.S. ZhangY. The progressive wear and abrasiveness of novel graded glass/zirconia materials relative to their dental ceramic counterparts.Dent. Mater.201935576377110.1016/j.dental.2019.02.022 30827797
    [Google Scholar]
  54. Al-Haj HusainN. CamilleriJ. ÖzcanM. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis.J. Mech. Behav. Biomed. Mater.20166410411210.1016/j.jmbbm.2016.07.025 27497266
    [Google Scholar]
  55. DenryI.L. HollowayJ.A. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics.J. Biomed. Mater. Res. B Appl. Biomater.200676244044810.1002/jbm.b.30382 16184529
    [Google Scholar]
  56. ColdeaA. FischerJ. SwainM.V. ThielN. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments.Dent. Mater.201531668469410.1016/j.dental.2015.03.007 25858782
    [Google Scholar]
  57. BorbaM. de AraújoM.D. FukushimaK.A. Effect of different aging methods on the mechanical behavior of multi-layered ceramic structures.Dent. Mater.201632121536154210.1016/j.dental.2016.09.005 27726968
    [Google Scholar]
  58. DenryI.L. PeacockJ.J. HollowayJ.A. Effect of heat treatment after accelerated aging on phase transformation in 3Y-TZP.J. Biomed. Mater. Res. B Appl. Biomater.201093123624310.1002/jbm.b.31580 20091919
    [Google Scholar]
  59. VicariC.B. MagalhãesB.O. GriggsJ.A. BorbaM. Fatigue behavior of crystalline-reinforced glass-ceramic.J. Prosthodont.2019281e297e30310.1111/jopr.12739 29315956
    [Google Scholar]
  60. Della BonaA. MecholskyJ.J.Jr AnusaviceK.J. Fracture behavior of lithia disilicate- and leucite-based ceramics.Dent. Mater.2004201095696210.1016/j.dental.2004.02.004 15501324
    [Google Scholar]
  61. BelliR. WendlerM. de LignyD. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.Dent. Mater.2017331849810.1016/j.dental.2016.10.009 27890354
    [Google Scholar]
  62. WendlerM. BelliR. PetscheltA. Chairside CAD/CAM materials. Part 2: Flexural strength testing.Dent. Mater.20173319910910.1016/j.dental.2016.10.008 27884403
    [Google Scholar]
  63. KimM.J. OhS.H. KimJ.H. Wear evaluation of the human enamel opposing different Y-TZP dental ceramics and other porcelains.J. Dent.2012401197998810.1016/j.jdent.2012.08.004 22892464
    [Google Scholar]
  64. SripetchdanondJ. LeevailojC. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.J. Prosthet. Dent.201411251141115010.1016/j.prosdent.2014.05.006 24980740
    [Google Scholar]
  65. ChoiJ.W. BaeI.H. NohT.H. Wear of primary teeth caused by opposed all-ceramic or stainless steel crowns.J. Adv. Prosthodont.201681435210.4047/jap.2016.8.1.43 26949487
    [Google Scholar]
  66. TongH. TanakaC.B. KaizerM.R. ZhangY. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area.Ceram. Int.2016421 Pt B1077108510.1016/j.ceramint.2015.09.033 26664123
    [Google Scholar]
  67. Turon-VinasM. AngladaM. Strength and fracture toughness of zirconia dental ceramics.Dent. Mater.201834336537510.1016/j.dental.2017.12.007 29395472
    [Google Scholar]
  68. ZhangY. LeeJ.J. SrikanthR. LawnB.R. Edge chipping and flexural resistance of monolithic ceramics.Dent. Mater.201329121201120810.1016/j.dental.2013.09.004 24139756
    [Google Scholar]
  69. D’ArcangeloC. VaniniL. RondoniG.D. VadiniM. De AngelisF. Wear Evaluation of Prosthetic Materials Opposing Themselves.Oper. Dent.2018431385010.2341/16‑212‑L 28857711
    [Google Scholar]
  70. HoT.K. SatterthwaiteJ.D. SilikasN. The effect of chewing simulation on surface roughness of resin composite when opposed by zirconia ceramic and lithium disilicate ceramic.Dent. Mater.2018342e15e2410.1016/j.dental.2017.11.014 29175160
    [Google Scholar]
  71. DupriezN.D. von KoeckritzA.K. KunzelmannK.H. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms.J. Biomed. Mater. Res. B Appl. Biomater.2015103492593410.1002/jbm.b.33193 25303041
    [Google Scholar]
  72. ShortallA.C. HuX.Q. MarquisP.M. Potential countersample materials for in vitro simulation wear testing.Dent. Mater.200218324625410.1016/S0109‑5641(01)00043‑4 11823017
    [Google Scholar]
  73. PreisV. BehrM. KolbeckC. HahnelS. HandelG. RosentrittM. Wear performance of substructure ceramics and veneering porcelains.Dent. Mater.201127879680410.1016/j.dental.2011.04.001 21524788
    [Google Scholar]
  74. BenettiA.R. LarsenL. DowlingA.H. FlemingG.J. Assessment of wear facets produced by the ACTA wear machine.J. Dent.201645192510.1016/j.jdent.2015.12.003 26690332
    [Google Scholar]
  75. FlemingG.J. ReillyE. DowlingA.H. AddisonO. Data acquisition variability using profilometry to produce accurate mean total volumetric wear and mean maximum wear depth measurements for the OHSU oral wear simulator.Dent. Mater.2016328e176e18410.1016/j.dental.2016.05.004 27283996
    [Google Scholar]
  76. El ZhawiH. KaizerM.R. ChughtaiA. MoraesR.R. ZhangY. Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear.Dent. Mater.201632111352136110.1016/j.dental.2016.08.216 27585486
    [Google Scholar]
  77. StoberT. HeuschmidN. ZellwegerG. RoussonV. RuesS. HeintzeS.D. Comparability of clinical wear measurements by optical 3D laser scanning in two different centers.Dent. Mater.201430549950610.1016/j.dental.2014.02.001 24612841
    [Google Scholar]
  78. GouM. ChenH. KangJ. WangH. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: A systematic review.J. Prosthet. Dent.2018 30509545
    [Google Scholar]
  79. MundheK. JainV. PruthiG. ShahN. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns.J. Prosthet. Dent.2015114335836310.1016/j.prosdent.2015.03.001 25985742
    [Google Scholar]
  80. Esquivel-UpshawJ.F. KimM.J. HsuS.M. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns.J. Dent.201868192710.1016/j.jdent.2017.10.005 29042241
    [Google Scholar]
  81. LohbauerU. ReichS. Antagonist wear of monolithic zirconia crowns after 2 years.Clin. Oral Investig.20172141165117210.1007/s00784‑016‑1872‑6 27277661
    [Google Scholar]
  82. StoberT. BermejoJ.L. SchwindlingF.S. SchmitterM. Clinical assessment of enamel wear caused by monolithic zirconia crowns.J. Oral Rehabil.201643862162910.1111/joor.12409 27198539
    [Google Scholar]
  83. HartkampO. PetersF. BothungH. LohbauerU. ReichS. Optical profilometry versus intraoral (handheld) scanning.Int. J. Comput. Dent.2017202165176 28630957
    [Google Scholar]
  84. ZhangF. SpiesB.C. VleugelsJ. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly.Dent. Mater.201935121776179010.1016/j.dental.2019.10.009 31727445
    [Google Scholar]
/content/journals/cdent/10.2174/2542579X02666200206111259
Loading

  • Article Type:
    Review Article
Keyword(s): ceramics; dental prosthesis; Dental wear; occlusal wear; tooth abrasion; tooth attrition
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test