Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2542-579X
  • E-ISSN: 2542-5803

Abstract

are widely used as medicinal plants in Brazil. Of the various ethnopharmacological indications of copaiba oleoresins, the antimicrobial activity had been highlighted.

This study aimed to evaluate the oleoresin and the hydroalcoholic extract of leaves from against oral pathogens in the sessile and in the planktonic modes.

Standard strains from the American Type Culture Collection and clinical isolates which cause both cariogenic and endodontic infections were used. Was evaluated in terms of its Minimum Inhibitory Concentration (MIC) values by the broth microdilution method in 96-well microplates, Minimum Bactericidal Concentration (MBC) and biofilm eradication assay.

The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that the oleoresin was effective against some the bacterial strains. Assessment of the antibiofilm activity of hydroalcoholic extract of leaves from C. multijuga against the evaluated microaerophilic bacteria in the sessile mode gave IC50 values of 318.0 and 695.6 μg/mL against S. mitis (ATCC 49456) and A. actinomycetemcomintans (ATCC 43717), respectively. As for the assayed anaerobic bacteria, the hydroalcoholic extract of leaves gave IC50 of 4554.0, 2218.0, and 600.1 μg/mL against F. nucleatum (Clinical isolate), P. gingivalis (ATCC 33277), and P. micros (Clinical isolate), respectively, whereas the oleoresin afforded IC50 of 357.1 μg/mL against P. gingivalis (ATCC 33277).

The oleoresin and hydroalcoholic extract of leaves displayed satisfactory activity against the main oral pathogens in both sessile and planktonic modes. The oleoresin and hydroalcoholic extracts of leaves from C. multijuga are potential candidates for the development of new products for dental and oral care.

Loading

Article metrics loading...

/content/journals/cdent/10.2174/2542579X01666180629100020
2019-05-01
2024-11-06
Loading full text...

Full text loading...

References

  1. JeonJ.G. RosalenP.L. FalsettaM.L. KooH. Natural products in caries research: Current (limited) knowledge, challenges and future perspectives.Caries Res.2011453243263
    [Google Scholar]
  2. NakamotoT. RawlsH.R. Fluoride exposure in early life as the possible root cause of disease in later life.J. Clin. Pediatr. Dent.2018425325330
    [Google Scholar]
  3. ClarkM.B. SlaytonR.L. Fluoride use in caries prevention in the primary care setting.Pediatrics20141343626633
    [Google Scholar]
  4. CareyC.M. Focus on fluorides: Update on the use of fluoride for the prevention of dental caries.J. Evid. Based Dent. Pract.20141495102
    [Google Scholar]
  5. SelwitzR.H. IsmailA.I. PittsN.B. Dental caries.Lancet200736995555159
    [Google Scholar]
  6. MeloM.A.S. Photodynamic antimicrobial chemotherapy as a strategy for dental caries: Building a more conservative therapy in restorative dentistry.Photomed. Laser Surg.2014321113
    [Google Scholar]
  7. MosciF. PeritoS. BassaS. CapuanoA. MarconiP.F. The role of Streptococcus mutans in human caries.Minerva Stomatol.1990395413429
    [Google Scholar]
  8. CostertonJ.W. ChengK.J. GeeseyG.G. Bacterial biofilms in nature and disease.Annu. Rev. Microbiol.198741435464
    [Google Scholar]
  9. BanasJ.A. Virulence properties of Streptococcus mutans. Front. Biosci.2004112671277
    [Google Scholar]
  10. SelwitzR.H. IsmailA.I. PittsN.B. Dental caries.Lancet200736995555159
    [Google Scholar]
  11. PalmerS.R. MillerJ.H. AbranchesJ. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One20138e61358
    [Google Scholar]
  12. EsbergA. ShengN. MarellL. ClaessonR. PerssonK. BorénT. StrombergN. Streptococcus mutans adhesin biotypes that match and predict individual caries development.EBioMedicine201724205215
    [Google Scholar]
  13. KooH. FalsettaM.L. KleinM.I. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.J. Dent. Res.2013921210651073
    [Google Scholar]
  14. TakahashiN. NyvadB. The role of bacteria in the caries process: ecological perspectives.J. Dent. Res.2011903294303
    [Google Scholar]
  15. BeiklerT. FlemmigT.F. Oral biofilm-associated diseases: trends and implications for quality of life, systemic health and expenditures.Periodontol. 2000201155187103
    [Google Scholar]
  16. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.201089623633
    [Google Scholar]
  17. GaoL. LiuY. KimD. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials2016101272284
    [Google Scholar]
  18. Hall-StoodleyL. CostertonJ.W. StoodleyP. Bacterial biofilms: from the natural environment to infectious diseases.Nat. Rev. Microbiol.20042295108
    [Google Scholar]
  19. JhajhariaK. AbhishekP. ShettyV. MehtaL.K. Biofilm in endodontics: A review.J. Int. Soc. Prev. Community Dent.201551112
    [Google Scholar]
  20. SaoudT.M. RicucciD. LinL.M. GaenglerP. Regeneration and repair in endodontics - A special issue of the regenerative endodontics - A new era in clinical endodontics.Dent. J.201641E3
    [Google Scholar]
  21. DugganJ.M. SedgleyC.M. Biofilm formation of oral and endodontic enterococcus faecalis.J. Endod.2007337815818
    [Google Scholar]
  22. AwawdehL. JamlehA. BeitawiaM.A. The antifungal effect of propolis endodontic irrigant with three other irrigation solutions in presence and absence of smear layer: an in vitro study.Iran. Endod. J.2018132234239
    [Google Scholar]
  23. HaapasaloM. ShenY. QianW. GaoY. Irrigation in endodontics.Dent. Clin. North Am.2010542291312
    [Google Scholar]
  24. CleggM.S. VertucciF.J. WalkerC. BelangerM. BrittoL.R. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J. Endod.2006325434437
    [Google Scholar]
  25. SenB.H. SafaviK.E. SpangbergL.S. Antifungal effects of sodium hypochlorite and chlorhexidine in root canals.J. Endod.1999254235238
    [Google Scholar]
  26. MohammadiZ. AbbottP.V. The properties and applications of chlorhexidine in endodontics.Int. Endod. J.2009424288302
    [Google Scholar]
  27. ArslanS. OzbilgeH. KayaE.G. ErO. In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on enterococcus faecalis and Candida albicans.Saudi Med. J.2011325479483
    [Google Scholar]
  28. MohammadiZ. Sodium hypochlorite in endodontics: an update review.Int. Dent. J.2008586329341
    [Google Scholar]
  29. AlvianoW.S. AlvianoD.S. DinizC.G. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine.Arch. Oral Biol.2008536545552
    [Google Scholar]
  30. ChinsembuK.C. Plants and other natural products used in the management of oral infections and improvement of oral health.Acta Trop.2016154618
    [Google Scholar]
  31. PoeschlP.W. CrepazV. RussmuellerG. SeemannR. HirschlA.M. EwersR. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility.J. Endod.201137912011205
    [Google Scholar]
  32. GomesB.P. JacintoR.C. MontagnerF. SousaE.L. FerrazC.C. Analysis of the antimicrobial susceptibility of anaerobic bacteria isolated from endodontic infections in Brazil during a period of nine years.J. Endod.201137810581062
    [Google Scholar]
  33. SkucaiteN. PeciulieneV. VitkauskieneA. MachiulskieneV. Susceptibility of endodontic pathogens to antibiotics in patients with symptomatic apical periodontitis.J. Endod.2010361016111616
    [Google Scholar]
  34. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta20131830636703695
    [Google Scholar]
  35. SouzaA.B. MartinsC.H.G. SouzaM.G.M. Antimicrobial activity of terpenoids from copaifera langsdorffii desf against cariogenic bacteria.Phytother. Res.2011252215220
    [Google Scholar]
  36. SouzaA.B. SouzaM.G.M. MoreiraM.A. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria.Molecules2011161196119619
    [Google Scholar]
  37. BardajíD.K.R. Da SilvaJ.J.M. BianchiT.C. Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens.Anaerobe2016401827
    [Google Scholar]
  38. MoraesT.S. LeandroL.F. de SilvaL.O. In vitro evaluation of Copaifera oblongifolia oleoresin against bacteria causing oral infections and assessment of its cytotoxic potential.Curr. Pharm. Biotechnol.201617894904
    [Google Scholar]
  39. LeandroL.F. MoraesT.S. de OliveiraP.F. Assessment of the antibacterial, cytotoxic and mutagenic potential of the phenolic-rich hydroalcoholic extract from Copaifera trapezifolia Hayne leaves.J. Med. Microbiol.201665937950
    [Google Scholar]
  40. AbrãoF. AlvesJ.A. AndradeG. Antibacterial effect of Copaifera duckei Dwyer oleoresin and its main diterpenes against oral pathogens and their cytotoxic effect.Front. Microbiol.20189201
    [Google Scholar]
  41. DiefenbachA.L. MunizF.W.M.G. OballeH.J.R. RösingC.K. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review.Phytother. Res.201832586596
    [Google Scholar]
  42. LeandroL.M. VargasF.S. BarbosaP.C.S. Chemistry and biological activities of terpenoids from copaiba (copaifera spp.) oleoresins.Molecules201217438663889
    [Google Scholar]
  43. VeigaJr V.F. RosasE.C. CarvalhoM.V. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne-A comparative study.J. Ethnopharmacol.20071122248254
    [Google Scholar]
  44. GomesN.M. RezendeC.M. FontesS.P. Characterization of the antinociceptive and anti-inflammatory activities of fractions obtained from Copaifera multijuga Hayne.J. Ethnopharmacol.20101281177183
    [Google Scholar]
  45. SantosA.O. Ueda-NakamuraT. Dias FilhoB.P. Veiga JrV.F. PintoA.C. NakamuraC.V. Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem. Inst. Oswaldo Cruz20081033277281
    [Google Scholar]
  46. MendonçaD.E. OnofreS.B. Atividade antimicrobiana do óleo-resina produzido pela copaiba – Copaifera multijuga Hayne (Leguminosae).Rev. Bras. Farmacogn.2009192B577581
    [Google Scholar]
  47. LimaS.R.M. VeigaJr V.F. ChristoH.B. PintoA.C. FernandesP.D. In vivo and in vitro studies on the anticancer activity of Copaifera multijuga Hayne and its fractions.Phytother. Res.200317910481053
    [Google Scholar]
  48. SantiagoK.B. ContiB.J. AndradeB.F.M.T. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes.Biomed. Pharmacother.2015701218
    [Google Scholar]
  49. FurtadoR.A. de OliveiraP.F. SenedeseJ.M. Assessment of genotoxic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks.J. Ethnopharmacol.20182217119125
    [Google Scholar]
  50. Clinical and Laboratory Standards Institute Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, Approved standard.(CLSI)Wayne, PA, USACLSI2007
    [Google Scholar]
  51. Clinical and Laboratory Standards Institute (CLSI) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard M7-A7, 7, 23,2009
  52. SilvaS.D.C. SouzaM.G.M. CardosoM.J.O. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.Anaerobe201430146152
    [Google Scholar]
  53. BarbosaP.C.S. WiedemannL.S.M. MedeirosR.D. Phytochemical fingerprints of copaiba oils (copaifera multijuga hayne) determined by multivariate analysis.Chem. Biodivers.201310713501360
    [Google Scholar]
  54. CapelettoC. ConteratoG. ScapinelloJ. Chemical composition, antioxidant and antimicrobial activity of guavirova (Campomanesia xanthocarpa Berg) seed extracts obtained by supercritical CO2 and compressed n-butane.J. Supercrit. Fluids20151103238
    [Google Scholar]
  55. AguiarU.M. De LimaS.G. RochaM.D. Chemical composition and modulation of antibiotic activity of essential oil of Lantana caatingensis M. (Verbenaceae).Ind. Crops Prod.201574165170
    [Google Scholar]
  56. DahhamS.S. TabanaY.M. IqbalM.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene beta-caryophyllene from the essential oil of aquilaria crassna.Molecules20152071180811829
    [Google Scholar]
  57. CushnieT.P. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents2005265343356
    [Google Scholar]
  58. SantosR.Q. KushimaH. RodriguesC.M. Byrsonima intermedia A. Juss.: Gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models.J. Ethnopharmacol.20121402203
    [Google Scholar]
  59. CasconV. GilbertB. Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf Copaifera duckei Dwyer and Copaifera multijuga Hayne.Phytochemistry2000557773778
    [Google Scholar]
  60. VeigaJr V.F. PintoA.C. Plantas medicinais: Cura segura?Quim. Nova2005283519528
    [Google Scholar]
  61. SaltonM.R.J. Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria.Biochim. Biophys. Acta195310512523
    [Google Scholar]
  62. BeveridgeT.J. Structures of gram-negative cell walls and their derived membrane vesicles.J. Bacteriol.199918147254733
    [Google Scholar]
  63. TenoverF.C. Mechanisms of antimicrobial resistance in bacteria.Am. J. Infect. Control2006345310
    [Google Scholar]
  64. OliveiraF.Q. GobiraB. GuimaraesC. BatistaJ. BarretoM. SouzaM. Espécies vegetais indicadas na odontologia.Rev. Bras. Farmacogn.2007173466476
    [Google Scholar]
  65. MysakJ. PodzimekS. SommerovaP. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview.J. Immunol. Res.20142014476068
    [Google Scholar]
  66. HowK.Y. SongK.P. ChanK.G. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line.Front. Microbiol.2016753
    [Google Scholar]
  67. GeritsE. VerstraetenN. MichielsJ. New approaches to combat Porphyromonas gingivalis biofilms.J. Oral Microbiol.2017911300366
    [Google Scholar]
  68. GranierS.A. MoubareckC. ColaneriC. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period.Appl. Environ. Microbiol.201177827882790
    [Google Scholar]
  69. Van DalenP.J. Van Steenbergen Tim, Cowan MM, Busscher HJ, Graaf J. Description of two morphotypes of Peptostreptococcus micros.Int. J. Syst. Bacteriol.1993434787793
    [Google Scholar]
  70. GrenierD. BouclinR. Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane.Oral Microbiol. Immunol.2006215319325
    [Google Scholar]
  71. TanabeS. BodetC. GrenierD. Peptostreptococcus micros cell wall elicits a pro-inflammatory response in human macrophages.J. Endotoxin Res.2007134219226
    [Google Scholar]
  72. ShchipkovaA.Y. NagarajaH.N. KumarP.S. Subgingival Microbial Profiles of Smokers with Periodontitis.J. Dent. Res.2010891112471253
    [Google Scholar]
  73. FallareroA. SkogmanM. KujalaJ. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro. Int. J. Mol. Sci.20131461205412072
    [Google Scholar]
  74. TannerA.C. MathneyJ.M. KentR.L. Cultivable anaerobic microbiota of severe early childhood caries.J. Clin. Microbiol.201149414641474
    [Google Scholar]
  75. AlvesJ.M. SenedeseJ.M. LeandroL.F. Copaifera multijuga oleoresin and its constituent diterpene (−)-copalic acid: genotoxicity and chemoprevention study.Mutat. Res.20178192630
    [Google Scholar]
/content/journals/cdent/10.2174/2542579X01666180629100020
Loading
/content/journals/cdent/10.2174/2542579X01666180629100020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test