Skip to content
2000
image of The Multifaceted Role of miR-23a in Cancer and Disease Progression

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in post-transcriptional gene regulation by modulating mRNA stability and translation. These evolutionarily conserved molecules undergo processing by ribonucleases Drosha and Dicer, ultimately joining the RNA-induced silencing complex to silence gene expression. Among them, miR-23a, located on chromosome 19, is significant for its roles in cell growth, differentiation, and various diseases, including cancer. Depending on the cancer type, miR-23a can function as both an oncogene and a tumour suppressor. While its overexpression often correlates with aggressive tumours, miR-23a holds promise as a biomarker for early cancer detection and a therapeutic target. Its diverse functions in cancer include promoting tumour growth and hindering immune responses, highlighting its potential for personalized medicine. Beyond cancer, miR-23a is involved in blood sugar regulation, insulin resistance, muscle atrophy, and other diseases. It modulates pathways in type 2 diabetes mellitus, muscle atrophy, leukemia, epilepsy, and osteoarthritis. This paper aims to comprehensively analyze the roles of miR-23a in cancer and other diseases, focusing on its regulatory mechanisms, target genes, and pathways. It also evaluates the potential of miR-23a as a biomarker and therapeutic target. Despite its significance, research gaps remain, particularly in understanding the interactions of miR-23a with other miRNAs and the detailed mechanisms underlying its role in various diseases. More research into miR-23a clustering and how it works with other miRNAs could help us learn more about it and find better ways to use it to diagnose and treat diseases.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947332277241007063153
2024-10-15
2024-11-26
Loading full text...

Full text loading...

References

  1. Cui M. Yao X. Lin Y. Zhang D. Cui R. Zhang X. Interactive functions of microRNAs in the miR‐23a‐27a‐24‐2 cluster and the potential for targeted therapy in cancer. J. Cell. Physiol. 2020 235 1 6 16 10.1002/jcp.28958 31192453
    [Google Scholar]
  2. Chhabra R. Dubey R. Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol. Cancer 2010 9 1 232 10.1186/1476‑4598‑9‑232 20815877
    [Google Scholar]
  3. Macfarlane L.A. Murphy P.R. Micro R.N.A. Biogenesis, function and ole in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  4. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018 9 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  5. Zhang R. Jing Y. Zhang H. Niu Y. Liu C. Wang J. Zen K. Zhang C.Y. Li D. Comprehensive evolutionary analysis of the major RNA-induced silencing complex members. Sci. Rep. 2018 8 1 14189 10.1038/s41598‑018‑32635‑4 30242207
    [Google Scholar]
  6. Banerjee N. Das S. Tripathy S. Bandyopadhyay A.K. Sarma N. Bandyopadhyay A. Giri A.K. MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. Environ. Sci. Pollut. Res. Int. 2019 26 27 28052 28061 10.1007/s11356‑019‑05980‑8 31359311
    [Google Scholar]
  7. Hua K. Chen Y.T. Chen C.F. Tang Y.S. Huang T.T. Lin Y.C. Yeh T.S. Huang K.H. Lee H.C. Hsu M.T. Chi C.W. Wu C.W. Lin C.H. Ping Y.H. MicroRNA‑23a/27a/24‑2 cluster promotes gastric cancer cell proliferation synergistically. Oncol. Lett. 2018 16 2 2319 2325 10.3892/ol.2018.8924 30008935
    [Google Scholar]
  8. Morrow C.A. Nguyen M.O. Fower A. Wong I.N. Osman F. Bryer C. Whitby M.C. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication. eLife 2017 6 e25490 10.7554/eLife.25490 28586299
    [Google Scholar]
  9. Mohamed A.A. Ali-Eldin Z.A. Elbedewy T.A. El-Serafy M. Ali-Eldin F.A. AbdelAziz H. MicroRNAs and clinical implications in hepatocellular carcinoma. World J. Hepatol. 2017 9 23 1001 1007 10.4254/wjh.v9.i23.1001 28878865
    [Google Scholar]
  10. Murph M.M. MicroRNA regulation of the autotaxin-lysophosphatidic acid signaling axis. Cancers (Basel) 2019 11 9 1369 10.3390/cancers11091369 31540086
    [Google Scholar]
  11. Wang N. Tan H.Y. Feng Y.G. Zhang C. Chen F. Feng Y. microRNA-23a in human cancer: its roles, mechanisms and therapeutic relevance. Cancers (Basel) 2018 11 1 7 10.3390/cancers11010007 30577536
    [Google Scholar]
  12. Lu S. Xu Q. MicroRNA‐23a inhibits melanoma cell proliferation, migration, and invasion in mice through a negative feedback regulation of sdcbp and the MAPK/ERK signaling pathway. IUBMB Life 2019 71 5 587 600 10.1002/iub.1979 30589231
    [Google Scholar]
  13. Li H.L. Sun J.J. Ma H. Liu S.J. Li N. Guo S.J. Shi Y. Xu Y.Y. Qi Z.Y. Wang Y.Q. Wang F. Guo R.M. Liu D. Xue F.X. MicroRNA‑23a inhibits endometrial cancer cell development by targeting SIX1. Oncol. Lett. 2019 18 4 3792 3802 10.3892/ol.2019.10694 31579409
    [Google Scholar]
  14. Strand S.H. Schmidt L. Weiss S. Borre M. Kristensen H. Rasmussen A.K.I. Daugaard T.F. Kristensen G. Stroomberg H.V. Røder M.A. Brasso K. Mouritzen P. Sørensen K.D. Validation of the four-miRNA biomarker panel MiCaP for prediction of long-term prostate cancer outcome. Sci. Rep. 2020 10 1 10704 10.1038/s41598‑020‑67320‑y 32612164
    [Google Scholar]
  15. Ding F. Lai J. Gao Y. Wang G. Shang J. Zhang D. Zheng S. NEAT1/miR-23a-3p/KLF3: a novel regulatory axis in melanoma cancer progression. Cancer Cell Int. 2019 19 1 217 10.1186/s12935‑019‑0927‑6 31462890
    [Google Scholar]
  16. Ma M. Dai J. Tang H. Xu T. Yu S. Si L. Cui C. Sheng X. Chi Z. Mao L. Wu X. Yang L. Yu H. Li S. Lian B. Tang B. Wang X. Yan X. Bai X. Zhou L. Kong Y. Guo J. MicroRNA-23a-3p Inhibits Mucosal Melanoma Growth and Progression through Targeting Adenylate Cyclase 1 and Attenuating cAMP and MAPK Pathways. Theranostics 2019 9 4 945 960 10.7150/thno.30516 30867808
    [Google Scholar]
  17. Cai S. Chen R. Li X. Cai Y. Ye Z. Li S. Li J. Huang H. Peng S. Wang J. Tao Y. Huang H. Wen X. Mo J. Deng Z. Wang J. Zhang Y. Gao X. Wen X. Downregulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway. Oncotarget 2015 6 6 3904 3917 10.18632/oncotarget.2880 25714010
    [Google Scholar]
  18. Kogure T. Lin W.L. Yan I.K. Braconi C. Patel T. Intercellular nanovesicle-mediated microRNA transfer: A mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011 54 4 1237 1248 10.1002/hep.24504 21721029
    [Google Scholar]
  19. Liu Y. Tan J. Ou S. Chen J. Chen L. Adipose-derived exosomes deliver miR-23a/b to regulate tumor growth in hepatocellular cancer by targeting the VHL/HIF axis. J. Physiol. Biochem. 2019 75 3 391 401 10.1007/s13105‑019‑00692‑6 31321740
    [Google Scholar]
  20. Pan Y. Yu Y. Wang X. Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020 11 583084 10.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  21. Zhang X. Wu N. Wang J. Li Z. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR‐23a/APAF‐1 axis. J. Cell. Mol. Med. 2019 23 10 6708 6719 10.1111/jcmm.14549 31328388
    [Google Scholar]
  22. Liu P. Wang C. Ma C. Wu Q. Zhang W. Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016 16 1 67 10.1186/s12935‑016‑0342‑1 27601936
    [Google Scholar]
  23. Wu G. Li Z. Jiang P. Zhang X. Xu Y. Chen K. Li X. MicroRNA-23a promotes pancreatic cancer metastasis by targeting epithelial splicing regulator protein 1. Oncotarget 2017 8 47 82854 82871 10.18632/oncotarget.20692 29137308
    [Google Scholar]
  24. Deng Y.H. Deng Z.H. Hao H. Wu X.L. Gao H. Tang S.H. Tang H. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp. Cell Res. 2018 373 1-2 171 179 10.1016/j.yexcr.2018.10.010 30342991
    [Google Scholar]
  25. Cui S. Cao Z. Guo W. Yu H. Huang R. Wu Y. Zhou Y. [Plasma miRNA-23a and miRNA-451 as candidate biomarkers for early diagnosis of nonsmall cell lung cancer: a case-control study]. Nan Fang Yi Ke Da Xue Xue Bao 2019 39 6 705 711 31270050
    [Google Scholar]
  26. Zhang Y. Wang J. Hui B. Sun W. Li B. Shi F. Che S. Chai L. Song L. Pristimerin enhances the effect of cisplatin by inhibiting the miR‑23a/Akt/GSK3β signaling pathway and suppressing autophagy in lung cancer cells. Int. J. Mol. Med. 2019 43 3 1382 1394 10.3892/ijmm.2019.4057 30664149
    [Google Scholar]
  27. Hetta H.F. Zahran A.M. Shafik E.A. El-Mahdy R.I. Mohamed N.A. Nabil E.E. Esmaeel H.M. Alkady O.A. Elkady A. Mohareb D.A. Hosni A. Mostafa M.M. Elkady A. Circulating miRNA-21 and miRNA-23a expression signature as potential biomarkers for early detection of non-small-cell lung cancer. MicroRNA 2019 8 3 206 215 10.2174/1573399815666190115151500 30652656
    [Google Scholar]
  28. Zhang Z. Huang Q. Yu L. Zhu D. Li Y. Xue Z. Hua Z. Luo X. Song Z. Lu C. Zhao T. Liu Y. The role of miRNA in tumor immune escape and miRNA-based therapeutic strategies. Front. Immunol. 2022 12 807895 10.3389/fimmu.2021.807895 35116035
    [Google Scholar]
  29. Saviana M. Romano G. Le P. Acunzo M. Nana-Sinkam P. Extracellular vesicles in lung cancer metastasis and their clinical applications. Cancers (Basel) 2021 13 22 5633 10.3390/cancers13225633 34830787
    [Google Scholar]
  30. Si W. Shen J. Zheng H. Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics 2019 11 1 25 10.1186/s13148‑018‑0587‑8 30744689
    [Google Scholar]
  31. Lu Y. Chan Y.T. Tan H.Y. Zhang C. Guo W. Xu Y. Sharma R. Chen Z.S. Zheng Y.C. Wang N. Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2022 41 1 3 10.1186/s13046‑021‑02208‑x 34980204
    [Google Scholar]
  32. Li Z.Q. Wang H.Y. Zeng Q.L. Yan J.Y. Hu Y.S. Li H. Yu Z.J. p65/miR‐23a/CCL22 axis regulated regulatory T cells recruitment in hepatitis B virus positive hepatocellular carcinoma. Cancer Med. 2020 9 2 711 723 10.1002/cam4.2611 31769216
    [Google Scholar]
  33. Huang H. Liu Y. Yu P. Qu J. Guo Y. Li W. Wang S. Zhang J. MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. Sci. Rep. 2018 8 1 7366 10.1038/s41598‑018‑25768‑z 29743543
    [Google Scholar]
  34. Yin L. Xu G. Zhu Y. Wang Y. Expression of miR-23a and miR-135 and tumor markers in gastric cancer patients and the significance in diagnosis. Oncol. Lett. 2019 18 6 5853 5858 10.3892/ol.2019.10943 31788058
    [Google Scholar]
  35. Du J. Liang Y. Li J. Zhao J.M. Lin X.Y. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN. Front. Oncol. 2020 10 326 10.3389/fonc.2020.00326 32232005
    [Google Scholar]
  36. Lee Y. Kim S.J. Choo J. Heo G. Yoo J.W. Jung Y. Rhee S.H. Im E. Im, E., miR-23a-3p is a key regulator of IL-17C-induced tumor angiogenesis in colorectal cancer. Cells 2020 9 6 1363 10.3390/cells9061363 32492770
    [Google Scholar]
  37. Li C. Zhou T. Chen J. Li R. Chen H. Luo S. Chen D. Cai C. Li W. The role of Exosomal miRNAs in cancer. J. Transl. Med. 2022 20 1 6 10.1186/s12967‑021‑03215‑4 34980158
    [Google Scholar]
  38. Chen B. Zhu A. Tian L. Xin Y. Liu X. Peng Y. Zhang J. Miao Y. Wei J. miR‑23a suppresses pancreatic cancer cell progression by inhibiting PLK‑1 expression. Mol. Med. Rep. 2018 18 1 105 112 10.3892/mmr.2014.2733 29749476
    [Google Scholar]
  39. Zhang X.W. Liu N. Chen S. Wang Y. Sun K.L. Xu Z.M. Fu W.N. Upregulation of microRNA-23a regulates proliferation and apoptosis by targeting APAF-1 in laryngeal carcinoma. Oncol. Lett. 2015 10 1 410 416 10.3892/ol.2015.3238 26171041
    [Google Scholar]
  40. Vieira N.F. Serafini L.N. Novais P.C. Neto F.S.L. Cirino M.L.A. Kemp R. Ardengh J.C. Saggioro F.P. Gaspar A.F. Sankarankutty A.K. Júnior J.R.L. Tirapelli D.P.C. dos Santos J.S. The role of circulating miRNAs and CA19-9 in pancreatic cancer diagnosis. Oncotarget 2021 12 17 1638 1650 10.18632/oncotarget.28038 34434493
    [Google Scholar]
  41. Wang W. Ning J.Z. Tang Z.G. He Y. Yao L.C. Ye L. Wu L. MicroRNA‑23a acts as an oncogene in pancreatic carcinoma by targeting TFPI‑2. Exp. Ther. Med. 2020 20 5 1 10.3892/etm.2020.9181 32952643
    [Google Scholar]
  42. Zhuang R.J. Bai X.X. Liu W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol. Ther. 2019 20 6 897 911 10.1080/15384047.2019.1579960 30862230
    [Google Scholar]
  43. Zhou L. Jiang H. Lin L. Li Y. Li J. lncRNA GAS5 suppression of the malignant phenotype of ovarian cancer via the miR-23a-WT1 axis. Ann. Transl. Med. 2023 11 2 119 10.21037/atm‑22‑6394 36819499
    [Google Scholar]
  44. Nogueras Pérez R. Heredia-Nicolás N. de Lara-Peña L. López de Andrés J. Marchal J.A. Jiménez G. Griñán-Lisón C. Unraveling the potential of miRNAs from CSCs as an emerging clinical tool for breast cancer diagnosis and prognosis. Int. J. Mol. Sci. 2023 24 21 16010 10.3390/ijms242116010 37958993
    [Google Scholar]
  45. Varghese E. Liskova A. Kubatka P. Mathews Samuel S. Büsselberg D. Anti-angiogenic effects of phytochemicals on miRNA regulating breast cancer progression. Biomol. 2020 10 2
    [Google Scholar]
  46. Eissa S. Matboli M. Shehata H.H. Breast tissue–based microRNA panel highlights microRNA-23a and selected target genes as putative biomarkers for breast cancer. Transl. Res. 2015 165 3 417 427 10.1016/j.trsl.2014.10.001 25445205
    [Google Scholar]
  47. Li J. Bao Y. Peng S. Jiang C. Zhu L. Zou S. Xu J. Li Y. M2 macrophages-derived exosomal miRNA-23a-3p promotes the progression of oral squamous cell carcinoma by targeting PTEN. Curr. Issues Mol. Biol. 2023 45 6 4936 4947 10.3390/cimb45060314 37367063
    [Google Scholar]
  48. Jahid S. Sun J. Edwards R.A. Dizon D. Panarelli N.C. Milsom J.W. Sikandar S.S. Gümüş Z.H. Lipkin S.M. miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2012 2 6 540 553 10.1158/2159‑8290.CD‑11‑0267 22628407
    [Google Scholar]
  49. Cheng L. Yang T. Kuang Y. Kong B. Yu S. Shu H. Zhou H. Gu J. MicroRNA-23a promotes neuroblastoma cell metastasis by targeting CDH1. Oncol. Lett. 2014 7 3 839 845 10.3892/ol.2014.1794 24520301
    [Google Scholar]
  50. Qu J.Q. Yi H.M. Ye X. Li L.N. Zhu J.F. Xiao T. Yuan L. Li J.Y. Wang Y.Y. Feng J. He Q.Y. Lu S.S. Yi H. Xiao Z.Q. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget 2015 6 29 28341 28356 10.18632/oncotarget.5117 26314966
    [Google Scholar]
  51. Guo Y. Zhang Y. Zhang S.J. Ma Y.N. He Y. Comprehensive analysis of key genes and microRNAs in radioresistant nasopharyngeal carcinoma. BMC Med. Genomics 2019 12 1 73 10.1186/s12920‑019‑0507‑6 31138194
    [Google Scholar]
  52. Li X.H. Qu J.Q. Yi H. Zhang P.F. Yi H.M. Wan X.X. He Q.Y. Ye X. Yuan L. Zhu J.F. Li J.Y. Xiao Z.Q. Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. PLoS One 2014 9 1 e87767 10.1371/journal.pone.0087767 24498188
    [Google Scholar]
  53. Yin J.J. Cheng X.Y. MicroRNA-23a inhibits the growth of papillary thyroid carcinoma via regulating cyclin G1. Eur. Rev. Med. Pharmacol. Sci. 2019 23 8 3431 3439 31081097
    [Google Scholar]
  54. Nail H.M. Chiu C.C. Leung C.H. Ahmed M.M.M. Wang H.M.D. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J. Biomed. Sci. 2023 30 1 69 10.1186/s12929‑023‑00964‑w 37605155
    [Google Scholar]
  55. Paskeh M.D.A. Entezari M. Mirzaei S. Zabolian A. Saleki H. Naghdi M.J. Sabet S. Khoshbakht M.A. Hashemi M. Hushmandi K. Sethi G. Zarrabi A. Kumar A.P. Tan S.C. Papadakis M. Alexiou A. Islam M.A. Mostafavi E. Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022 15 1 83 10.1186/s13045‑022‑01305‑4 35765040
    [Google Scholar]
  56. Todeschini P. Salviato E. Romani C. Raimondi V. Ciccarese F. Ferrari F. Tognon G. Marchini S. D’Incalci M. Zanotti L. Ravaggi A. Odicino F. Sartori E. D’Agostino D.M. Samaja M. Romualdi C. Bignotti E. Comprehensive profiling of hypoxia-related miRNAs identifies miR-23a-3p overexpression as a marker of platinum resistance and poor prognosis in high-grade serous ovarian cancer. Cancers (Basel) 2021 13 13 3358 10.3390/cancers13133358 34283087
    [Google Scholar]
  57. Liu H. Deng H. Zhao Y. Li C. Liang Y. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J. Exp. Clin. Cancer Res. 2018 37 1 279 10.1186/s13046‑018‑0950‑9 30463570
    [Google Scholar]
  58. Kurkewich J.L. Hansen J. Klopfenstein N. Zhang H. Wood C. Boucher A. Hickman J. Muench D.E. Grimes H.L. Dahl R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet. 2017 13 7 e1006887 10.1371/journal.pgen.1006887 28704388
    [Google Scholar]
  59. Mirzaei S. Paskeh M.D.A. Okina E. Gholami M.H. Hushmandi K. Hashemi M. Kalu A. Zarrabi A. Nabavi N. Rabiee N. Sharifi E. Karimi-Maleh H. Ashrafizadeh M. Kumar A.P. Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. J. Exp. Clin. Cancer Res. 2022 41 1 214 10.1186/s13046‑022‑02406‑1 35773731
    [Google Scholar]
  60. He Y. Meng C. Shao Z. Wang H. Yang S. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell. Physiol. Biochem. 2014 34 5 1485 1496 10.1159/000366353 25322765
    [Google Scholar]
  61. Llobat L. Gourbault O. Role of microRNAs in human osteosarcoma: Future perspectives. Biomedicines 2021 9 5 463 10.3390/biomedicines9050463 33922820
    [Google Scholar]
  62. Shang J. Yang F. Wang Y. Wang Y. Xue G. Mei Q. Wang F. Sun S. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J. Cell. Biochem. 2014 115 4 772 784 10.1002/jcb.24721 24249161
    [Google Scholar]
  63. Luo H. Wang P. Ye H. Shi J. Dai L. Wang X. Song C. Zhang J. Li J. Serum-derived microRNAs as prognostic biomarkers in osteosarcoma: A meta-analysis. Front. Genet. 2020 11 789 10.3389/fgene.2020.00789 32849795
    [Google Scholar]
  64. Li Y. Chen H. She P. Chen T. Chen L. Yuan J. Jiang B. microRNA‑23a promotes cell growth and metastasis in gastric cancer via targeting SPRY2‑mediated ERK signaling. Oncol. Lett. 2018 15 6 8433 8441 10.3892/ol.2018.8374 29805579
    [Google Scholar]
  65. Hao X.Z. Yang K. LncRNA MAGI2-AS3 suppresses the proliferation and invasion of non-small cell lung carcinoma through miRNA-23a-3p/PTEN axis. Eur. Rev. Med. Pharmacol. Sci. 2019 23 17 7399 7407 31539127
    [Google Scholar]
  66. Guo W. Wang H. Yang Y. Guo S. Zhang W. Liu Y. Yi X. Ma J. Zhao T. Liu L. Jian Z. Liu L. Wang G. Gao T. Shi Q. Li C. Down-regulated miR-23a contributes to the metastasis of cutaneous melanoma by promoting autophagy. Theranostics 2017 7 8 2231 2249 10.7150/thno.18835 28740547
    [Google Scholar]
  67. Śledzińska P. Bebyn M.G. Furtak J. Kowalewski J. Lewandowska M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 2021 22 19 10373 10.3390/ijms221910373 34638714
    [Google Scholar]
  68. Lian S. Shi R. Bai T. Liu Y. Miao W. Wang H. Liu X. Fan Y. Anti-miRNA-23a oligonucleotide suppresses glioma cells growth by targeting apoptotic protease activating factor-1. Curr. Pharm. Des. 2013 19 35 6382 6389 10.2174/13816128113199990509 23865473
    [Google Scholar]
  69. Yachi K. Tsuda M. Kohsaka S. Wang L. Oda Y. Tanikawa S. Ohba Y. Tanaka S. miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Signal Transduct. Target. Ther. 2018 3 1 33 10.1038/s41392‑018‑0033‑6 30603114
    [Google Scholar]
  70. Meza-Sosa K.F. Valle-García D. Pedraza-Alva G. Pérez-Martínez L. Role of microRNAs in central nervous system development and pathology. J. Neurosci. Res. 2012 90 1 1 12 10.1002/jnr.22701 21922512
    [Google Scholar]
  71. Meza-Sosa K.F. Pedraza-Alva G. Pérez-Martínez L. microRNAs: key triggers of neuronal cell fate. Front. Cell. Neurosci. 2014 8 175 10.3389/fncel.2014.00175 25009466
    [Google Scholar]
  72. Baumann V. Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 2014 6 17 1967 1984 10.4155/fmc.14.116 25495987
    [Google Scholar]
  73. Tang X. Zhang S. Fu R. Zhang L. Huang K. Peng H. Dai L. Chen Q. Therapeutic prospects of mRNA-based gene therapy for glioblastoma. Front. Oncol. 2019 9 1208 10.3389/fonc.2019.01208 31781503
    [Google Scholar]
  74. Melnick K. Dastmalchi F. Mitchell D. Rahman M. Sayour E.J. Contemporary RNA therapeutics for glioblastoma. Neuromolecular Med. 2022 24 1 8 12 10.1007/s12017‑021‑08669‑9 34101090
    [Google Scholar]
  75. Kim Y.K. RNA therapy: rich history, various applications and unlimited future prospects. Exp. Mol. Med. 2022 54 4 455 465 10.1038/s12276‑022‑00757‑5 35440755
    [Google Scholar]
  76. Xiong W. Lin Y. Xu L. Tamadon A. Zou S. Tian F. Shao R. Li X. Feng Y. Circulatory microRNA 23a and microRNA 23b and polycystic ovary syndrome (PCOS): the effects of body mass index and sex hormones in an Eastern Han Chinese population. J. Ovarian Res. 2017 10 1 10 10.1186/s13048‑016‑0298‑8 28193283
    [Google Scholar]
  77. Zhu X. Zhang J. Sun Y. Wang Y. Liu Q. Li P. Yu S. Liu N. Ye J. Ma D. Ji C. Restoration of miR-23a expression by chidamide sensitizes CML cells to imatinib treatment with concomitant downregulation of CRYAB. Bioengineered 2022 13 4 8881 8892 10.1080/21655979.2022.2056322 35333695
    [Google Scholar]
  78. Hatzl S. Perfler B. Wurm S. Uhl B. Quehenberger F. Ebner S. Troppmair J. Reinisch A. Wölfler A. Sill H. Zebisch A. Increased expression of micro-RNA-23a mediates chemoresistance to cytarabine in acute myeloid leukemia. Cancers (Basel) 2020 12 2 496 10.3390/cancers12020496 32093419
    [Google Scholar]
  79. Rockne R.C. Branciamore S. Qi J. Frankhouser D.E. O’Meally D. Hua W.K. Cook G. Carnahan E. Zhang L. Marom A. Wu H. Maestrini D. Wu X. Yuan Y.C. Liu Z. Wang L.D. Forman S. Carlesso N. Kuo Y.H. Marcucci G. State-transition analysis of time-sequential gene expression identifies critical points that predict development of acute myeloid leukemia. Cancer Res. 2020 80 15 3157 3169 10.1158/0008‑5472.CAN‑20‑0354 32414754
    [Google Scholar]
  80. Zhang Y.S. Wang M.Y. Zhang W.L. Tang C.H. [Proliferation, migration and apoptosis of acute myeloid leukemia cells regulated by mir-23a-3p targeting SMC1A and the mechanism]. Zhonghua Zhong Liu Za Zhi 2019 41 10 753 759 31648497
    [Google Scholar]
  81. Gadewal N. Kumar R. Aher S. Gardane A. Gaur T. Varma A.K. Khattry N. Hasan S.K. miRNA-mRNA profiling reveals prognostic impact of SMC1A expression in acute myeloid leukemia. Oncol. Res. 2020 28 3 321 330 10.3727/096504020X15816752427321 32059753
    [Google Scholar]
  82. Zhao C. Wang S. Zhao Y. Du F. Wang W. Lv P. Qi L. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR‐23a‐3p/SMC1A in acute myeloid leukemia. J. Cell. Physiol. 2019 234 5 6161 6172 10.1002/jcp.27393 30246348
    [Google Scholar]
  83. Mendiola-Soto D.K. Bárcenas-López D.A. Pérez-Amado C.J. Cruz-Miranda G.M. Mejía-Aranguré J.M. Ramírez-Bello J. Hidalgo-Miranda A. Jiménez-Morales S. MiRNAs in hematopoiesis and acute lymphoblastic leukemia. Int. J. Mol. Sci. 2023 24 6 5436 10.3390/ijms24065436 36982511
    [Google Scholar]
  84. Guo Y. Li J. Kang Y. Jiang L. miR-23a-3p is involved in drug resistance by directly targeting the influx drug transporter organic anion-transporting polypeptide 2. Childs Nerv. Syst. 2021 37 8 2545 2555 10.1007/s00381‑021‑05146‑3 33779805
    [Google Scholar]
  85. Del Gaizo M. Sergio I. Lazzari S. Cialfi S. Pelullo M. Screpanti I. Felli M.P. MicroRNAs as modulators of the immune response in T-Cell acute lymphoblastic leukemia. Int. J. Mol. Sci. 2022 23 2 829 10.3390/ijms23020829 35055013
    [Google Scholar]
  86. Hu X. Wang Y. Liang H. Fan Q. Zhu R. Cui J. Zhang W. Zen K. Zhang C.Y. Hou D. Zhou Z. Chen X. miR-23a/b promote tumor growth and suppress apoptosis by targeting PDCD4 in gastric cancer. Cell Death Dis. 2017 8 10 e3059 e3059 10.1038/cddis.2017.447 28981115
    [Google Scholar]
  87. Ma F. Cao D. Liu Z. Li Y. Ouyang S. Wu J. Identification of novel circulating miRNAs biomarkers for healthy obese and lean children. BMC Endocr. Disord. 2023 23 1 238 10.1186/s12902‑023‑01498‑w 37904219
    [Google Scholar]
  88. Doghish A.S. Abulsoud A.I. Elshaer S.S. Abdelmaksoud N.M. Zaki M.B. El-Mahdy H.A. Ismail A. Fathi D. Elsakka E.G.E. miRNAs as cornerstones in chronic lymphocytic leukemia pathogenesis and therapeutic resistance– An emphasis on the interaction of signaling pathways. Pathol. Res. Pract. 2023 243 154363 10.1016/j.prp.2023.154363 36764011
    [Google Scholar]
  89. Mirzaei H. Fathullahzadeh S. Khanmohammadi R. Darijani M. Momeni F. Masoudifar A. Goodarzi M. Mardanshah O. Stenvang J. Jaafari M.R. Mirzaei H.R. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J. Cell. Physiol. 2018 233 2 888 900 10.1002/jcp.25799 28084621
    [Google Scholar]
  90. Navabi A. Akbari B. Abdalsamadi M. Naseri S. The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci. 2022 296 120437 10.1016/j.lfs.2022.120437 35231484
    [Google Scholar]
  91. Xishan Z. Xianjun L. Ziying L. Guangxin C. Gang L. The malignancy suppression role of miR-23a by targeting the BCR/ABL oncogene in chromic myeloid leukemia. Cancer Gene Ther. 2014 21 9 397 404 10.1038/cgt.2014.44 25213664
    [Google Scholar]
  92. Ciccone M. Calin G. MicroRNAs in chronic lymphocytic leukemia: An old disease with new genetic insights. MicroRNA 2016 5 2 106 112 10.2174/2211536605666160825150219 27568792
    [Google Scholar]
  93. Abdel Mageed S.S. Doghish A.S. Ismail A. El-Husseiny A.A. Fawzi S.F. Mahmoud A.M.A. El-Mahdy H.A. The role of miRNAs in insulin resistance and diabetic macrovascular complications – A review. Int. J. Biol. Macromol. 2023 230 123189 10.1016/j.ijbiomac.2023.123189 36623613
    [Google Scholar]
  94. Nigi L. Grieco G.E. Ventriglia G. Brusco N. Mancarella F. Formichi C. Dotta F. Sebastiani G. MicroRNAs as regulators of insulin signaling: Research updates and potential therapeutic perspectives in type 2 diabetes. Int. J. Mol. Sci. 2018 19 12 3705 10.3390/ijms19123705 30469501
    [Google Scholar]
  95. Suksangrat T. Phannasil P. Jitrapakdee S. miRNA regulation of glucose and lipid metabolism in relation to diabetes and non-alcoholic fatty liver disease. Adv. Exp. Med. Biol. 2019 1134 129 148 10.1007/978‑3‑030‑12668‑1_7 30919335
    [Google Scholar]
  96. Sheng S. Zou M. Yang Y. Guan M. Ren S. Wang X. Wang L. Xue Y. miR-23a-3p regulates the inflammatory response and fibrosis in diabetic kidney disease by targeting early growth response 1. In Vitro Cell. Dev. Biol. Anim. 2021 57 8 763 774 10.1007/s11626‑021‑00606‑1 34608568
    [Google Scholar]
  97. Wada S. Kato Y. Okutsu M. Miyaki S. Suzuki K. Yan Z. Schiaffino S. Asahara H. Ushida T. Akimoto T. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 2011 286 44 38456 38465 10.1074/jbc.M111.271270 21926429
    [Google Scholar]
  98. Mendonca A. Thandapani P. Nagarajan P. Venkatesh S. Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J. Biosci. 2022 47 4 58 10.1007/s12038‑022‑00295‑2 36222140
    [Google Scholar]
  99. Li M. Chi X. Wang Y. Setrerrahmane S. Xie W. Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022 7 1 216 10.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  100. Ganesan S. Palani H.K. Lakshmanan V. Balasundaram N. Alex A.A. David S. Venkatraman A. Korula A. George B. Balasubramanian P. Palakodeti D. Vyas N. Mathews V. Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis. 2019 10 10 736 10.1038/s41419‑019‑1964‑8 31570693
    [Google Scholar]
  101. Spakova I. Zelko A. Rabajdova M. Kolarcik P. Rosenberger J. Zavacka M. Marekova M. Madarasova Geckova A. van Dijk J.P. Reijneveld S.A. MicroRNA molecules as predictive biomarkers of adaptive responses to strength training and physical inactivity in haemodialysis patients. Sci. Rep. 2020 10 1 15597 10.1038/s41598‑020‑72542‑1 32973233
    [Google Scholar]
  102. Mei T. Hu Y. Zhang Y. Li Y. Hypoxia treatment and resistance training alters microRNA profiling in rats skeletal muscle. Sci. Rep. 2024 14 1 8388 10.1038/s41598‑024‑58996‑7 38600177
    [Google Scholar]
  103. Wang J. Zhao J. MicroRNA dysregulation in epilepsy: From pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front. Mol. Neurosci. 2021 14 650372 10.3389/fnmol.2021.650372 33776649
    [Google Scholar]
  104. Zhu X. Zhang A. Dong J. Yao Y. Zhu M. Xu K. Al Hamda M.H. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Res. Bull. 2019 152 175 183 10.1016/j.brainresbull.2019.07.021 31336125
    [Google Scholar]
  105. Peng P. Li Z. Liu X. Reduced expression of miR-23a suppresses A20 in TLR-stimulated macrophages. Inflammation 2015 38 5 1787 1793 10.1007/s10753‑015‑0156‑7 25832477
    [Google Scholar]
  106. Wade S.M. Trenkmann M. McGarry T. Canavan M. Marzaioli V. Wade S.C. Veale D.J. Fearon U. Altered expression of microRNA-23a in psoriatic arthritis modulates synovial fibroblast pro-inflammatory mechanisms via phosphodiesterase 4B. J. Autoimmun. 2019 96 86 93 10.1016/j.jaut.2018.08.008 30181004
    [Google Scholar]
  107. Ma S. Liu M. Xu Z. Li Y. Guo H. Ge Y. Liu Y. Zheng D. Shi J. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression. Oncotarget 2016 7 12 13502 13519 10.18632/oncotarget.6284 26540574
    [Google Scholar]
  108. Ye Y. Wang G. Wang G. Zhuang J. He S. Song Y. Ni J. Xia W. Wang J. The oncogenic role of tribbles 1 in hepatocellular carcinoma is mediated by a feedback loop involving microRNA-23a and p53. Front. Physiol. 2017 8 789 10.3389/fphys.2017.00789 29176948
    [Google Scholar]
  109. Wang N. Zhu M. Wang X. Tan H.Y. Tsao S. Feng Y. Berberine-induced tumor suppressor p53 up-regulation gets involved in the regulatory network of MIR-23a in hepatocellular carcinoma. Biochim. Biophys. Acta. Gene Regul. Mech. 2014 1839 9 849 857 10.1016/j.bbagrm.2014.05.027 24942805
    [Google Scholar]
  110. Teng Y. Miao J. Shen X. Yang X. Wang X. Ren L. Wang X. Chen J. Li J. Chen S. Wang Y. Huang N. The modulation of MiR-155 and MiR-23a manipulates Klebsiella pneumoniae Adhesion on Human pulmonary Epithelial cells via Integrin α5β1 Signaling. Sci. Rep. 2016 6 1 31918 10.1038/srep31918 27534887
    [Google Scholar]
  111. Hu N. Poor prognosis of breast cancer patients with high expression of microRNA-23a. Tumor 2018 51 57
    [Google Scholar]
  112. Chen F. Qi S. Zhang X. Wu J. Yang X. Wang R. miR-23a-3p suppresses cell proliferation in oral squamous cell carcinomas by targeting FGF2 and correlates with a better prognosis. Pathol. Res. Pract. 2019 215 4 660 667 10.1016/j.prp.2018.12.021 30606659
    [Google Scholar]
  113. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  114. Chen Y. Gao D.Y. Huang L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015 81 128 141 10.1016/j.addr.2014.05.009 24859533
    [Google Scholar]
  115. Li Z.L. Lv L.L. Tang T.T. Wang B. Feng Y. Zhou L.T. Cao J.Y. Tang R.N. Wu M. Liu H. Crowley S.D. Liu B.C. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 2019 95 2 388 404 10.1016/j.kint.2018.09.013 30551896
    [Google Scholar]
  116. Cheng X. Xie Q. Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023 11 1177151 10.3389/fbioe.2023.1177151 37122851
    [Google Scholar]
  117. Dasgupta I. Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021 4 1 10 10.3390/mps4010010 33498244
    [Google Scholar]
  118. Li Z. Lei Z. Cai Y. Cheng D.B. Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J. Mater. Chem. B Mater. Biol. Med. 2023 11 33 7804 7833 10.1039/D3TB00694H 37539650
    [Google Scholar]
  119. Lin R. Chen L. Chen G. Hu C. Jiang S. Sevilla J. Wan Y. Sampson J.H. Zhu B. Li Q.J. Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J. Clin. Invest. 2014 124 12 5352 5367 10.1172/JCI76561 25347474
    [Google Scholar]
  120. Lin S.T. Huang Y. Zhang L. Heng M.Y. Ptáček L.J. Fu Y.H. MicroRNA-23a promotes myelination in the central nervous system. Proc. Natl. Acad. Sci. USA 2013 110 43 17468 17473 10.1073/pnas.1317182110 24101522
    [Google Scholar]
  121. Lin S.T. Fu Y.H. miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis. Model. Mech. 2009 2 3-4 178 188 10.1242/dmm.001065 19259393
    [Google Scholar]
  122. Qin D. Wang C. Li D. Guo S. Exosomal miR-23a-3p derived from human umbilical cord mesenchymal stem cells promotes remyelination in central nervous system demyelinating diseases by targeting Tbr1/Wnt pathway. J. Biol. Chem. 2024 300 1 105487 10.1016/j.jbc.2023.105487 37995941
    [Google Scholar]
  123. Gharehzadehshirazi A. Zarejousheghani M. Falahi S. Joseph Y. Rahimi P. Biomarkers and corresponding biosensors for childhood cancer diagnostics. Sensors (Basel) 2023 23 3 1482 10.3390/s23031482 36772521
    [Google Scholar]
  124. Reid G. Kao S.C. Pavlakis N. Brahmbhatt H. MacDiarmid J. Clarke S. Boyer M. van Zandwijk N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016 8 8 1079 1085 10.2217/epi‑2016‑0035 27185582
    [Google Scholar]
  125. van Zandwijk N. Pavlakis N. Kao S.C. Linton A. Boyer M.J. Clarke S. Huynh Y. Chrzanowska A. Fulham M.J. Bailey D.L. Cooper W.A. Kritharides L. Ridley L. Pattison S.T. MacDiarmid J. Brahmbhatt H. Reid G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017 18 10 1386 1396 10.1016/S1470‑2045(17)30621‑6 28870611
    [Google Scholar]
  126. Beg M.S. Brenner A.J. Sachdev J. Borad M. Kang Y.K. Stoudemire J. Smith S. Bader A.G. Kim S. Hong D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 2017 35 2 180 188 10.1007/s10637‑016‑0407‑y 27917453
    [Google Scholar]
  127. Hong D.S. Kang Y.K. Borad M. Sachdev J. Ejadi S. Lim H.Y. Brenner A.J. Park K. Lee J.L. Kim T.Y. Shin S. Becerra C.R. Falchook G. Stoudemire J. Martin D. Kelnar K. Peltier H. Bonato V. Bader A.G. Smith S. Kim S. O’Neill V. Beg M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020 122 11 1630 1637 10.1038/s41416‑020‑0802‑1 32238921
    [Google Scholar]
  128. Desantis V. Saltarella I. Lamanuzzi A. Melaccio A. Solimando A.G. Mariggiò M.A. Racanelli V. Paradiso A. Vacca A. Frassanito M.A. MicroRNAs-based nano-strategies as new therapeutic approach in multiple myeloma to overcome disease progression and drug resistance. Int. J. Mol. Sci. 2020 21 9 3084 10.3390/ijms21093084 32349317
    [Google Scholar]
  129. Gomez I.G. MacKenna D.A. Johnson B.G. Kaimal V. Roach A.M. Ren S. Nakagawa N. Xin C. Newitt R. Pandya S. Xia T.H. Liu X. Borza D.B. Grafals M. Shankland S.J. Himmelfarb J. Portilla D. Liu S. Chau B.N. Duffield J.S. Anti–microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 2015 125 1 141 156 10.1172/JCI75852 25415439
    [Google Scholar]
  130. Winkler J. Stessl M. Amartey J. Noe C.R. Off-target effects related to the phosphorothioate modification of nucleic acids. ChemMedChem 2010 5 8 1344 1352 10.1002/cmdc.201000156 20544786
    [Google Scholar]
  131. Xu Y. Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020 18 2401 2415 10.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  132. Tian J. Han Z. Song D. Peng Y. Xiong M. Chen Z. Duan S. Zhang L. Engineered exosome for drug delivery: recent development and clinical applications. Int. J. Nanomedicine 2023 18 7923 7940 10.2147/IJN.S444582 38152837
    [Google Scholar]
  133. Liang G. Zhu Y. Ali D.J. Tian T. Xu H. Si K. Sun B. Chen B. Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology 2020 18 1 10 10.1186/s12951‑019‑0563‑2 31918721
    [Google Scholar]
  134. Chang C. Huang K. Xu X. Duan R. Yu T. Chu X. Chen C. Li B. Yang T. MiR-23a-5p alleviates chronic obstructive pulmonary disease through targeted regulation of RAGE-ROS pathway. Respir. Res. 2024 25 1 93 10.1186/s12931‑024‑02736‑y 38378600
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947332277241007063153
Loading
/content/journals/cctr/10.2174/0115733947332277241007063153
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer therapy ; Biomarker ; leukemia ; cancer diagnosis ; miR-23a ; solid tumour
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test