Skip to content
2000
image of Management of Denture Stomatitis with a Herbal Armamentarium

Abstract

Denture Stomatitis (DS) is a chronic atrophic candidiasis and is the most prevalent chronic inflammatory condition of the oral mucosa that serves as the foundation of dentures. The persistence of DS is determined by the species, other microbes, the immune state of the host, and other factors. Patients who have other risk factors, such as inadequate oral hygiene, long-term denture usage, a diet rich in carbohydrates, and decreased salivary flow, are more prone to experience this. The application of conventional antifungals is not always successful in combating DS. The available literature related to the epidemiology and pathophysiology of denture stomatitis, the risk factors, and treatment options available for DS have been examined with special emphasis on phytoactive molecules using Pubmed and Google Scholar platforms. Moreover, the plant/phytoactive molecules (clove, cinnamon, curcumin, thyme, aloe vera) molecule-derived products were also looked at for analyzing the market popularity of herbal products. Therefore, age old plant-based herbal molecules have been revisited by researchers in pursuit of developing an effective solution to DS, and clove, cinnamon, thyme, curcumin, and aloe vera have been reviewed in the present article. An update on the herbal formulations in the form of ointment, mouthwash, toothpaste, , that are either in the market or in trials has also been presented in the article. A systematic and comprehensive review of the scientific literature related to the five aforementioned plant extracts and their active molecules has been presented here. The review gives a detailed insight into the pharmacological properties other than DS also. Moreover, the review also highlighted the gaps which need more strategic and scientific attention for the quick translation of information into therapy of clinical relevance.

Loading

Article metrics loading...

/content/journals/cdent/10.2174/012542579X317149241202064449
2024-12-17
2025-01-07
Loading full text...

Full text loading...

References

  1. Sivaramakrishnan G. Sridharan K. Alternatives to antifungal therapy for denture stomatitis: A systematic review and meta-analysis. Saudi J. Oral Sci. 2017 4 2 67 10.4103/sjos.SJOralSci_22_17
    [Google Scholar]
  2. Ribeiro A.B. de Araújo C.B. Silva L.E.V. Fazan-Junior R. Salgado H.C. Ribeiro A.B. Fortes C.V. Bueno F.L. de Oliveira V.C. de F O Paranhos H. Watanabe E. da Silva-Lovato C.H. Hygiene protocols for the treatment of denture-related stomatitis: Local and systemic parameters analysis - A randomized, double-blind trial protocol. Trials 2019 20 1 661 10.1186/s13063‑019‑3854‑x 31783777
    [Google Scholar]
  3. Alamen B.M. Naji G.A. Alsmael M.A. The effect of virgin coconut oil addition on the hardness and wettability of acrylic based denture soft lining material. J. Res. Med. Dent. Sci. 2020 8 96 106
    [Google Scholar]
  4. Navabi N. Shakibaei P. Hassani A.R. Management of denture stomatitis: An overview. Acta Marisiensis Ser. Med. 2023 69 1 23 29 10.2478/amma‑2023‑0007
    [Google Scholar]
  5. Wang L.L. Liu X.H. Yang L.M. Li X.X. Clinical analysis of denture-related oral mucosal lesions in 185 patients with removable denture. Shanghai Kou Qiang Yi Xue 2020 29 1 85 88 32524128
    [Google Scholar]
  6. Kamlesh R.D. Sivaswamy V. Prevalence of clinical and laboratory errors in complete denture wearers: A retrospective study. Vinay Sivaswamy. 2020 17 7 323 331
    [Google Scholar]
  7. de Souza P.T.R. Gonçalves-Wilhelmsen N.C.V. Rosa R.T. Correia C.F.K.N. Pereira T.M. Kitahara A.B.P. Ignácio S.A. Azevedo-Alanis L.R. Rosa E.A.R. Oral colonization and virulence factors of Candida spp. in babies with cleft palate. Cleft Palate Craniofac. J. 2022 59 8 1056 1063 10.1177/10556656211030437 34259068
    [Google Scholar]
  8. Dorocka-Bobkowska B. Zozulinska-Ziolkiewicz D. Wierusz-Wysocka B. Hedzelek W. Szumala-Kakol A. Budtz-Jörgensen E. Candida-associated denture stomatitis in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2010 90 1 81 86 10.1016/j.diabres.2010.06.015 20638146
    [Google Scholar]
  9. Rathi S. Verma A. Resilient liners in prosthetic dentistry: An update. Int J Appl Dent Sci. 2018 4 3 34 38
    [Google Scholar]
  10. Chladek G. Żmudzki J. Kasperski J. Long-term soft denture lining materials. Materials (Basel) 2014 7 8 5816 5842 10.3390/ma7085816 28788163
    [Google Scholar]
  11. Ghorab S. Comparative study between two different types of soft liners used for patients with maxillary obturators. Egypt. Dent. J. 2018 64 2 1805 1812 10.21608/edj.2018.78438
    [Google Scholar]
  12. Abuhajar E. Ali K. Zulfiqar G. Al Ansari K. Raja H.Z. Bishti S. Anweigi L. Management of chronic atrophic candidiasis (denture stomatitis) - A narrative review. Int. J. Environ. Res. Public Health 2023 20 4 3029 10.3390/ijerph20043029 36833718
    [Google Scholar]
  13. Kawanishi N. Hoshi N. Adachi T. Ichigaya N. Kimoto K. Positive effects of saliva on oral candidiasis: Basic research on the analysis of salivary properties. J. Clin. Med. 2021 10 4 812 10.3390/jcm10040812 33671369
    [Google Scholar]
  14. Brantes M.F. Azevedo R.S. Rozza-de-Menezes R.E. Póvoa H.C. Tucci R. Gouvêa A.F. Takahama-Jr A. Analysis of risk factors for maxillary denture-related oral mucosal lesions: A cross-sectional study. Med. Oral Patol. Oral Cir. Bucal 2019 24 3 e305 e313 10.4317/medoral.22826 31011141
    [Google Scholar]
  15. Navabi N. Gholamhoseinian A. Baghaei B. Hashemipour M.A. Risk factors associated with denture stomatitis in healthy subjects attending a dental school in southeast iran. Sultan Qaboos Univ. Med. J. 2013 13 4 574 580 10.12816/0003318 24273669
    [Google Scholar]
  16. Turgut Cankaya Z. Yurdakos A. Gokalp Kalabay P. The association between denture care and oral hygiene habits, oral hygiene knowledge and periodontal status of geriatric patients wearing removable partial dentures. Eur. Oral Res. 2020 54 1 9 15 10.26650/eor.20200048 32518905
    [Google Scholar]
  17. de Souza R.F. Khiyani M.F. Chaves C.A.L. Feine J. Barbeau J. Fuentes R. Borie E. Crizostomo L.C. Silva-Lovato C.H. Rompre P. Emami E. Improving practice guidelines for the treatment of denture-related erythematous stomatitis: A study protocol for a randomized controlled trial. Trials 2017 18 1 211 10.1186/s13063‑017‑1947‑y 28476133
    [Google Scholar]
  18. Evren B.A. Uludamar A. Işeri U. Ozkan Y.K. The association between socioeconomic status, oral hygiene practice, denture stomatitis and oral status in elderly people living different residential homes. Arch. Gerontol. Geriatr. 2011 53 3 252 257 10.1016/j.archger.2010.12.016 21269712
    [Google Scholar]
  19. Cakan U. Yuzbasioglu E. Kurt H. Kara H.B. Turunç R. Akbulut A. Aydin K.C. Assessment of hygiene habits and attitudes among removable partial denture wearers in a university hospital. Niger. J. Clin. Pract. 2015 18 4 511 515 10.4103/1119‑3077.154224 25966724
    [Google Scholar]
  20. Ercalik-Yalcinkaya S. Özcan M. Association between oral mucosal lesions and hygiene habits in a population of removable prosthesis wearers. J. Prosthodont. 2015 24 4 271 278 10.1111/jopr.12208 25231090
    [Google Scholar]
  21. Geiballa G.H. Abubakr N.H. Ibrahim Y.E. Patients’ satisfaction and maintenance of fixed partial denture. Eur. J. Dent. 2016 10 2 250 253 10.4103/1305‑7456.178313 27095906
    [Google Scholar]
  22. Amanpour S. Akbari Javar M. Sarhadinejad Z. Doustmohammadi M. Moghadari M. Sarhadynejad Z. A systematic review of medicinal plants and herbal products’ effectiveness in oral health and dental cure with health promotion approach. J. Educ. Health Promot. 2023 12 1 306 10.4103/jehp.jehp_1297_22 38023092
    [Google Scholar]
  23. Reinhardt L.C. Nascente P.S. Ribeiro J.S. Guimarães V.B.S. Etges A. Lund R.G. Sensitivity to antifungals by Candida spp samples isolated from cases of chronic atrophic candidiasis (CAC). Braz. J. Biol. 2020 80 2 266 272 10.1590/1519‑6984.190454 31291399
    [Google Scholar]
  24. Spampinato C. Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. BioMed Res. Int. 2013 2013 1 13 10.1155/2013/204237 23878798
    [Google Scholar]
  25. de Senna A.M. Vieira M.M.F. Machado-de-Sena R.M. Bertolin A.O. Núñez S.C. Ribeiro M.S. Photodynamic inactivation of Candida ssp. on denture stomatitis. A clinical trial involving palatal mucosa and prosthesis disinfection. Photodiagn. Photodyn. Ther. 2018 22 212 216 10.1016/j.pdpdt.2018.04.008 29678677
    [Google Scholar]
  26. Qiu J. Roza M.P. Colli K.G. Dalben Y.R. Maifrede S.B. Valiatti T.B. Novo V.M. Cayô R. Grão-Velloso T.R. Gonçalves S.S. Candida-associated denture stomatitis: Clinical, epidemiological, and microbiological features. Braz. J. Microbiol. 2023 54 2 841 848 10.1007/s42770‑023‑00952‑0 36940013
    [Google Scholar]
  27. Ghannoum M. Roilides E. Katragkou A. Petraitis V. Walsh T.J. The role of echinocandins in Candida biofilm–related vascular catheter infections: in vitro and in vivo model systems. Clin. Infect. Dis. 2015 61 Suppl. 6 S618 S621 10.1093/cid/civ815 26567279
    [Google Scholar]
  28. Pereira R Mendes J de FS Antifungal activity, antibiofilm, synergism and molecular docking of Allium sativum essential oil against clinical isolates of C. albicans. Res. Soc. Dev. 2021 10 12 e313101220457
    [Google Scholar]
  29. Iba B. Falegbe R.K. Iortyom C. Nwaohabuenyi T.E. Asa Y.I. Ibeobi A.C. Denture stomatitis. Orapuh Literature Reviews. 2021 1 1 3 10
    [Google Scholar]
  30. Finkel J.S. Mitchell A.P. Genetic control of Candida albicans biofilm development. Nat. Rev. Microbiol. 2011 9 2 109 118 10.1038/nrmicro2475 21189476
    [Google Scholar]
  31. Nett J. Lincoln L. Marchillo K. Massey R. Holoyda K. Hoff B. VanHandel M. Andes D. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 2007 51 2 510 520 10.1128/AAC.01056‑06 17130296
    [Google Scholar]
  32. Nobile C.J. Johnson A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 2015 69 1 71 92 10.1146/annurev‑micro‑091014‑104330 26488273
    [Google Scholar]
  33. Bertolini M.M. Xu H. Sobue T. Nobile C.J. Del Bel Cury A.A. Dongari-Bagtzoglou A. Candida –streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Mol. Oral Microbiol. 2015 30 4 307 322 10.1111/omi.12095 25754666
    [Google Scholar]
  34. Xie Z. Thompson A. Sobue T. Kashleva H. Xu H. Vasilakos J. Dongari-Bagtzoglou A. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J. Infect. Dis. 2012 206 12 1936 1945 10.1093/infdis/jis607 23033146
    [Google Scholar]
  35. Robbins N. Uppuluri P. Nett J. Rajendran R. Ramage G. Lopez-Ribot J.L. Andes D. Cowen L.E. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011 7 9 e1002257 10.1371/journal.ppat.1002257 21931556
    [Google Scholar]
  36. Lyons K.M. Cannon R.D. Beumer J. Bakr M.M. Love R.M. The role of biofilms and material surface characteristics in microbial adhesion to maxillary obturator materials: A literature review. Cleft Palate Craniofac. J. 2020 57 4 487 498 10.1177/1055665619882555 31665902
    [Google Scholar]
  37. Davidopoulou S. Diza E. Sakellari D. Menexes G. Kalfas S. Salivary concentration of free LL-37 in edentulism, chronic periodontitis and healthy periodontium. Arch. Oral Biol. 2013 58 8 930 934 10.1016/j.archoralbio.2013.01.003 23778112
    [Google Scholar]
  38. Sartawi S.Y. Abu-Hammad S. Salim A. Al-Omoush S. Denture stomatitis revisited: A summary of systematic reviews in the past decade and two case reports of papillary hyperplasia of unusual locations. Int. J. Dent. 2021 2021 1 8 10.1155/2021/7338143
    [Google Scholar]
  39. Perić M. Rajković K. Milić Lemić A. Živković R. Arsić Arsenijević V. Development and validation of mathematical models for testing antifungal activity of different essential oils against Candida species. Arch. Oral Biol. 2019 98 258 264 10.1016/j.archoralbio.2018.11.029 30530237
    [Google Scholar]
  40. Felton D.A. Edentulism and comorbid factors. J. Prosthodont. 2009 18 2 88 96 10.1111/j.1532‑849X.2009.00437.x 19254297
    [Google Scholar]
  41. Zissis A. Yannikakis S. Harrison A. Comparison of denture stomatitis prevalence in 2 population groups. Int. J. Prosthodont. 2006 19 6 621 625 17165305
    [Google Scholar]
  42. Campos E.N. Clemente L.M. Pizziolo P.G. Oliveira V.C. Macedo A.P. Watanabe E. Silva-Lovato C.H. Ribeiro A.B. Relation between the risk factors for the severity of denture stomatitis and quality of life of complete edentulous individuals: A cross-sectional study. J. Appl. Oral Sci. 2023 31 e20230192 10.1590/1678‑7757‑2023‑0192 38126577
    [Google Scholar]
  43. Sreedevi M. Ramesh A. Dwarakanath C. Periodontal status in smokers and nonsmokers: A clinical, microbiological, and histopathological study. Int. J. Dent. 2012 2012 1 10 10.1155/2012/571590 22505904
    [Google Scholar]
  44. Zimmermann H. Zimmermann N. Hagenfeld D. Veile A. Kim T.S. Becher H. Is frequency of tooth brushing a risk factor for periodontitis? A systematic review and meta‐analysis. Community Dent. Oral Epidemiol. 2015 43 2 116 127 10.1111/cdoe.12126 25255820
    [Google Scholar]
  45. Navarrete-Reyes A.P. Negrete-Najar J.P. Cojuc-Konigsberg G. Gómez-Camacho J. Juárez-Carrillo Y. López-Mosqueda L.G. Rangel-Tapia R. Ríos-Nava J.A. Ruiz-Manríquez C.A. Sandoval-Valdez D.A. Torres-Pérez A.C. García-Lara J.M.A. Soto-Perez-de-Celis E. Chavarri-Guerra Y. Oral health in older adults with cancer. Geriatrics Gerontol. Aging 2023 17 e0230016 10.53886/gga.e0230016
    [Google Scholar]
  46. Bukhari M.A. Algahtani M.A. Alsuwailem F.A. Alogaiel R.M. Almubarak S.H. Alqahtani S.S. Alabdullatif R.A. Alghimlas R.Y. Alotaibi N.F. Qahtani A.R.A. Alkathiri N.K. Epidemiology, etiology, and treatment of denture stomatitis. Int. J. Community Med. Public Health 2022 9 2 981 10.18203/2394‑6040.ijcmph20220003
    [Google Scholar]
  47. Kaomongkolgit R. Wongviriya A. Daroonpan P. Chansamat R. Tantanapornkul W. Palasuk J. Denture stomatitis and its predisposing factors in denture wearers. J. Int. Dent. Med. Res. 2017 10 1 89
    [Google Scholar]
  48. Ramezani A. Mollaei M. Yazdani Charati J. Tavakolian H. Mesgarani A. Molania T. Prevalence of denture stomatitis in patients using denture in Sari City, Iran, in 2020-2021. Iranian J. Health Sci. 2023 11 2 131 136 10.32598/ijhs.11.2.934.1
    [Google Scholar]
  49. Al-kafaji R.R.A. Diagnostic study on denture stomatitis, and its treatment. Int. J. Dent. Res. 2023 5 1 6 8
    [Google Scholar]
  50. Emami E. Taraf H. de Grandmont P. Gauthier G. de Koninck L. Lamarche C. de Souza R.F. The association of denture stomatitis and partial removable dental prostheses: A systematic review. Int. J. Prosthodont. 2012 25 2 113 119 22371829
    [Google Scholar]
  51. Reichart P.A. Oral mucosal lesions in a representative cross‐sectional study of aging Germans. Community Dent. Oral Epidemiol. 2000 28 5 390 398 10.1034/j.1600‑0528.2000.028005390.x 11014516
    [Google Scholar]
  52. Thilakumara I.P. Jayatilake J.A.M.S. Pallegama R.W. Ellepola A.N.B. Denture‐induced stomatitis and associated factors in a group of patients attending a university dental hospital in Sri Lanka. J. Investig. Clin. Dent. 2017 8 2 e12211 10.1111/jicd.12211 26991538
    [Google Scholar]
  53. Gendreau L. Loewy Z.G. Epidemiology and etiology of denture stomatitis. J. Prosthodont. 2011 20 4 251 260 10.1111/j.1532‑849X.2011.00698.x 21463383
    [Google Scholar]
  54. Vila T. Sultan A.S. Montelongo-Jauregui D. Jabra-Rizk M.A. Oral Candidiasis: A disease of opportunity. J. Fungi (Basel) 2020 6 1 15 10.3390/jof6010015 31963180
    [Google Scholar]
  55. Jacobsen I.D. Hube B. Candida albicans morphology: Still in focus. Expert Rev. Anti Infect. Ther. 2017 15 4 327 330 10.1080/14787210.2017.1290524 28152317
    [Google Scholar]
  56. Moyes D.L. Runglall M. Murciano C. Shen C. Nayar D. Thavaraj S. Kohli A. Islam A. Mora-Montes H. Challacombe S.J. Naglik J.R. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010 8 3 225 235 10.1016/j.chom.2010.08.002 20833374
    [Google Scholar]
  57. Cheng S.C. van de Veerdonk F.L. Lenardon M. Stoffels M. Plantinga T. Smeekens S. Rizzetto L. Mukaremera L. Preechasuth K. Cavalieri D. Kanneganti T.D. van der Meer J.W.M. Kullberg B.J. Joosten L.A.B. Gow N.A.R. Netea M.G. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol. 2011 90 2 357 366 10.1189/jlb.1210702 21531876
    [Google Scholar]
  58. Heilmann C.J. Sorgo A.G. Siliakus A.R. Dekker H.L. Brul S. de Koster C.G. de Koning L.J. Klis F.M. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (Reading) 2011 157 8 2297 2307 10.1099/mic.0.049395‑0 21602216
    [Google Scholar]
  59. Kumamoto C.A. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat. Rev. Microbiol. 2008 6 9 667 673 10.1038/nrmicro1960 18679170
    [Google Scholar]
  60. de Groot P.W.J. Bader O. de Boer A.D. Weig M. Chauhan N. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryot. Cell 2013 12 4 470 481 10.1128/EC.00364‑12 23397570
    [Google Scholar]
  61. Granger B.L. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. Eukaryot. Cell 2012 11 6 795 805 10.1128/EC.00026‑12 22505336
    [Google Scholar]
  62. Moyes D.L. Murciano C. Runglall M. Islam A. Thavaraj S. Naglik J.R. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One 2011 6 11 e26580 10.1371/journal.pone.0026580 22087232
    [Google Scholar]
  63. Naglik J.R. Richardson J.P. Moyes D.L. Candida albicans pathogenicity and epithelial immunity. PLoS Pathog. 2014 10 8 e1004257 10.1371/journal.ppat.1004257 25121985
    [Google Scholar]
  64. Moyes D.L. Richardson J.P. Naglik J.R. Candida albicans- epithelial interactions and pathogenicity mechanisms: Scratching the surface. Virulence 2015 6 4 338 346 10.1080/21505594.2015.1012981 25714110
    [Google Scholar]
  65. Dalle F. Wächtler B. L’Ollivier C. Holland G. Bannert N. Wilson D. Labruère C. Bonnin A. Hube B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 2010 12 2 248 271 10.1111/j.1462‑5822.2009.01394.x 19863559
    [Google Scholar]
  66. Moyes D.L. Wilson D. Richardson J.P. Mogavero S. Tang S.X. Wernecke J. Höfs S. Gratacap R.L. Robbins J. Runglall M. Murciano C. Blagojevic M. Thavaraj S. Förster T.M. Hebecker B. Kasper L. Vizcay G. Iancu S.I. Kichik N. Häder A. Kurzai O. Luo T. Krüger T. Kniemeyer O. Cota E. Bader O. Wheeler R.T. Gutsmann T. Hube B. Naglik J.R. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016 532 7597 64 68 10.1038/nature17625 27027296
    [Google Scholar]
  67. Richardson J.P. Mogavero S. Moyes D.L. Blagojevic M. Krüger T. Verma A.H. Coleman B.M. De La Cruz Diaz J. Schulz D. Ponde N.O. Carrano G. Kniemeyer O. Wilson D. Bader O. Enoiu S.I. Ho J. Kichik N. Gaffen S.L. Hube B. Naglik J.R. Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence. MBio 2018 9 1 e02178-17 10.1128/mBio.02178‑17 29362237
    [Google Scholar]
  68. Swidergall M. Khalaji M. Solis N.V. Moyes D.L. Drummond R.A. Hube B. Lionakis M.S. Murdoch C. Filler S.G. Naglik J.R. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J. Infect. Dis. 2019 220 9 1477 1488 10.1093/infdis/jiz322 31401652
    [Google Scholar]
  69. Ho J. Yang X. Nikou S.A. Kichik N. Donkin A. Ponde N.O. Richardson J.P. Gratacap R.L. Archambault L.S. Zwirner C.P. Murciano C. Henley-Smith R. Thavaraj S. Tynan C.J. Gaffen S.L. Hube B. Wheeler R.T. Moyes D.L. Naglik J.R. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 2019 10 1 2297 10.1038/s41467‑019‑09915‑2 31127085
    [Google Scholar]
  70. Wächtler B. Wilson D. Haedicke K. Dalle F. Hube B. From attachment to damage: Defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 2011 6 2 e17046 10.1371/journal.pone.0017046 21407800
    [Google Scholar]
  71. Liu Y. Shetty A.C. Schwartz J.A. Bradford L.L. Xu W. Phan Q.T. Kumari P. Mahurkar A. Mitchell A.P. Ravel J. Fraser C.M. Filler S.G. Bruno V.M. New signaling pathways govern the host response to C. albicans infection in various niches. Genome Res. 2015 25 5 679 689 10.1101/gr.187427.114 25858952
    [Google Scholar]
  72. Murciano C. Moyes D.L. Runglall M. Tobouti P. Islam A. Hoyer L.L. Naglik J.R. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 2012 7 3 e33362 10.1371/journal.pone.0033362 22428031
    [Google Scholar]
  73. Solis N.V. Swidergall M. Bruno V.M. Gaffen S.L. Filler S.G. The aryl hydrocarbon receptor governs epithelial cell invasion during oropharyngeal candidiasis. MBio 2017 8 2 e00025-17 10.1128/mBio.00025‑17 28325761
    [Google Scholar]
  74. Wächtler B. Citiulo F. Jablonowski N. Förster S. Dalle F. Schaller M. Wilson D. Hube B. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 2012 7 5 e36952 10.1371/journal.pone.0036952 22606314
    [Google Scholar]
  75. Schönherr F.A. Sparber F. Kirchner F.R. Guiducci E. Trautwein-Weidner K. Gladiator A. Sertour N. Hetzel U. Le G.T.T. Pavelka N. d’Enfert C. Bougnoux M-E. Corti C.F. LeibundGut-Landmann S. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 2017 10 5 1335 1350 10.1038/mi.2017.2 28176789
    [Google Scholar]
  76. Gasparoto T.H. de Oliveira C.E. Vieira N.A. Porto V.C. Gasparoto C.T. Campanelli A.P. Lara V.S. The pattern recognition receptors expressed on neutrophils and the associated cytokine profile from different aged patients with Candida-related denture stomatitis. Exp. Gerontol. 2012 47 9 741 748 10.1016/j.exger.2012.07.003 22796226
    [Google Scholar]
  77. Lenardon M.D. Sood P. Dorfmueller H.C. Brown A.J.P. Gow N.A.R. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surf. 2020 6 100047 10.1016/j.tcsw.2020.100047 33294751
    [Google Scholar]
  78. Pappas P.G. Lionakis M.S. Arendrup M.C. Ostrosky-Zeichner L. Kullberg B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018 4 1 18026 10.1038/nrdp.2018.26 29749387
    [Google Scholar]
  79. Faot F. Cavalcanti Y.W. e Bertolini M.M. Pinto L.R. da Silva W.J. Del Bel Cury A.A. Efficacy of citric acid denture cleanser on the Candida albicansbiofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process. BMC Oral Health 2014 14 1 77 10.1186/1472‑6831‑14‑77 24957210
    [Google Scholar]
  80. Nikou S.A. Kichik N. Brown R. Ponde N. Ho J. Naglik J. Richardson J. Candida albicans interactions with mucosal surfaces during health and disease. Pathogens 2019 8 2 53 10.3390/pathogens8020053 31013590
    [Google Scholar]
  81. Verma A.H. Richardson J.P. Zhou C. Coleman B.M. Moyes D.L. Ho J. Huppler A.R. Ramani K. McGeachy M.J. Mufazalov I.A. Waisman A. Kane L.P. Biswas P.S. Hube B. Naglik J.R. Gaffen S.L. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2017 2 17 eaam8834 10.1126/sciimmunol.aam8834 29101209
    [Google Scholar]
  82. Tang S.X. Moyes D.L. Richardson J.P. Blagojevic M. Naglik J.R. Epithelial discrimination of commensal and pathogenic Candida albicans. Oral Dis. 2016 22 Suppl 1 114 119 10.1111/odi.12395 26843519
    [Google Scholar]
  83. Moyes D.L. Shen C. Murciano C. Runglall M. Richardson J.P. Arno M. Aldecoa-Otalora E. Naglik J.R. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J. Infect. Dis. 2014 209 11 1816 1826 10.1093/infdis/jit824 24357630
    [Google Scholar]
  84. Wilson D. Naglik J.R. Hube B. The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog. 2016 12 10 e1005867 10.1371/journal.ppat.1005867 27764260
    [Google Scholar]
  85. Guma M. Stepniak D. Shaked H. Spehlmann M.E. Shenouda S. Cheroutre H. Vicente-Suarez I. Eckmann L. Kagnoff M.F. Karin M. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. J. Exp. Med. 2011 208 9 1889 1900 10.1084/jem.20110242 21825016
    [Google Scholar]
  86. Pukkila-Worley R. Ausubel F.M. Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog. 2011 7 6 e1002074 10.1371/journal.ppat.1002074 21731485
    [Google Scholar]
  87. Conti H.R. Shen F. Nayyar N. Stocum E. Sun J.N. Lindemann M.J. Ho A.W. Hai J.H. Yu J.J. Jung J.W. Filler S.G. Masso-Welch P. Edgerton M. Gaffen S.L. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 2009 206 2 299 311 10.1084/jem.20081463 19204111
    [Google Scholar]
  88. O’Donnell L.E. Robertson D. Nile C.J. Cross L.J. Riggio M. Sherriff A. Bradshaw D. Lambert M. Malcolm J. Buijs M.J. Zaura E. Crielaard W. Brandt B.W. Ramage G. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS One 2015 10 9 e0137717 10.1371/journal.pone.0137717 26368937
    [Google Scholar]
  89. Cheng S.C. Joosten L.A.B. Netea M.G. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev. 2014 25 6 707 713 10.1016/j.cytogfr.2014.06.008 25001414
    [Google Scholar]
  90. Dühring S. Germerodt S. Skerka C. Zipfel P.F. Dandekar T. Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans - Understanding and modeling defense and evasion strategies. Front. Microbiol. 2015 6 625 10.3389/fmicb.2015.00625 26175718
    [Google Scholar]
  91. Cheng S.C. Joosten L.A.B. Kullberg B.J. Netea M.G. Interplay between Candida albicans and the mammalian innate host defense. Infect. Immun. 2012 80 4 1304 1313 10.1128/IAI.06146‑11 22252867
    [Google Scholar]
  92. Weindl G. Naglik J.R. Kaesler S. Biedermann T. Hube B. Korting H.C. Schaller M. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest. 2007 117 12 3664 3672 10.1172/JCI28115 17992260
    [Google Scholar]
  93. Gabrielli E. Sabbatini S. Roselletti E. Kasper L. Perito S. Hube B. Cassone A. Vecchiarelli A. Pericolini E. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans. Virulence 2016 7 7 819 825 10.1080/21505594.2016.1184385 27127904
    [Google Scholar]
  94. Urban C.F. Ermert D. Schmid M. Abu-Abed U. Goosmann C. Nacken W. Brinkmann V. Jungblut P.R. Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009 5 10 e1000639 10.1371/journal.ppat.1000639 19876394
    [Google Scholar]
  95. Kenny E.F. Herzig A. Krüger R. Muth A. Mondal S. Thompson P.R. Brinkmann V. Bernuth H. Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife 2017 6 e24437 10.7554/eLife.24437 28574339
    [Google Scholar]
  96. Kenno S. Perito S. Mosci P. Vecchiarelli A. Monari C. 2013 Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Front. Microbiol. 7 879 10.3389/fmicb.2016.00879 27375599
    [Google Scholar]
  97. Ermert D. Urban C.F. Laube B. Goosmann C. Zychlinsky A. Brinkmann V. Mouse neutrophil extracellular traps in microbial infections. J. Innate Immun. 2009 1 3 181 193 10.1159/000205281 20375576
    [Google Scholar]
  98. Byrd A.S. O’Brien X.M. Johnson C.M. Lavigne L.M. Reichner J.S. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol. 2013 190 8 4136 4148 10.4049/jimmunol.1202671 23509360
    [Google Scholar]
  99. Nanì S. Fumagalli L. Sinha U. Kamen L. Scapini P. Berton G. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles. J. Innate Immun. 2015 7 1 59 73 10.1159/000365249 25277753
    [Google Scholar]
  100. Gasparoto T.H. Vieira N.A. Porto V.C. Campanelli A.P. Lara V.S. Differences between salivary and blood neutrophils from elderly and young denture wearers. J. Oral Rehabil. 2011 38 1 41 51 10.1111/j.1365‑2842.2010.02126.x 20663018
    [Google Scholar]
  101. Gasparoto T.H. Oliveira C.E. Vieira N.A. Porto V.C. Cunha F.Q. Garlet G.P. Campanelli A.P. Lara V.S. Activation pattern of neutrophils from blood of elderly individuals with Candida-related denture stomatitis. Eur. J. Clin. Microbiol. Infect. Dis. 2012 31 6 1271 1277 10.1007/s10096‑011‑1439‑z 22120419
    [Google Scholar]
  102. Gasparoto T.H. Dalboni T.M. Amôr N.G. Abe A.E. Perri G. Lara V.S. Vieira N.A. Gasparoto C.T. Campanelli A.P. Fcγ receptors on aging neutrophils. J. Appl. Oral Sci. 2021 29 e20200770 10.1590/1678‑7757‑2020‑0770 33825754
    [Google Scholar]
  103. Björkman L. Christenson K. Davidsson L. Mårtensson J. Amirbeagi F. Welin A. Forsman H. Karlsson A. Dahlgren C. Bylund J. Neutrophil recruitment to inflamed joints can occur without cellular priming. J. Leukoc. Biol. 2019 105 6 1123 1130 10.1002/JLB.3AB0918‑369R 30570778
    [Google Scholar]
  104. Filler S.G. Candida–host cell receptor–ligand interactions. Curr. Opin. Microbiol. 2006 9 4 333 339 10.1016/j.mib.2006.06.005 16837237
    [Google Scholar]
  105. Miramón P. Kasper L. Hube B. Thriving within the host: Candida spp. interactions with phagocytic cells. Med. Microbiol. Immunol. (Berl.) 2013 202 3 183 195 10.1007/s00430‑013‑0288‑z 23354731
    [Google Scholar]
  106. Wellington M. Koselny K. Sutterwala F.S. Krysan D.J. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot. Cell 2014 13 2 329 340 10.1128/EC.00336‑13 24376002
    [Google Scholar]
  107. Uwamahoro N. Verma-Gaur J. Shen H.H. Qu Y. Lewis R. Lu J. Bambery K. Masters S.L. Vince J.E. Naderer T. Traven A. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio 2014 5 2 e00003-14 10.1128/mBio.00003‑14 24667705
    [Google Scholar]
  108. Lanternier F. Cypowyj S. Picard C. Bustamante J. Lortholary O. Casanova J.L. Puel A. Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 2013 25 6 736 747 10.1097/MOP.0000000000000031 24240293
    [Google Scholar]
  109. Millet N. Solis N.V. Swidergall M. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity. Front. Immunol. 2020 11 555363 10.3389/fimmu.2020.555363 33193324
    [Google Scholar]
  110. Cornejo Ulloa P. van der Veen M.H. Krom B.P. Review: Modulation of the oral microbiome by the host to promote ecological balance. Odontology 2019 107 4 437 448 10.1007/s10266‑019‑00413‑x 30719639
    [Google Scholar]
  111. Kirchner F.R. LeibundGut-Landmann S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 2021 14 2 455 467 10.1038/s41385‑020‑0327‑1 32719409
    [Google Scholar]
  112. Barceloux D.G. Cinnamon (Cinnamomum species). Dis. Mon. 2009 55 6 327 335 10.1016/j.disamonth.2009.03.003 19446676
    [Google Scholar]
  113. Muhammad D.R.A. Dewettinck K. Cinnamon and its derivatives as potential ingredient in functional food - A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32 7 1049 1064 2017 10.1080/19440049.2015.1040081 25893282
    [Google Scholar]
  114. Khruengsai S. Sripahco T. Pripdeevech P. Antibacterial activity and synergic effects of the essential oils of Amomum verum Blackw and Zanthoxylum limonella (Dennst.) Alston. Arch. Microbiol. 2023 205 3 102 10.1007/s00203‑023‑03436‑9 36862257
    [Google Scholar]
  115. Kawatra P. Rajagopalan R. Cinnamon: Mystic powers of a minute ingredient. Pharmacognosy Res. 2015 7 Suppl 1 S1 S6 10.4103/0974‑8490.157990 26109781
    [Google Scholar]
  116. Montoya C. Roldan L. Yu M. Valliani S. Ta C. Yang M. Orrego S. Smart dental materials for antimicrobial applications. Bioact. Mater. 2023 24 1 19 10.1016/j.bioactmat.2022.12.002 36582351
    [Google Scholar]
  117. Fan S. Wang D. Wen X. Li X. Fang F. Richel A. Xiao N. Fauconnier M-L. Hou C. Zhang D. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocoll. 2023 138 108438 10.1016/j.foodhyd.2022.108438
    [Google Scholar]
  118. Kowalska J. Tyburski J. Matysiak K. Jakubowska M. Łukaszyk J. Krzymińska J. Cinnamon as a useful preventive substance for the care of human and plant health. Molecules 2021 26 17 5299 10.3390/molecules26175299 34500731
    [Google Scholar]
  119. Moini J. Logalbo A. Schnellmann J.G. Classics in chemical neuroscience: Selegiline, isocarboxazid, phenelzine, and tranylcypromine. ACS Chem. Neurosci. 2023 14 23 4064 4075 10.1021/acschemneuro.3c00591
    [Google Scholar]
  120. Bai G. Wen X. Niu L. Recent developments in amorphous alloy catalysts for hydrogenation. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier 2016 10.1016/B978‑0‑12‑409547‑2.11034‑0
    [Google Scholar]
  121. Yu C. Li Y.L. Liang M. Dai S.Y. Ma L. Li W.G. Lai F. Liu X.M. Characteristics and hazards of the cinnamaldehyde oxidation process. RSC Advances 2020 10 32 19124 19133 10.1039/C9RA10820C 35518288
    [Google Scholar]
  122. Tresina P.S. Selvam M.S. Doss A. Mohan V.R. Antidiabetic bioactive natural products from medicinal plants. Stud. Nat. Prod. Chem. 2022 75 75 118 10.1016/B978‑0‑323‑91250‑1.00004‑5
    [Google Scholar]
  123. Gan Z. Huang J. Chen J. Nisar M.F. Qi W. Synthesis and antifungal activities of cinnamaldehyde derivatives against Penicillium digitatum causing citrus green mold. J. Food Qual. 2020 2020 1 1 7 10.1155/2020/8898692
    [Google Scholar]
  124. Gupta P. Kaur N. Kumar V. Gupta A. Gupta S. Dua A. Injeti E. Mittal A. Evaluation of cinnamaldehyde derivatives as potential protective agents against oxidative-stress induced myotube atrophy using chemical, biological and computational analysis. Bioorg. Chem. 2023 139 106661 10.1016/j.bioorg.2023.106661 37354662
    [Google Scholar]
  125. Chai W.C. Whittall J.J. Polyak S.W. Foo K. Li X. Dutschke C.J. Ogunniyi A.D. Ma S. Sykes M.J. Semple S.J. Venter H. Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division. Front. Microbiol. 2022 13 967949 10.3389/fmicb.2022.967949 36106080
    [Google Scholar]
  126. Rao P.V. Gan S.H. Cinnamon: a multifaceted medicinal plant. Evid. Based Complement. Alternat. Med. 2014 2014 1 642942 10.1155/2014/642942 24817901
    [Google Scholar]
  127. Banu A.T. Lunghar J. Chapter 16 - Cinnamon as a potential nutraceutical and functional food ingredient. Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods Elsevier 2023 257 278 10.1016/B978‑0‑323‑90794‑1.00021‑1
    [Google Scholar]
  128. Valdivieso-Ugarte M. Plaza-Diaz J. Gomez-Llorente C. Lucas Gómez E. Sabés-Alsina M. Gil Á. in vitro examination of antibacterial and immunomodulatory activities of cinnamon, white thyme, and clove essential oils. J. Funct. Foods 2021 81 104436 10.1016/j.jff.2021.104436
    [Google Scholar]
  129. Paiano R.B. de Sousa R.L.M. Bonilla J. Moreno L.Z. de Souza E.D.F. Baruselli P.S. Moreno A.M. in vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology 2023 196 106 111 10.1016/j.theriogenology.2022.11.010 36413866
    [Google Scholar]
  130. Liu S. Zhao C. Cao Y. Li Y. Zhang Z. Nie D. Tang W. Li Y. Comparison of chemical compositions and antioxidant activity of essential oils from litsea cubeba, cinnamon, anise, and eucalyptus. Molecules 2023 28 13 5051 10.3390/molecules28135051 37446712
    [Google Scholar]
  131. Chao L.K. Hua K.F. Hsu H.Y. Cheng S.S. Lin I.F. Chen C.J. Chen S.T. Chang S.T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem. Toxicol. 2008 46 1 220 231 10.1016/j.fct.2007.07.016 17868967
    [Google Scholar]
  132. Gunawardena D. Karunaweera N. Lee S. van Der Kooy F. Harman D.G. Raju R. Bennett L. Gyengesi E. Sucher N.J. Münch G. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts – identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food Funct. 2015 6 3 910 919 10.1039/C4FO00680A 25629927
    [Google Scholar]
  133. Doyle A.A. Stephens J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019 139 104405 10.1016/j.fitote.2019.104405 31707126
    [Google Scholar]
  134. Vasconcelos N.G. Croda J. Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018 120 198 203 10.1016/j.micpath.2018.04.036 29702210
    [Google Scholar]
  135. Gupta P. Gupta S. Sharma M. Kumar N. Pruthi V. Poluri K.M. Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix, and cell wall components of Candida glabrata and its clinical isolates. ACS Omega 2018 3 9 12201 12214 10.1021/acsomega.8b01856 31459295
    [Google Scholar]
  136. Stevens N. Allred K. Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations. Molecules 2022 27 3 853 10.3390/molecules27030853 35164117
    [Google Scholar]
  137. Khan S.N. Khan S. Iqbal J. Khan R. Khan A.U. Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans. Front. Microbiol. 2017 8 1641 10.3389/fmicb.2017.01641 28900419
    [Google Scholar]
  138. Shreaz S. Wani W.A. Behbehani J.M. Raja V. Irshad M. Karched M. Ali I. Siddiqi W.A. Hun L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016 112 116 131 10.1016/j.fitote.2016.05.016 27259370
    [Google Scholar]
  139. da Nóbrega Alves D. Monteiro A.F.M. Andrade P.N. Lazarini J.G. Abílio G.M.F. Guerra F.Q.S. Scotti M.T. Scotti L. Rosalen P.L. Castro R.D. Docking prediction, antifungal activity, anti-biofilm effects on Candida spp., and toxicity against human cells of cinnamaldehyde. Molecules 2020 25 24 5969 10.3390/molecules25245969 33339401
    [Google Scholar]
  140. de Araújo M.R.C. Maciel P.P. Castellano L.R.C. Bonan P.R.F. Alves D.N. de Medeiros A.C.D. de Castro R.D. Efficacy of essential oil of cinnamon for the treatment of oral candidiasis: A randomized trial. Spec. Care Dentist. 2021 41 3 349 357 10.1111/scd.12570 33475184
    [Google Scholar]
  141. Veilleux M.P. Grenier D. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. BMC Complement. Altern. Med. 2019 19 1 303 10.1186/s12906‑019‑2730‑2 31703673
    [Google Scholar]
  142. Almeida L.F.D. Paula J.F. Almeida R.V.D. Williams D.W. Hebling J. Cavalcanti Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016 74 5 393 398 10.3109/00016357.2016.1166261 27098375
    [Google Scholar]
  143. Mishra P. Gupta P. Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. Mater. Sci. Eng. C 2021 119 111450 10.1016/j.msec.2020.111450 33321588
    [Google Scholar]
  144. Iyer M.S. Gujjari A.K. Paranthaman S. Abu Lila A.S. Almansour K. Alshammari F. Khafagy E.S. Arab H.H. Gowda D.V. Development and evaluation of clove and cinnamon supercritical fluid extracts-loaded emulgel for antifungal activity in denture stomatitis. Gels 2022 8 1 33 10.3390/gels8010033 35049568
    [Google Scholar]
  145. Rangel M.L. Aquino S.G. Lima J.M. Castellano L.R. Castro R.D. Aquino SG de, Lima JM de, Castellano LR, Castro RD de. in vitro effect of Cinnamomum zeylanicum Blume essential oil on Candida spp. involved in oral infections. Evid. Based Complement. Alternat. Med. 2018 2018 1 4045013 10.1155/2018/4045013 30416530
    [Google Scholar]
  146. Choonharuangdej S. Srithavaj T. Thummawanit S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study. J. Prosthet. Dent. 2021 125 4 707.e1 707.e6 10.1016/j.prosdent.2020.12.017 33468317
    [Google Scholar]
  147. de Almeida M.A.L. Batista A.U.D. de Araújo M.R.C. de Almeida V.F.D.S. Bonan P.R.F. Nóbrega Alves D. da Costa T.K.V.L. Nóbrega D.F. de Castro R.D. Cinnamaldehyde is a biologically active compound for the disinfection of removable denture: Blinded randomized crossover clinical study. BMC Oral Health 2020 20 1 223 10.1186/s12903‑020‑01212‑5 32807162
    [Google Scholar]
  148. Didehdar M. Chegini Z. Tabaeian S.P. Razavi S. Shariati A. Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection. Front. Cell. Infect. Microbiol. 2022 12 930624 10.3389/fcimb.2022.930624 35899044
    [Google Scholar]
  149. Zhang C. Fan L. Fan S. Wang J. Luo T. Tang Y. Chen Z. Yu L. Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules 2019 24 19 3473 10.3390/molecules24193473 31557828
    [Google Scholar]
  150. Yanakiev S. Effects of cinnamon (Cinnamomum spp.) in dentistry: A review. Molecules 2020 25 18 4184 10.3390/molecules25184184 32932678
    [Google Scholar]
  151. Lai D.J. Chua L. Chong J. Chong P. Tegginamani A. Bin Zamzuri A. Antibacterial properties of cinnamon: A concise review. Indian J. Oral Health Res. 2021 7 1 7 10.4103/ijohr.ijohr_2_21
    [Google Scholar]
  152. Jeong Y.J. Kim H.E. Han S.J. Choi J.S. Antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion against multi-species oral biofilms. Sci. Rep. 2021 11 1 5911 10.1038/s41598‑021‑85375‑3 33723345
    [Google Scholar]
  153. Sangal A. Rattan S. Maurya M.R. Sadasivuni K.K. Novel formulation for co-delivery of cinnamon-and cumin-loaded polymeric nanoparticles to enhance their oral bioavailability. 3 Biotech 2023 13 2 63 10.1007/s13205‑023‑03480‑8 36718410
    [Google Scholar]
  154. Ribeiro J.S. Bordini E.A.F. Pereira G.K.R. Polasani R.R. Squarize C.H. Kantorski K.Z. Valandro L.F. Bottino M.C. Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials. Clin. Oral Investig. 2022 26 4 3697 3706 10.1007/s00784‑021‑04341‑5 35028732
    [Google Scholar]
  155. Castro R.D. Lima E.O. Anti-Candida activity and chemical composition of Cinnamomum zeylanicum blume essential oil. Braz. Arch. Biol. Technol. 2013 56 5 749 755 10.1590/S1516‑89132013000500005
    [Google Scholar]
  156. Oliveira J.A. da Silva I.C.G. Trindade L.A. Lima E.O. Carlo H.L. Cavalcanti A.L. de Castro R.D. Safety and tolerability of essential oil from Cinnamomum zeylanicum blume leaves with action on oral candidosis and its effect on the physical properties of the acrylic resin. Evid. Based Complement. Alternat. Med. 2014 2014 1 325670 10.1155/2014/325670 25574178
    [Google Scholar]
  157. da Nóbrega Alves D. Melo A.K.V. Alves A.F. de Araújo M.R.C. da Silva Araújo R. de Castro R.D. Safety and tolerability of cinnamaldehyde in orabase for oral candidiasis treatment: Phase I clinical trial. Clin. Oral Investig. 2022 26 7 4825 4833 10.1007/s00784‑022‑04450‑9 35305150
    [Google Scholar]
  158. Molania T. Malekzadeh Shafaroudi A. Saeedi M. Moosazadeh M. Valipour F. Rostamkalaei S.S. Salehabadi N. Salehi M. Evaluation of cinnamaldehyde mucoadhesive patches on minor recurrent aphthous stomatitis: A randomized, double-blind, placebo-controlled clinical trial. BMC Oral Health 2022 22 1 235 10.1186/s12903‑022‑02248‑5 35701773
    [Google Scholar]
  159. Tunç M.T. Koca İ. Ohmic heating assisted hydrodistillation of clove essential oil. Ind. Crops Prod. 2019 141 111763 10.1016/j.indcrop.2019.111763
    [Google Scholar]
  160. Singletary K. Clove: Overview of potential health benefits. Nutr. Today 2014 49 4 207 224 10.1097/NT.0000000000000036
    [Google Scholar]
  161. Yadav D.J. Tangade D.P. Jain D.A. Agrahari D.P. Chaudhary D.V. Dental herbs: Ethomedicinal plants in dentistry. Int. J. Appl. Dent. Sci. 2021 7 3 115 117 10.22271/oral.2021.v7.i3b.1290
    [Google Scholar]
  162. Haro-González J.N. Castillo-Herrera G.A. Martínez-Velázquez M. Espinosa-Andrews H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021 26 21 6387 10.3390/molecules26216387 34770801
    [Google Scholar]
  163. Kačániová M. Galovičová L. Borotová P. Valková V. Ďúranová H. Kowalczewski P.Ł. Said-Al Ahl H.A.H. Hikal W.M. Vukic M. Savitskaya T. Grinshpan D. Vukovic N.L. Chemical composition, in vitro and in situ antimicrobial and antibiofilm activities of Syzygium aromaticum (Clove) essential oil. Plants 2021 10 10 2185 10.3390/plants10102185 34685994
    [Google Scholar]
  164. Boughendjioua H. 2018 Essential oil composition of Syzygium aromaticum (L.). Int. Res. J. Pharm. Med. Sci. 1 3 26 28
    [Google Scholar]
  165. Hadidi M. Pouramin S. Adinepour F. Haghani S. Jafari S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020 236 116075 10.1016/j.carbpol.2020.116075 32172888
    [Google Scholar]
  166. Kaur K. Kaushal S. Rani R. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives. J. Essent. Oil-Bear. Plants 2019 22 5 1195 1217 10.1080/0972060X.2019.1688689
    [Google Scholar]
  167. Martins R.M. Farias M.D.A. Nedel F. de Pereira C.M.P. Lencina C. Lund R.G. Antimicrobial and cytotoxic evaluation of eugenol derivatives. Med. Chem. Res. 2016 25 10 2360 2367 10.1007/s00044‑016‑1682‑z
    [Google Scholar]
  168. Salam R. Sarker B.K. Haq M.R. Khokon J.U. Antimicrobial activity of medicinal plant for oral health and hygiene. Int. J. Nat. Soc. Sci. 1 2 1 12 2015
    [Google Scholar]
  169. Ulanowska M. Olas B. Biological properties and prospects for the application of eugenol - A review. Int. J. Mol. Sci. 2021 22 7 3671 10.3390/ijms22073671 33916044
    [Google Scholar]
  170. Nazzaro F. Fratianni F. De Martino L. Coppola R. De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013 6 12 1451 1474 10.3390/ph6121451 24287491
    [Google Scholar]
  171. Marchese A. Barbieri R. Coppo E. Orhan I.E. Daglia M. Nabavi S.F. Izadi M. Abdollahi M. Nabavi S.M. Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017 43 6 668 689 10.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  172. Babu A.J. Sundari A.R. Indumathi J. MSravanthi R.V.N.S. Sravanthi M. Study on the antimicrobial activity and minimum inhibitory concentration of essential oils of spices. Vet. World 2011 4 7 311 10.5455/vetworld.4.311
    [Google Scholar]
  173. Soraggi Battagin T. Nicolas Caccalano M. Dilarri G. Felipe Cavicchia Zamuner C. Alleoni N. Leonardo Saldanha L. Bacci M. Ferreira H. Syzygium aromaticum (clove) essential oil: An alternative for the sanitization of citrus fruit in packinghouses. J. Food Process. Preserv. 2021 45 9 e15496 10.1111/jfpp.15496
    [Google Scholar]
  174. Amen A. Hassan E. Elgendy S. Bayoumi S. Abdel Hameed M. Abd-Alrahman E. The effect of Essential oils of selected plants on clinical isolates of Candida Species growth, transition and biofilm formation. Bull. Pharma. Sci.s Assiut Univ. 2023 46 2 1209 1232 10.21608/bfsa.2023.327651
    [Google Scholar]
  175. Fadilah F. Yanuar A. Arsianti A. Andrajati R. Phenylpropanoids, eugenol scaffold, and its derivatives as anticancer. Asian J. Pharm. Clin. Res. 2017 10 3 41 46 10.22159/ajpcr.2017.v10i3.16071
    [Google Scholar]
  176. Thapa D. Richardson A.J. Zweifel B. Wallace R.J. Gratz S.W. Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human colon cancer cells. J. Food Sci. 2019 84 7 1979 1985 10.1111/1750‑3841.14665 31206673
    [Google Scholar]
  177. Nogueira Sobrinho A.C. Morais S.M. Souza E.B. Albuquerque M.R.J.R. Santos H.S. Cavalcante C.S.P. Sousa H.A. Fontenelle R.O.S. Antifungal and antioxidant activities of Vernonia Chalybaea Mart. ex DC. Essential oil and their major constituent β-caryophyllene. Braz. Arch. Biol. Technol. 2020 63 e20190177 10.1590/1678‑4324‑2020190177
    [Google Scholar]
  178. Dahham S.S. Tabana Y.M. Ahamed M.B.K. Majid A. In vivo anti-inflammatory activity of β-caryophyllene, evaluated by molecular imaging. Mol. Med. Chem. 1 e1001 2015 10.14800/mmc.1001
    [Google Scholar]
  179. Ali M.M. Ramadan M.M. Ghanem K.Z. El-Ghorabe A.H. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines. Grasas Aceites 2015 66 2 e080 10.3989/gya.0955142
    [Google Scholar]
  180. Banerjee K. Madhyastha H. Sandur V R. N T M. N T. Thiagarajan P. Anti-inflammatory and wound healing potential of a clove oil emulsion. Colloids Surf. B Biointerfaces 2020 193 111102 10.1016/j.colsurfb.2020.111102 32442923
    [Google Scholar]
  181. Lane T. Anantpadma M. Freundlich J.S. Davey R.A. Madrid P.B. Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm. Res. 2019 36 7 104 10.1007/s11095‑019‑2629‑0 31101988
    [Google Scholar]
  182. Dai J.P. Zhao X.F. Zeng J. Wan Q.Y. Yang J.C. Li W.Z. Chen X.X. Wang G.F. Li K.S. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One 2013 8 4 e61026 10.1371/journal.pone.0061026 23613775
    [Google Scholar]
  183. Aboubakr H.A. Nauertz A. Luong N.T. Agrawal S. El-Sohaimy S.A.A. Youssef M.M. Goyal S.M. in vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot. 2016 79 6 1001 1012 10.4315/0362‑028X.JFP‑15‑593 27296605
    [Google Scholar]
  184. Natto Z.S. Herbs and oral health. Oral Health Care: An Important Issue of the Modern Society Ardelean L.C. Rusu L.C. 10 2022 IntechOpen Croatia 301 316 10.5772/intechopen.103715
    [Google Scholar]
  185. Zanul Abidin Z. Mohd Salleh N. Himratul-Aznita W.H. Ahmad S.F. Lim G.S. Raja Mohd N. Dziaruddin N. Antifungal effects of eugenol on Candida albicans adherence to denture polymers. PeerJ 2023 11 e15750 10.7717/peerj.15750 37601266
    [Google Scholar]
  186. Nuñez L. D’ Aquino M. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz. J. Microbiol. 2012 43 4 1255 1260 10.1590/S1517‑83822012000400003 24031950
    [Google Scholar]
  187. Pramod K. Ansari S.H. Ali J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun. 2010 5 12 1999 2006 10.1177/1934578X1000501236
    [Google Scholar]
  188. Dagli N. Dagli R. Mahmoud R. Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 2015 5 5 335 340 10.4103/2231‑0762.165933 26539382
    [Google Scholar]
  189. Mith H. Duré R. Delcenserie V. Zhiri A. Daube G. Clinquart A. Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014 2 4 403 416 10.1002/fsn3.116 25473498
    [Google Scholar]
  190. Bhat V. Sharma S.M. Shetty V. Shastry C.S. Rao V. Shenoy S.M. Screening of selected plant essential oils for their antifungal activity against Candida species isolated from denture stomatitis patients. J. Health All. Sci. 4 1 46 51 2014 10.1055/s‑0040‑1703730
    [Google Scholar]
  191. Patel H. Pamecha S. Chadha M. Muthuvignesh J. Hathi V. Joshi A. 2022 A comparative evaluation of antifungal efficacy of clove oil, 2% gluteraldehyde, and 5% sodium hypoclorite is infectants and its effect on dimensional accuracy of addition silicone impression material. J. Res. Adv. Dent. 13 4 1 4 10.53064/jrad.2022.13.4.228
    [Google Scholar]
  192. Nallaswamy V.D. Roy A. Rajeshkumar S. Lakshmi T. Ezhilarasan D. Subha M. Effervescent denture cleansing granules using clove oil and analysis of its in vitro antimicrobial activity. Indian J. Public Health Res. Dev. 2019 10 11 3687 10.5958/0976‑5506.2019.04162.7
    [Google Scholar]
  193. Pattanachaipuvanon P. Ratanajanchai M. Viscoelasticity at initial setting and gelation time of a short-term soft liner incorporated with clove, star anise, and kaffir lime essential oils. Mahidol Dent. J. 2021 41 2 122 131
    [Google Scholar]
  194. Fareen H.F. Geetha R.V. Evaluation of antimicrobial activity of commercially available herbal toothpaste-An in vitro study. Drug Invent. Today 2018 10 3214
    [Google Scholar]
  195. Didehdar M. Chegini Z. Shariati A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front. Pharmacol. 2022 13 872127 10.3389/fphar.2022.872127 36016558
    [Google Scholar]
  196. Khan F. Tabassum N. Jeong G.J. Jung W.K. Kim Y.M. Inhibition of mixed biofilms of Candida albicans and Staphylococcus aureus by β-caryophyllene-gold nanoparticles. Antibiotics (Basel) 2023 12 4 726 10.3390/antibiotics12040726 37107087
    [Google Scholar]
  197. Tonglairoum P. Ngawhirunpat T. Rojanarata T. Kaomongkolgit R. Opanasopit P. Fabrication and evaluation of nanostructured herbal oil/hydroxypropyl-β-cyclodextrin/polyvinylpyrrolidone mats for denture stomatitis prevention and treatment. AAPS PharmSciTech 2016 17 6 1441 1449 10.1208/s12249‑016‑0478‑2 26821915
    [Google Scholar]
  198. Hameed M. Rasul A. Waqas M. Saadullah M. Aslam N. Abbas G. Latif S. Afzal H. Inam S. Akhtar Shah P. Formulation and evaluation of a clove oil-encapsulated nanofiber formulation for effective wound-healing. Molecules 2021 26 9 2491 10.3390/molecules26092491 33923335
    [Google Scholar]
  199. Akturk A. Enrichment of cellulose acetate nanofibrous scaffolds with retinyl palmitate and clove essential oil for wound healing applications. ACS Omega 2023 8 6 5553 5560 10.1021/acsomega.2c06881 36816664
    [Google Scholar]
  200. Parham S. Zargar Kharazi A. Cellulosic textile/clove nanocomposite as an antimicrobial wound dressing: In vitro and in vivo study. Colloids Surf. B Biointerfaces 2022 217 112659 10.1016/j.colsurfb.2022.112659 35763896
    [Google Scholar]
  201. Gupta P. Mishra P. Mehra L. Rastogi K. Prasad R. Mittal G. Poluri K.M. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine (Lond.) 2021 16 25 2269 2289 10.2217/nnm‑2021‑0274 34569268
    [Google Scholar]
  202. Betzler de Oliveira de Siqueira L. Matos A.P.S. Cardoso V.S. Villanova J.C.O. Guimarães B.C.L.R. dos Santos E.P. Beatriz Vermelho A. Santos-Oliveira R. Ricci Junior E. Clove oil nanoemulsion showed potent inhibitory effect against Candida spp. Nanotechnology 2019 30 42 425101 10.1088/1361‑6528/ab30c1 31290755
    [Google Scholar]
  203. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  204. Jamil S.N.H. Ali A.H. Feroz S.R. Lam S.D. Agustar H.K. Mohd Abd Razak M.R. Latip J. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure–activity relationship and mechanism of action. Pharmaceuticals (Basel) 2023 16 4 609 10.3390/ph16040609 37111366
    [Google Scholar]
  205. Jurenka J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. 2009 14 2 141 153 19594223
    [Google Scholar]
  206. Qadir M.I. Naqvi S.T. Muhammad S.A. Qadir M. Naqvi S.T. Curcumin: A polyphenol with molecular targets for cancer control. Asian Pac. J. Cancer Prev. 2016 17 6 2735 2739 27356682
    [Google Scholar]
  207. Curcumin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin
  208. Silva A.C. Santos P.D.F. Silva J.T.P. Leimann F.V. Bracht L. Gonçalves O.H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol. 2018 72 74 82 10.1016/j.tifs.2017.12.004
    [Google Scholar]
  209. Chen W.F. Deng S.L. Zhou B. Yang L. Liu Z.L. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic. Biol. Med. 2006 40 3 526 535 10.1016/j.freeradbiomed.2005.09.008 16443168
    [Google Scholar]
  210. Somparn P. Phisalaphong C. Nakornchai S. Unchern S. Morales N.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull. 2007 30 1 74 78 10.1248/bpb.30.74 17202663
    [Google Scholar]
  211. Xu G. Wei D. Wang J. Jiang B. Wang M. Xue X. Zhou S. Wu B. Jiang M. Crystal structure, optical properties and biological imaging of two curcumin derivatives. Dyes Pigments 2014 101 312 317 10.1016/j.dyepig.2013.09.034
    [Google Scholar]
  212. Mishra S. Narain U. Mishra R. Misra K. Design, development and synthesis of mixed bioconjugates of piperic acid–glycine, curcumin–glycine/alanine and curcumin–glycine–piperic acid and their antibacterial and antifungal properties. Bioorg. Med. Chem. 2005 13 5 1477 1486 10.1016/j.bmc.2004.12.057 15698763
    [Google Scholar]
  213. Hettiarachchi S.S. Perera Y. Dunuweera S.P. Dunuweera A.N. Rajapakse S. Rajapakse R.M.G. Comparison of antibacterial activity of nanocurcumin with bulk curcumin. ACS Omega 2022 7 50 46494 46500 10.1021/acsomega.2c05293 36570282
    [Google Scholar]
  214. Zheng D. Huang C. Huang H. Zhao Y. Khan M.R.U. Zhao H. Huang L. Antibacterial mechanism of curcumin: A review. Chem. Biodivers. 2020 17 8 e2000171 10.1002/cbdv.202000171 32533635
    [Google Scholar]
  215. Anthwal A. Thakur B.K. Rawat M.S. Rawat D.S. Tyagi A.K. Aggarwal B.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BioMed Res. Int. 2014 2014 1 524161 25157362
    [Google Scholar]
  216. Aggarwal B.B. Prasad S. Reuter S. Kannappan R. Yadev V.R. Park B. Kim J.H. Gupta S.C. Phromnoi K. Sundaram C. Prasad S. Chaturvedi M.M. Sung B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 2011 12 11 1595 1653 10.2174/138945011798109464 21561421
    [Google Scholar]
  217. Gagliardi S. Morasso C. Stivaktakis P. Pandini C. Tinelli V. Tsatsakis A. Prosperi D. Hickey M. Corsi F. Cereda C. Curcumin formulations and trials: What’s new in neurological diseases. Molecules 2020 25 22 5389 10.3390/molecules25225389 33217959
    [Google Scholar]
  218. Anand P. Thomas S.G. Kunnumakkara A.B. Sundaram C. Harikumar K.B. Sung B. Tharakan S.T. Misra K. Priyadarsini I.K. Rajasekharan K.N. Aggarwal B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol. 2008 76 11 1590 1611 10.1016/j.bcp.2008.08.008 18775680
    [Google Scholar]
  219. Hahn Y.I. Kim S.J. Choi B.Y. Cho K.C. Bandu R. Kim K.P. Kim D.H. Kim W. Park J.S. Han B.W. Lee J. Na H.K. Cha Y.N. Surh Y.J. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci. Rep. 2018 8 1 6409 10.1038/s41598‑018‑23840‑2 29686295
    [Google Scholar]
  220. Hsu C.H. Cheng A.L. Clinical studies with curcumin. Adv. Exp. Med. Biol. 2007 595 471 480 10.1007/978‑0‑387‑46401‑5_21 17569225
    [Google Scholar]
  221. Bafirman B. Yulfadinata A. Agus A. Ayubi N. Curcumin: Compound in turmeric that has the potential to increase serum interleukin-10 (IL-10) levels after high-intensity exercise. 2024 52 37 41
    [Google Scholar]
  222. Adamczak A. Ożarowski M. Karpiński T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel) 2020 13 7 153 10.3390/ph13070153 32708619
    [Google Scholar]
  223. Malhotra M. Rai A. Malhotra V. Curcumin in the management of oral potentially malignant disorders. World J. Pharm. Res. 2019 8 1 21
    [Google Scholar]
  224. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005 3 3 238 250 10.1038/nrmicro1098 15703760
    [Google Scholar]
  225. Lee W. Lee D.G. An antifungal mechanism of curcumin lies in membrane‐targeted action within Candida albicans. IUBMB Life 2014 66 11 780 785 10.1002/iub.1326 25380239
    [Google Scholar]
  226. Martins C.V.B. da Silva D.L. Neres A.T.M. Magalhães T.F.F. Watanabe G.A. Modolo L.V. Sabino A.A. de Fátima A. de Resende M.A. Curcumin as a promising antifungal of clinical interest. J. Antimicrob. Chemother. 2008 63 2 337 339 10.1093/jac/dkn488 19038979
    [Google Scholar]
  227. Labban N. Taweel S.M.A. ALRabiah M.A. Alfouzan A.F. Alshiddi I.F. Assery M.K. Efficacy of Rose Bengal and Curcumin mediated photodynamic therapy for the treatment of denture stomatitis in patients with habitual cigarette smoking: A randomized controlled clinical trial. Photodiagn. Photodyn. Ther. 2021 35 102380 10.1016/j.pdpdt.2021.102380 34087468
    [Google Scholar]
  228. Al-Ghamdi A.R.S. Khanam H.M.K. Qamar Z. Abdul N.S. Reddy N. Vempalli S. Noushad M. Alqahtani W.M.S. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis. Photodiagn. Photodyn. Ther. 2023 42 103326 10.1016/j.pdpdt.2023.103326 36773753
    [Google Scholar]
  229. Khanal L.R. Shrestha A. Joshi K.R. Bhochhibhoya A. Flexural strength of heat cure denture base resin incorporated with curcumin: An in-vitro study. J. Nepalese Prosthodont. Soc. 2023 6 1 13 17 10.3126/jnprossoc.v6i1.58349
    [Google Scholar]
  230. Hajifathali S. Lesan S. Lotfali E. Salimi-Sabour E. Khatibi M. Investigation of the antifungal effects of curcumin against nystatin-resistant Candida albicans. Dent. Res. J. (Isfahan) 2023 20 1 50 10.4103/1735‑3327.374807 37304423
    [Google Scholar]
  231. Khamooshi P. Pourhajibagher M. Sodagar A. Bahador A. Ahmadi B. Arab S. Antibacterial properties of an acrylic resin containing curcumin nanoparticles: An in vitro study. J. Dent. Res. Dent. Clin. Dent. Prospect. 2022 16 3 190 195 10.34172/joddd.2022.032 36704184
    [Google Scholar]
  232. Tatapudi R. Abdul Samad S.K. Manyam R. Dasari D. Lakshmi R.V. Efficacy of curcumin in the treatment of denture stomatitis. J. Oral Maxillofac. Pathol. 2021 25 2 286 291 10.4103/0973‑029X.325128 34703123
    [Google Scholar]
  233. Vandana D. Pawar S.H. Formulation and evaluation of topical herbal gel containing inclusion complex of curcumin. Asian J. Pharm. Clin. Res. 2019 12 9 196 201 10.22159/ajpcr.2019.v12i9.34053
    [Google Scholar]
  234. Aref N.S. Abdallah R.M. Curcumin containing soft liner as an alternative treatment modality for oral candidiasis. World J. Dent. 2021 12 6 435 440 10.5005/jp‑journals‑10015‑1867
    [Google Scholar]
  235. Mustafa M.W. Ungphaiboon S. Phadoongsombut N. Pangsomboon K. Chelae S. Mahattanadul S. Effectiveness of an alcohol-free chitosan-curcuminoid mouthwash compared with chlorhexidine mouthwash in denture stomatitis treatment: A randomized trial. J. Altern. Complement. Med. 2019 25 5 552 558 10.1089/acm.2018.0459 30758216
    [Google Scholar]
  236. Yamala N.Y.N. Raghunath V.R.V. Effect of Curcuma longa extract on Candida albicans adhesion to heat cure acrylic resin denture material: An in-vitro study. Int. J. Indigenous Herbs Drugs. 2017 2 2 18 23
    [Google Scholar]
  237. Bakhshi M. Mahboubi A. Jaafari M.R. Ebrahimi F. Tofangchiha M. Alizadeh A. Comparative efficacy of 1% curcumin nanomicelle gel and 2% curcumin gel for treatment of recurrent aphthous stomatitis: A double-blind randomized clinical trial. J. Evid. Based Dent. Pract. 2022 22 2 101708 10.1016/j.jebdp.2022.101708 35718440
    [Google Scholar]
  238. Gauthaman J. Ganesan A. Therapeutic evaluation of 5% topical amlexanox paste and 2% curcumin oral gel in the management of recurrent aphthous stomatitis - A randomized clinical trial. J. Indian Acad. Oral Med. Radiol. 2022 34 1 17 21 10.4103/jiaomr.jiaomr_225_21
    [Google Scholar]
  239. Egbuna C. Gupta E. Ezzat S.M. Jeevanandam J. Mishra N. Akram M. Aloe species as valuable sources of functional bioactives. Functional Foods and Nutraceuticals Springer Cham Egbuna C. Dable Tupas G. 2020 337 387 10.1007/978‑3‑030‑42319‑3_18
    [Google Scholar]
  240. Baruah A. Bordoloi M. Deka Baruah H.P. Aloe vera: A multipurpose industrial crop. Ind. Crops Prod. 2016 94 951 963 10.1016/j.indcrop.2016.08.034
    [Google Scholar]
  241. Dagne E. Bisrat D. Viljoen A. Van Wyk B.E. Chemistry of Aloe species. Curr. Org. Chem. 2000 4 10 1055 1078 10.2174/1385272003375932
    [Google Scholar]
  242. Ahmed F.A. El-Bassossy T.A.I. Abdelgawad A.A.M.A. A review: Therapeutic, medicinal and food uses of Aloe vera. Univers. J. Pharm. 2023 8 6 72 81 10.22270/ujpr.v8i6.1045
    [Google Scholar]
  243. Eshun K. He Q. Aloe vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries - A review. Crit. Rev. Food Sci. Nutr. 2004 44 2 91 96 10.1080/10408690490424694 15116756
    [Google Scholar]
  244. Ni Y. Turner D. Yates K.M. Tizard I. Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int. Immunopharmacol. 2004 4 14 1745 1755 10.1016/j.intimp.2004.07.006 15531291
    [Google Scholar]
  245. Avijgan M. Avijgan M. Hakamifard A. Razavi N. An innovation for retarded healing process of a chronic ulcer by Aloe vera gel treatment. J. Nat. Rem. 2016 16 2 45 51 10.18311/jnr/2016/479
    [Google Scholar]
  246. Anywar G. Tugume P. Kakudidi E.K. A review of Aloe species used in traditional medicine in East Africa. S. Afr. J. Bot. 2022 147 1027 1041 10.1016/j.sajb.2021.07.036
    [Google Scholar]
  247. Neena I. Ganesh E. Poornima P. Korishettar R. An ancient herb aloevera in dentistry: A review. J. Oral Res. Rev. 2015 7 1 25 30 10.4103/2249‑4987.160174
    [Google Scholar]
  248. Maan A.A. Nazir A. Khan M.K.I. Ahmad T. Zia R. Murid M. Abrar M. The therapeutic properties and applications of Aloe vera: A review. J. Herb. Med. 2018 12 1 10 10.1016/j.hermed.2018.01.002
    [Google Scholar]
  249. Danish P. Ali Q. Hafeez M.M. Malik A. Antifungal and antibacterial activity of aloe vera plant extract. Biol. Clin. Sci. Res. J. 2020 2020 1 1 8 10.54112/bcsrj.v2020i1.4
    [Google Scholar]
  250. Dong X. Zeng Y. Liu Y. You L. Yin X. Fu J. Ni J. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020 34 2 270 281 10.1002/ptr.6532 31680350
    [Google Scholar]
  251. Farman H. Fayyaz S. Jabeen H. Muhammad N. Khan M.A. Liaqat S. Aloe vera in dentistry: A review. Biom. Lett. 2020 6 1 17 22
    [Google Scholar]
  252. Nejatzadeh-Barandozi F. Antibacterial activities and antioxidant capacity of Aloe vera. Org. Med. Chem. Lett. 2013 3 1 5 10.1186/2191‑2858‑3‑5 23870710
    [Google Scholar]
  253. Minjares-Fuentes R. Femenia A. Comas-Serra F. Rodríguez-González V.M. Compositional and structural features of the main bioactive polysaccharides present in the aloe vera plant. J. AOAC Int. 2018 101 6 1711 1719 10.5740/jaoacint.18‑0119 29895349
    [Google Scholar]
  254. Kavita Rai Nandan N Nandan N. Aloe vera – Nature’s power. J. Ayurveda Integr. Med. 2016 1 2 43 49 10.21760/jaims.v1i2.3664
    [Google Scholar]
  255. Kumar R. Singh A.K. Gupta A. Bishayee A. Pandey A.K. Therapeutic potential of Aloe vera - A miracle gift of nature. Phytomedicine 2019 60 152996 10.1016/j.phymed.2019.152996 31272819
    [Google Scholar]
  256. Sadeghi S. Davoodvandi A. Pourhanifeh M.H. Sharifi N. ArefNezhad R. Sahebnasagh R. Moghadam S.A. Sahebkar A. Mirzaei H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem. 2019 178 131 140 10.1016/j.ejmech.2019.05.067 31195168
    [Google Scholar]
  257. Manipal S. Shireen F. Prabu D. Anti-fungal activity of Aloe vera: in vitro study. SRM J. Res. Dent. Sci. 2015 6 2 92 10.4103/0976‑433X.155464
    [Google Scholar]
  258. Chantarawaratit P. Sangvanich P. Banlunara W. Soontornvipart K. Thunyakitpisal P. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model. J. Periodontal Res. 2014 49 2 164 178 10.1111/jre.12090 23710575
    [Google Scholar]
  259. Choonhakarn C. Busaracome P. Sripanidkulchai B. Sarakarn P. The efficacy of aloe vera gel in the treatment of oral lichen planus: A randomized controlled trial. Br. J. Dermatol. 2008 158 3 573 577 10.1111/j.1365‑2133.2007.08370.x 18093246
    [Google Scholar]
  260. Rajput S.S. Soni K.K. Saxena R.C. Pharmacology and phytochemistry of saponin isolated from Aloe vera for wound healing activity. Asian J. Chem. 2009 21 2 1029 1032
    [Google Scholar]
  261. Salehi B. Lopez-Jornet P. Pons-Fuster López E. Calina D. Sharifi-Rad M. Ramírez-Alarcón K. Forman K. Fernández M. Martorell M. Setzer W. Martins N. Rodrigues C. Sharifi-Rad J. Plant-derived bioactives in oral mucosal lesions: A key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties. Biomolecules 2019 9 3 106 10.3390/biom9030106 30884918
    [Google Scholar]
  262. Wahedi H.M. Jeong M. Chae J.K. Do S.G. Yoon H. Kim S.Y. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo. Phytomedicine 2017 28 19 26 10.1016/j.phymed.2017.02.005 28478809
    [Google Scholar]
  263. Yagi A. Kabash A. Okamura N. Haraguchi H. Moustafa S.M. Khalifa T.I. Antioxidant, free radical scavenging and anti-inflammatory effects of aloesin derivatives in Aloe vera. Planta Med. 2002 68 11 957 960 10.1055/s‑2002‑35666 12451482
    [Google Scholar]
  264. Hekmatpou D. Mehrabi F. Rahzani K. Aminiyan A. The effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review. Iran. J. Med. Sci. 2019 44 1 1 9 30666070
    [Google Scholar]
  265. Giroh V. Hebbale M. Mhapuskar A. Hiremutt D. Agarwal P. Efficacy of aloe vera and triamcinolone acetonide 0.1% in recurrent aphthous stomatitis: A preliminary comparative study. J. Indian Acad. Oral Med. Radiol. 2019 31 1 45 50 10.4103/jiaomr.jiaomr_203_18
    [Google Scholar]
  266. Hudwekar A. Beldar A. Murkute S. Lendhey S. Thamke M. Aloe vera on wound healing after periodontal flap surgery in chronic periodontitis patient: A randomized control trial. J. Oral Res. Rev. 2019 11 2 72 76 10.4103/jorr.jorr_14_19
    [Google Scholar]
  267. Getahun T. Sharma V. Gupta N. Chemical composition and biological activity of essential oils from Aloe debrana roots. J. Essent. Oil-Bear. Plants 2020 23 3 493 502 10.1080/0972060X.2020.1788996
    [Google Scholar]
  268. Shirali S. Barari A. Hosseini S.A. Khodadi E. Effects of six weeks endurance training and aloe vera supplementation on COX-2 and VEGF levels in mice with breast cancer. Asian Pac. J. Cancer Prev. 2017 18 1 31 36 28240006
    [Google Scholar]
  269. Trybus W. Król T. Trybus E. Stachurska A. Kopacz-Bednarska A. Król G. Induction of mitotic catastrophe in human cervical cancer cells after administration of aloe-emodin. Anticancer Res. 2018 38 4 2037 2044 29599321
    [Google Scholar]
  270. Tseng H.S. Wang Y.F. Tzeng Y.M. Chen D.R. Liao Y.F. Chiu H.Y. Hsieh W.T. Aloe-emodin enhances tamoxifen cytotoxicity by suppressing Ras/ERK and PI3K/mTOR in breast cancer cells. Am. J. Chin. Med. 2017 45 2 337 350 10.1142/S0192415X17500215 28231748
    [Google Scholar]
  271. Chen Q. Tian S. Zhu J. Li K.T. Yu T.H. Yu L.H. Exploring a novel target treatment on breast cancer: Aloe-emodin mediated photodynamic therapy induced cell apoptosis and inhibited cell metastasis. Anticancer Agents Med. Chem. 2016 16 6 763 770 10.2174/1871520615666150821093323
    [Google Scholar]
  272. Luo J. Yuan Y. Chang P. Li D. Liu Z. Qu Y. Combination of aloe-emodin with radiation enhances radiation effects and improves differentiation in human cervical cancer cells. Mol. Med. Rep. 2014 10 2 731 736 10.3892/mmr.2014.2318 24920336
    [Google Scholar]
  273. Kim K. Chung M.H. Park S. Cha J. Baek J.H. Lee S.Y. Choi S.Y. ER stress attenuation by Aloe-derived polysaccharides in the protection of pancreatic β-cells from free fatty acid-induced lipotoxicity. Biochem. Biophys. Res. Commun. 2018 500 3 797 803 10.1016/j.bbrc.2018.04.162 29684344
    [Google Scholar]
  274. Alinejad-Mofrad S. Foadoddini M. Saadatjoo S.A. Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial. J. Diabetes Metab. Disord. 2015 14 1 22 10.1186/s40200‑015‑0137‑2 25883909
    [Google Scholar]
  275. Rezazadeh F. Moshaverinia M. Motamedifar M. Alyaseri M. Assessment of anti HSV-1 activity of Aloe vera gel extract: An in vitro study. J. Dent. (Shiraz) 2016 17 1 49 54 26966709
    [Google Scholar]
  276. Sun Z. Yu C. Wang W. Yu G. Zhang T. Zhang L. Zhang J. Wei K. Aloe polysaccharides inhibit influenza A virus infection - A promising natural anti-flu drug. Front. Microbiol. 2018 9 2338 10.3389/fmicb.2018.02338 30319596
    [Google Scholar]
  277. Memon M.R. Memon H. Shoro M. Bhurgri H. Issrani R. Iqbal A. Effectiveness of chitosan versus natural Aloe vera on Candida adherence in denture soft lining material. Scientifica (Cairo) 2024 9918914 2024 10.1155/2024/9918914
    [Google Scholar]
  278. Mosaddad S.A. Hussain A. Tebyaniyan H. Green alternatives as antimicrobial agents in mitigating periodontal diseases: A Narrative Review. Microorganisms 2023 11 5 1269 10.3390/microorganisms11051269 37317243
    [Google Scholar]
  279. Mallombassang A.T.B. Amiruddin M. Asmah N. Hatta M. Effect of Aloe vera extract in inhibit of Candida albicans on cured acrylic resin plates. J. Syiah Kuala Dent. Soc. 2024 8 2 157 161 10.24815/jds.v8i2.36546
    [Google Scholar]
  280. Shetty P. Hegde V. Gomes L. Anticandidal efficacy of denture cleansing tablet, Triphala, Aloe vera, and Cashew leaf on complete dentures of institutionalized elderly. J. Ayurveda Integr. Med. 2014 5 1 11 14 10.4103/0975‑9476.128847 24812470
    [Google Scholar]
  281. Nair C. Ojah P. Luniyal C. Astekar M. Pal A. Chopra M. Anti candidal efficacy of commercially available triphala, neem, denture cleanser and natural aloevera leaf on heat polymerized acrylic resin. J. Indian Prosthodont. Soc. 2021 21 2 167 172 10.4103/jips.jips_599_20 33938866
    [Google Scholar]
  282. Farhood I.K. Pharm H.S. Nabeel F. Al-ansary H. Anticandedal effect action of different concentrations of aglycon fraction of anthroquinon (monoanathron) isolated from Aloe vera on heat cure acrylic resins. Mustansiria Dent. J. 2019 16 1 77 88 10.32828/mdj.v16i1.1027
    [Google Scholar]
  283. Kanliöz M. EKİCİ U. The effects of using liposomal bupivacaine and aloe vera cream after haemorrhoidectomy on postoperative pain, need for analgesics, hospitalisation period and return to work and social life. Türk Kolon ve Rektum Hastalıkları Dergisi. 2020 30 3 184 190
    [Google Scholar]
  284. El Fawal G.F. Omer A.M. Tamer T.M. Evaluation of antimicrobial and antioxidant activities for cellulose acetate films incorporated with Rosemary and Aloe Vera essential oils. J. Food Sci. Technol. 2019 56 3 1510 1518 10.1007/s13197‑019‑03642‑8 30956331
    [Google Scholar]
  285. Donkor A.M. Donkor M.N. Kuubabongnaa N. Evaluation of anti-infective potencies of formulated aloin A ointment and aloin A isolated from Aloe barbadensis Miller. BMC Chem. 2020 14 1 8 10.1186/s13065‑020‑0659‑7 32047877
    [Google Scholar]
  286. Arsène M.M.J. Viktorovna P.I. Alla M. Mariya M. Nikolaevitch S.A. Davares A.K.L. Yurievna M.E. Rehailia M. Gabin A.A. Alekseevna K.A. Vyacheslavovna Y.N. Vladimirovna Z.A. Svetlana O. Milana D. Antifungal activity of silver nanoparticles prepared using Aloe vera extract against Candida albicans. Vet. World 2023 16 1 18 26 10.14202/vetworld.2023.18‑26 36855352
    [Google Scholar]
  287. Farahmand A. Sayar F. Rezazadeh M. Clinical efficacy of Aloe vera toothpaste on periodontal parameters of patients with gingivitis - A randomized, controlled, single-masked clinical trial. J. Contemp. Dent. Pract. 2021 22 3 242 247 10.5005/jp‑journals‑10024‑3059 34210922
    [Google Scholar]
  288. De Martino L. Bruno M. Formisano C. De Feo V. Napolitano F. Rosselli S. Senatore F. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in southern Italy. Molecules 2009 14 11 4614 4624 10.3390/molecules14114614 19924089
    [Google Scholar]
  289. Stahl-Biskup E. Venskutonis R.P. Thyme Handbook of Herbs and Spices 2nd ed Woodhead Publishing 499 525 2012 10.1533/9780857095671.499
    [Google Scholar]
  290. Hammoudi Halat D. Krayem M. Khaled S. Younes S. A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients 2022 14 10 2104 10.3390/nu14102104 35631245
    [Google Scholar]
  291. Sahoo C.R. Paidesetty S.K. Padhy R.N. The recent development of thymol derivative as a promising pharmacological scaffold. Drug Dev. Res. 2021 82 8 1079 1095 10.1002/ddr.21848 34164828
    [Google Scholar]
  292. Nagoor Meeran M.F. Javed H. Al Taee H. Azimullah S. Ojha S.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017 8 380 10.3389/fphar.2017.00380 28694777
    [Google Scholar]
  293. Chauhan D.N. Singh P.R. Chauhan N.S. Shah K. Pharmacological Studies in Natural Oral Care John Wiley & Sons 2023 47 56 10.1002/9781394167197
    [Google Scholar]
  294. Kaur R. Darokar M.P. Chattopadhyay S.K. Krishna V. Ahmad A. Synthesis of halogenated derivatives of thymol and their antimicrobial activities. Med. Chem. Res. 2014 23 5 2212 2217 10.1007/s00044‑013‑0809‑8
    [Google Scholar]
  295. Liang H. Bao F. Dong X. Tan R. Zhang C. Lu Q. Cheng Y. Antibacterial thymol derivatives isolated from Centipeda minima. Molecules 2007 12 8 1606 1613 10.3390/12081606 17960076
    [Google Scholar]
  296. Vassiliou E. Awoleye O. Davis A. Mishra S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci. 2023 24 8 6936 10.3390/ijms24086936 37108100
    [Google Scholar]
  297. Altiok D. Altiok E. Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med. 2010 21 7 2227 2236 10.1007/s10856‑010‑4065‑x 20372985
    [Google Scholar]
  298. Coimbra A. Miguel S. Ribeiro M. Coutinho P. Silva L. Duarte A.P. Ferreira S. Thymus zygis essential oil: Phytochemical characterization, bioactivity evaluation and synergistic effect with antibiotics against Staphylococcus aureus. Antibiotics (Basel) 2022 11 2 146 10.3390/antibiotics11020146 35203749
    [Google Scholar]
  299. Pereira A.S.P. Banegas-Luna A.J. Peña-García J. Pérez-Sánchez H. Apostolides Z. Evaluation of the anti-diabetic activity of some common herbs and spices: Providing new insights with inverse virtual screening. Molecules 2019 24 22 4030 10.3390/molecules24224030 31703341
    [Google Scholar]
  300. Patil S.M. Ramu R. Shirahatti P.S. Shivamallu C. Amachawadi R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021 7 5 e07054 10.1016/j.heliyon.2021.e07054 34041399
    [Google Scholar]
  301. Kryvtsova M.V. Salamon I. Koscova J. Bucko D. Spivak M. Antimicrobial, antibiofilm and biochemichal properties of Thymus vulgaris essential oil against clinical isolates of opportunistic infections. Biosyst. Divers. 2019 27 3 270 275 10.15421/011936
    [Google Scholar]
  302. Ozogul Y. Kuley Boğa E. Akyol I. Durmus M. Ucar Y. Regenstein J.M. Köşker A.R. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci. 2020 36 100635 10.1016/j.fbio.2020.100635
    [Google Scholar]
  303. Boskovic M. Zdravkovic N. Ivanovic J. Janjic J. Djordjevic J. Starcevic M. Baltic M.Z. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci. 2015 5 18 21 10.1016/j.profoo.2015.09.005
    [Google Scholar]
  304. He Q. Zhang L. Song L. Zhang X. Liu D. Hu Y. Guo M. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism. Lebensm. Wiss. Technol. 2021 147 111574 10.1016/j.lwt.2021.111574
    [Google Scholar]
  305. Mathela C.S. Singh K.K. Gupta V.K. Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol. Pharm. 2010 67 4 375 380 20635533
    [Google Scholar]
  306. Ferreira L.E. Benincasa B.I. Fachin A.L. França S.C. Contini S.S.H.T. Chagas A.C.S. Beleboni R.O. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet. Parasitol. 2016 228 70 76 10.1016/j.vetpar.2016.08.011 27692335
    [Google Scholar]
  307. Ali A. Chemical composition, α-glucosidase inhibitory and anticancer activity of essential oil of Thymus vulgaris leaves. J. Essent. Oil-Bear. Plants 2021 24 4 695 703 10.1080/0972060X.2021.1973575
    [Google Scholar]
  308. Rojas-Armas J. Arroyo-Acevedo J. Ortiz-Snchez M. Palomino-Pacheco M. Castro-Luna A. Ramos-Cevallos N. Justil-Guerrero H. Hilario-Vargas J. Herrera-Caldern O. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats. Toxicol. Res. 2019 35 3 225 232 10.5487/TR.2019.35.3.225 31341551
    [Google Scholar]
  309. Saatkamp R.H. Sanches M.P. Gambin J.P.D. Amaral B.R. Farias N.S. Caon T. Müller C.M.O. Parize A.L. Development of thymol nanoemulsions with potential application in oral infections. J. Drug Deliv. Sci. Technol. 2023 87 104855 10.1016/j.jddst.2023.104855
    [Google Scholar]
  310. Hegde V. Namala B.B. Comparative evaluation of the effect of plant extract, Thymus vulgaris and commercially available denture cleanser on the flexural strength and surface roughness of denture base resin. J. Indian Prosthodont. Soc. 2019 19 3 261 265 10.4103/jips.jips_141_19 31462866
    [Google Scholar]
  311. mohamed S. elddamony mohamed Flexural strength of three different denture base materials after immersion in a thyme extract and a chemical cleanser: An in vitro comparative study. Egypt. Dent. J. 2023 69 1 505 513 10.21608/edj.2022.160262.2239
    [Google Scholar]
  312. Anjum R. Dhaded S. Joshi S. Sajjan C. Konin P. Reddy Y. Effect of plant extract denture cleansing on heat-cured acrylic denture base resin: An in vitro study. J. Indian Prosthodont. Soc. 2017 17 4 401 405 10.4103/jips.jips_97_17 29249885
    [Google Scholar]
  313. Sharifzadeh A. Shokri H. Katiraee F. Anti-adherence and anti-fungal abilities of thymol and carvacrol against candida species isolated from patients with oral candidiasis in comparison with fluconazole and voriconazole. Jundishapur J. Nat. Pharm. Prod. 2021 16 1 e65005 10.5812/jjnpp.65005
    [Google Scholar]
  314. Shrestha A. Rimal J. Rao A. Sequeira P.S. Doshi D. Bhat G.K. in vitro antifungal effect of mouth rinses containing chlorhexidine and thymol. J. Dent. Sci. 2011 6 1 1 5 10.1016/j.jds.2011.02.001
    [Google Scholar]
  315. Salehi B. Mishra A.P. Shukla I. Sharifi-Rad M. Contreras M.M. Segura-Carretero A. Fathi H. Nasrabadi N.N. Kobarfard F. Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018 32 9 1688 1706 10.1002/ptr.6109 29785774
    [Google Scholar]
  316. de Oliveira Carvalho I. Purgato G.A. Píccolo M.S. Pizziolo V.R. Coelho R.R. Diaz-Muñoz G. Alves Nogueira Diaz M. in vitro anticariogenic and antibiofilm activities of toothpastes formulated with essential oils. Arch. Oral Biol. 2020 117 104834 10.1016/j.archoralbio.2020.104834 32663696
    [Google Scholar]
  317. Naik J.B. Rajput R.L. Narkhede J.S. Mujumdar A. Patil P.B. Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis. J. Polym. Res. 2021 28 1 15 10.1007/s10965‑020‑02377‑x
    [Google Scholar]
  318. Kasparaviciene G. Kalveniene Z. Pavilonis A. Marksiene R. Dauksiene J. Bernatoniene J. Formulation and characterization of potential antifungal oleogel with essential oil of thyme. Evid. Based Complement. Alternat. Med. 2018 2018 1 9431819 10.1155/2018/9431819 29849737
    [Google Scholar]
  319. Priya A. Selvaraj A. Divya D. Karthik Raja R. Pandian S.K. in vitro and in vivo anti-infective potential of thymol against early childhood caries causing dual species Candida albicans and Streptococcus mutans. Front. Pharmacol. 2021 12 760768 10.3389/fphar.2021.760768 34867378
    [Google Scholar]
  320. El-Sayed S.M. El-Sayed H.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol. 2021 10 1029 1041 10.1016/j.jmrt.2020.12.073
    [Google Scholar]
  321. Pemmaraju S.C. Pruthi P.A. Prasad R. Pruthi V. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol. 2013 51 11 1032 1037 24416942
    [Google Scholar]
  322. Liu X. Zheng X. Fang W. Zhang Y. Screening of food additives and plant extracts against Candida albicans in vitro for prevention of denture stomatitis. Procedia Environ. Sci. 2012 12 1361 1366 10.1016/j.proenv.2012.01.435
    [Google Scholar]
  323. Khan M.A. Dhaded S. Joshi S. Commercial and plant extract denture cleansers in prevention of Candida albicans growth on soft denture reliner: In vitro study. J. Clin. Diagn. Res. 2016 10 2 ZC42 ZC45 10.7860/JCDR/2016/12558.7228 27042584
    [Google Scholar]
  324. Khurana P. Singhal R. Agarwal S.K. Kalpana K. Comparative evaluation of the effect of two plant extract and denture cleanser on the staining and anti-fungal efficacy of denture base resin: An in vitro study. J. Dent. Oral Biol. 2022 7 3 1 7
    [Google Scholar]
  325. Guimarães Silva Vasconcelos P. Medeiros de Almeida Maia C. Mendes de Vasconcelos V. Paolla Raimundo e Silva J. Fechine Tavares J. Vieira Pereira J. Wanderley Cavalcanti Y. Maria Melo de Brito Costa E. in vitro inhibition of a multispecies oral cavity biofilm by Syzygium aromaticum essential oil. Gerodontology 2022 39 4 366 373 10.1111/ger.12594 34633113
    [Google Scholar]
  326. Gupta M. Bansal V. Bhaduri T. Shaikh S. Sayed F. Bansal V. Agrawal A. Assessment of antimicrobial effectiveness of neem and clove extract against streptococcus mutans and Candida albicans: An in vitro Study. Niger. Med. J. 2019 60 6 285 289 10.4103/nmj.NMJ_20_19 32180657
    [Google Scholar]
  327. Naeini A. Shayegh S.S. Shokri H. Davati A. Khazaei A. Akbari A. in vitro antifungal effect of herbal mixture (Nigella sativa, Foeniculum vulgare and Camellia sinensis) against Candida species isolated from denture wearers. J. Herbmed Pharmacol. 2017 6 2 74 79
    [Google Scholar]
  328. Shamseddine L. Chidiac J.J. Composition’s effect of Origanum syriacum essential oils in the antimicrobial activities for the treatment of denture stomatitis. Odontology 2021 109 2 327 335 10.1007/s10266‑020‑00547‑3 32808051
    [Google Scholar]
  329. Pinelli L.A.P. Montandon A.A.B. Corbi S.C.T. Moraes T.A. Fais L.M.G. Ricinus communis treatment of denture stomatitis in institutionalised elderly. J. Oral Rehabil. 2013 40 5 375 380 10.1111/joor.12039 23438045
    [Google Scholar]
  330. Sabzghabaee A.M. Shirdare Z. Ebadian B. Aslani A. Ghannadi A. Clinical evaluation of the essential oil of Pelargonium graveolens for the treatment of denture stomatitis. Dent. Res. J. (Isfahan) 2011 8 Suppl. 1 S105 S108 23372587
    [Google Scholar]
  331. Capistrano H.M. de Assis E.M. Leal R.M. Alvarez-Leite M.E. Brener S. Bastos E.M. Brazilian green propolis compared to miconazole gel in the treatment of Candida-associated denture stomatitis. Evid. Based Complement. Alternat. Med. 2013 2013 1 947980 23737855
    [Google Scholar]
  332. Alavarce R.A. Saldanha L.L. Almeida N.L. Porto V.C. Dokkedal A.L. Lara V.S. The beneficial effect of Equisetum giganteum L. against Candida biofilm formation: New approaches to denture stomatitis. Evid. Based Complement. Alternat. Med. 2015 2015 1 939625 26290676
    [Google Scholar]
  333. Bakhshi M. Taheri J.B. Basir Shabestari S. Tanik A. Pahlevan R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology 2012 29 2 e680 e684 10.1111/j.1741‑2358.2011.00544.x 22126338
    [Google Scholar]
  334. Ghorbani A. Sadrzadeh A. Habibi E. Dadgar K. Akbari J. Moosazadeh M. Bakhshi H. Ahangarkani F. Vaezi A. Efficacy of Camellia sinensis extract against Candida species in patients with denture stomatitis. Curr. Med. Mycol. 2018 4 3 15 18 10.18502/cmm.4.3.174 30619964
    [Google Scholar]
  335. Davoodi N. Aslani A. Sabzghabaee A.M. Ebadian B. Ghannadi A. Clinical evaluation of the essential oil of “Satureja Hortensis” for the treatment of denture stomatitis. Dent. Res. J. (Isfahan) 2012 9 2 198 202 10.4103/1735‑3327.95236 22623938
    [Google Scholar]
  336. Silva P.M.B. Chocano A.P.C. Venante H.S. Costa R.M.B. Silva R.A. Neppelenbroek K.H. Lara V.S. Porto V.C. Beneficial effects of three natural products for the treatment of denture stomatitis. Arquivos em Odontologia 2022 57 141 148 10.35699/2178‑1990.2021.25765
    [Google Scholar]
/content/journals/cdent/10.2174/012542579X317149241202064449
Loading
/content/journals/cdent/10.2174/012542579X317149241202064449
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Denture Stomatitis ; Thyme ; cinnamon ; natural remedies ; curcumin ; aloe vera ; clove
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test