Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2542-579X
  • E-ISSN: 2542-5803

Abstract

Dental caries is still a major public health problem. The use of fluoride is one of the most effective ways to prevent tooth decay.

The purpose of this research was to investigate the effectiveness of fluoride entrapped in chitosan nanoparticles .

Sodium fluoride was loaded in chitosan via ionic gelation of tripolyphosphate nanoparticles. Characterization of nanoparticles was investigated by using the zeta potential, size of particles, loading capacities, encapsulation efficiency, and Fourier Transforms Infrared Spectroscopy. Chitosan/fluoride nanoparticles were fabricated by a method of fluoride/chitosan cross-linking with tripolyphosphate.

The size of nanoparticles was 219 nm. According to the zeta potential results, by adding sodium fluoride to chitosan/tripolyphosphate nanoparticles reducing the number of positive charges of chitosan, the result was diminished zeta potential from +30.8 mV to +14.9 mV. The optimum drug loading and percentage of entrapment efficiency were 70% and 30% respectively. Fourier transform infrared spectroscopy confirmed linked among tripolyphosphate, chitosan and fluoride nanoparticles. characterization of nanoparticles demonstrated higher fluoride uptake ability and smooth releasing profile.

It is suggested that fluoride/chitosan nanoparticles synthesized in our study may be a promising means of delivering fluoride for the early prevention of tooth decay.

Loading

Article metrics loading...

/content/journals/cdent/10.2174/2542579X01666190212150457
2019-05-01
2024-11-06
Loading full text...

Full text loading...

References

  1. SilkH. Diseases of the mouth.Prim. Care20144117590
    [Google Scholar]
  2. CarlssonJ. HamiltonI.R. Metabolic activity of oral bacteria Textbook of clinical cariology.1994 2nd ed7788
    [Google Scholar]
  3. StephanR.M. Intra-oral hydrogen-ion concentrations associated with dental caries activity.J. Dent. Res.194423257266
    [Google Scholar]
  4. BuzalafM.A. PessanJ.P. HonorioH.M. Ten CateJ.M. Mechanisms of action of fluoride for caries control.Monogr. Oral Sci.20112297114
    [Google Scholar]
  5. FinchamA.G. Moradian-OldakJ. SimmerJ.P. The structural biology of the developing dental enamel matrix.J. Struct. Biol.19991263270299
    [Google Scholar]
  6. DeanH.T. Classification of mottled enamel diagnosis.J. Am. Dent. Assoc.19342114211426
    [Google Scholar]
  7. DeanH.T. ArnoldF.A. ElvoveE. Domestic water and dental caries. V. Additional studies of the relation of fluoride domestic waters to dental caries experience in 4,425 white children, aged 12 to 14 years, of 13 cities in 4 states.Public Health Rep.19425711551179
    [Google Scholar]
  8. DeanH.T. JayP.A.F. Arnold Jr, Elvove E. Domestic Water and Dental Caries: II. A Study of 2,832 White Children, Aged 12-14 Years, of 8 Suburban Chicago Communities, including Lactobacillus Acidophilus Studies of 1,761 Children.Public Health Rep.19415615761792
    [Google Scholar]
  9. WhitfordG.M. Acute toxicity of ingested fluoride.Monogr. Oral Sci.2011226680
    [Google Scholar]
  10. KandutiD. SterbenkP. ArtnikB. Flouride: A Review of Use and Effects on Health.Mater. Sociomed.2016282133137
    [Google Scholar]
  11. BibbyB.G. WilkinsE. WitolE. A preliminary study of the effects of fluoride lozenges and pills on dental caries.Oral Surg. Oral Med. Oral Pathol.195582213216
    [Google Scholar]
  12. TooleS.O. BartlettD.W. MoazzezR. Efficacy of sodium and stannous fluoride mouthrinses when used before single and multiple erosive challenges.Aust. Dent. J.2016614497501
    [Google Scholar]
  13. OliveiraP. FonsecaA. SilvaE.M. CoutinhoT. TostesM.A. Remineralizing potential of CPP-ACP creams with and without fluoride in artificial enamel lesions.Aust. Dent. J.20166114552
    [Google Scholar]
  14. Ramírez CarrascoA. Sanchez-ArmassO. PierdantM. Butrón Téllez GirónC. Effectiveness of hypnosis in combination with conventional techniques of behavior management in anxiety/pain reduction during dental anesthetic infiltration.Pain Res. Manag.20171434015
    [Google Scholar]
  15. zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications.Chem Bio Eng201523204226
    [Google Scholar]
  16. ZeinaliS. NasirimoghaddamS. SabbaghiS. Investigation of the synthesis of chitosan coated iron oxide nanoparticles under different experimental conditions.Int J Nanosci Nanotechnol2016123183190
    [Google Scholar]
  17. SoleimaniM. GhorbaniM. SalahiS. Antibacterial activity of polypyrrole-chitosan nanocomposite: mechanism of action.Int J Nanosci Nanotechnol2016123191197
    [Google Scholar]
  18. GhaeeA. Shariaty-NiassarM. BarzinJ. IsmailA.F. Chitosan/polyethersulfone composite nanofiltration membrane for industrial wastewater treatment.Int J Nanosci Nanotechnol201394213220
    [Google Scholar]
  19. NguyenS. EscuderoC. SediqiN. SmistadG. HiorthM. Fluoride loaded polymeric nanoparticles for dental delivery.Eur. J. Pharm. Sci.2017104326334
    [Google Scholar]
  20. MurataY. ToniwaS. MiyamotoE. KawashimaS. Preparation of alginate gel beads containing chitosan nicotinic acid salt and the functions.Eur. J. Pharm. Biopharm.19994814952
    [Google Scholar]
  21. SeferianP.G. MartinezM.L. Immune stimulating activity of two new chitosan containing adjuvant formulations.Vaccine2000196661668
    [Google Scholar]
  22. van der LubbenI.M. VerhoefJ.C. BorchardG. JungingerH.E. Chitosan for mucosal vaccination.Adv. Drug Deliv. Rev.2001522139144
    [Google Scholar]
  23. IllumL. Jabbal-GillI. HinchcliffeM. FisherA.N. DavisS.S. Chitosan as a novel nasal delivery system for vaccines.Adv. Drug Deliv. Rev.2001511-38196
    [Google Scholar]
  24. AbediniF. EbrahimiM. HosseinkhaniH. Technology of RNA interference in advanced medicine.MicroRNA2018727484
    [Google Scholar]
  25. AbediniF. HosseinkhaniH. IsmailM. ChenY.R. OmarA. ChongP. Domb In vitro intracellular trafficking of biodegradable nanoparticles dextran-spermine in cancer cell lines.Int. J. Nanotechnol.20118712723
    [Google Scholar]
  26. AbediniF. HosseinkhaniH. IsmailM. DombA.J. OmarA.R. ChongP.P. HongP.D. YuD.S. FarberI.Y. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer.Int. J. Nanomedicine2012741594168
    [Google Scholar]
  27. HosseinkhaniH. AbediniF. OuK.L. DombA.J. Polymers in gene therapy technology.Polym. Adv. Technol.201526198211
    [Google Scholar]
  28. 28. Abedini F, Ebrahimi M, Hemmati Roozbehani A, Domb AJ, Hosseinkhani H. Overview on natural hydrophilic polysaccharide polymers in drug delivery.Polym. Adv. Technol.2018291025642573
    [Google Scholar]
  29. HosseinkhaniH. AbediniF. OuK.L. DombA.J. Polymers in gene therapy technology.Polym. Adv. Technol.201526198211
    [Google Scholar]
  30. WieckiewiczM. BoeningK.W. GrychowskaN. Clinical application of chitosan in dental specialities.Mini Rev. Med. Chem.201717401409
    [Google Scholar]
  31. TanikondaR. RaviR.K. DivellaS. Chitosan: Applications in dentistry.Trends Biomater. Artif. Organs20142827478
    [Google Scholar]
  32. ElShihaH.Y. Abdel Monem TawfikH. Abou SamrahN.K. MarzoukH.A.E.M. Efficacy of chitosan and absorbable gelatine sponge on hemostasis and wound healing following tooth extraction a comparative study.Egypt. Dent. J.201258244324432447
    [Google Scholar]
  33. JiQ.X. ZhongD.Y. LuR. ZhangW.Q. DengJ. ChenX.G. In vitro evaluation of the biomedical properties of chitosan and quaternized chitosan for dental applications.Carbohydr. Res.20093441112971302
    [Google Scholar]
  34. SenelS. IkinciG. KasS. Yousefi-RadA. SargonM.F. HincalA.A. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery.Int. J. Pharm.20001932197203
    [Google Scholar]
  35. SinglaA.K. ChawlaM. Chitosan: Some pharmaceutical and biological aspects-an update.J. Pharm. Pharmacol.200153810471067
    [Google Scholar]
  36. LiF. LiuX. ZhaoS. WuH. XuH.H. Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model.Dent. Mater.2014302172181
    [Google Scholar]
  37. KimJ.S. ShinD.H. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin.Restor. Dent. Endod20133813642
    [Google Scholar]
  38. MalafayaP.B. SilvaG.A. ReisR.L. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv. Drug Deliv. Rev.2007594-5207233
    [Google Scholar]
  39. NashaatD. ElsabahyM. El-SherifT. HamadM.A. El-GindyG.A. IbrahimE.H. Development and in vivo evaluation of chitosan nanoparticles for the oral delivery of albumin.Pharm. Dev. Technol.20181819
    [Google Scholar]
  40. Ezoddini ArdakaniF. Navab AzamA. RouhiG. Effects of chitosan on dental bone repair.Health201134200205
    [Google Scholar]
  41. ShaikJ. GarlapatiR. NageshB. SujanaV. JayaprakashT. NaiduS. Comparative evaluation of antimicrobial efficacy of triple antibiotic paste and calcium hydroxide using chitosan as carrier against Candida albicans and Enterococcus faecalis: A in vitro study.J. Conserv. Dent.2014174335339
    [Google Scholar]
  42. MohireN.C. YadavA.V. Chitosan based polyherbal toothpaste: As novel oral hygiene product.Indian J. Dent. Res.2010213380384
    [Google Scholar]
  43. BaeK. JunE.J. LeeS.M. PaikD.I. KimJ.B. Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality.Clin. Oral Investig.2006102102107
    [Google Scholar]
  44. GanssC. von HinckeldeyJ. TolleA. SchulzeK. KlimekJ. SchlueterN. Efficacy of the stannous ion and a biopolymer in toothpastes on enamel erosion/abrasion.J. Dent.2012401210361043
    [Google Scholar]
  45. SchlueterN. KlimekJ. GanssC. Randomised in situ study on the efficacy of a chitin/chitosan toothpaste on erosive-abrasive enamel loss.Caries Res.2013476574581
    [Google Scholar]
  46. SamprasitW. KaomongkolgitR. SukmaM. RojanarataT. NgawhirunpatT. OpanasopitP. Mucoadhesive electrospun chitosan-based nanofiber mats for dental caries prevention.Carbohydr. Polym.20156117933940
    [Google Scholar]
  47. MatsunagaT. YanagiguchiK. HamadaS. OharaN. IkedaT. HayashiY. Chitosan monomer promotes tissue regeneration on dental pulp wounds.J. Biomed. Mater. Res. A2006764711720
    [Google Scholar]
  48. ElsakaS.E. Antibacterial activity and adhesive properties of a chitosan-containing dental adhesive.Quintessence Int.2012437603613
    [Google Scholar]
  49. LiuH. ChenB. MaoZ. GaoC. Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs.J. Appl. Polym. Sci.2007106642484256
    [Google Scholar]
  50. KeeganG.M. SmartJ.D. IngramM.J. BarnesL.M. BurnettG.R. ReesG.D. Chitosan microparticles for the controlled delivery of fluoride.J. Dent.2012403229240
    [Google Scholar]
  51. MohanJ. Organic spectroscopy: Principles and applications. 2nd ed: Harrow.UK, 2004 CRC Press.
    [Google Scholar]
  52. PessanJ.P. Al-IbrahimN.S. BuzalafM.A.R. ToumbaK.J. Slow-release fluoride devices: A literature review.J. Appl. Oral Sci.200816238244
    [Google Scholar]
  53. FeatherstoneJ.D. Delivery challenges for fluoride, chlorhexidine and xylitol.BMC Oral Health200661S8
    [Google Scholar]
  54. LynchR. NavadaR. WaliaR. Low levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes.Int. Dent. J.200454304309
    [Google Scholar]
  55. GanssC. KlimekJ. SchlueterN. Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matix.Caries Res.2014482163169
    [Google Scholar]
  56. FurtadoG.T.F.S. FidelesT. Leal CruzR.D.C.A. Marcus lia fook. chitosan/naf particles prepared via ionotropic gelation: evaluation of particles size and morphology.Mater. Res.2018214e20180101
    [Google Scholar]
  57. WuL. LiF. MorrowB.R. JiangS. HottelT.L. Garcia-GodoyF. HongL. A novel antimicrobial and remineralizing toothpaste containing CaCl/chitosan microspheres. m.J. Dent.2018313149154
    [Google Scholar]
/content/journals/cdent/10.2174/2542579X01666190212150457
Loading
/content/journals/cdent/10.2174/2542579X01666190212150457
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Chitosan; dental caries; nanoparticles; polymer; sodium fluoride; tripolyphosphate
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test