Skip to content
2000
image of Chitosan/MXene Composite Scaffolds for Bone Regeneration in Oral Cancer Treatment - A Review

Abstract

Oral cancer treatment frequently results in bone damage and complications such as osteoradionecrosis (ORN) and impeding bone regeneration. Chitosan, a biocompatible and biodegradable natural polymer, demonstrates potential for bone regeneration but suffers from insufficient mechanical strength. MXene, a novel 2D material exhibiting high electrical conductivity and mechanical strength, offers a promising synergistic solution. This review explores the potential of chitosan-MXene composite scaffolds for bone regeneration within the context of oral cancer treatment. The advantages of these composites are discussed, including enhanced mechanical strength, electrical stimulation of bone cell activity, controlled drug delivery, and improved biocompatibility. Various synthesis methods for chitosan/MXene scaffolds are examined, highlighting their advantages and limitations. Critical aspects of biocompatibility and cytotoxicity of these materials are also addressed. The review concludes by delving into the future prospects of chitosan/MXene composites, encompassing tailored scaffold designs, enhanced bioactivity, improved electrical stimulation, and the development of multifunctional and bioresorbable scaffolds. This research holds significant promise for enhancing treatment outcomes and improving the quality of life for oral cancer patients.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947326282240924003811
2024-10-02
2024-11-23
Loading full text...

Full text loading...

References

  1. Grisar K. Schol M. Schoenaers J. Dormaar T. Coropciuc R. Vander Poorten V. Politis C. Osteoradionecrosis and medication-related osteonecrosis of the jaw: Similarities and differences. Int. J. Oral Maxillofac. Surg. 2016 45 12 1592 1599 10.1016/j.ijom.2016.06.016 27427547
    [Google Scholar]
  2. Sundramoorthy A.K. Selection of best biomarker for the early detection of oral squamous cell carcinoma. Oral Oncology Reports 2024 9 100197 10.1016/j.oor.2024.100197
    [Google Scholar]
  3. Balasamy S. Sundramoorthy A.K. EGFR-targeted fluorescence imaging for precision margin assessment in oral cancer surgery. Oral Oncol. 2024 150 106712 10.1016/j.oraloncology.2024.106712 38306756
    [Google Scholar]
  4. Schweyen R. Stang A. Wienke A. Eckert A. Kuhnt T. Hey J. The influence of dental treatment on the development of osteoradionecrosis after radiotherapy by modern irradiation techniques. Clin. Oral Investig. 2017 21 8 2499 2508 10.1007/s00784‑017‑2048‑8 28091874
    [Google Scholar]
  5. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006 31 7 603 632 10.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  6. Muzzarelli R. Mehtedi M. Mattioli-Belmonte M. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar. Drugs 2014 12 11 5468 5502 10.3390/md12115468 25415349
    [Google Scholar]
  7. Raj S.M.M. Sundramoorthy A.K. Atchudan R. Ganapathy D. Khosla A. Review—Recent Trends on the Synthesis and Different Characterization Tools for MXenes and their Emerging Applications. J. Electrochem. Soc. 2022 169 7 077501 10.1149/1945‑7111/ac7bac
    [Google Scholar]
  8. Paramasivam G. Palem V.V. Meenakshy S. Suresh L.K. Gangopadhyay M. Antherjanam S. Sundramoorthy A.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf. B Biointerfaces 2024 241 114032 10.1016/j.colsurfb.2024.114032 38905812
    [Google Scholar]
  9. Murugan N. Jerome R. Preethika M. Sundaramurthy A. Sundramoorthy A.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J. Mater. Sci. Technol. 2021 72 122 131 10.1016/j.jmst.2020.07.037
    [Google Scholar]
  10. Naguib M. Mochalin V.N. Barsoum M.W. Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014 26 7 992 1005 10.1002/adma.201304138 24357390
    [Google Scholar]
  11. Alfahel R. Tong Y. Pasha M. Hawari A.H. Mahmoud K.A. A lamellar chitosan-lignosulfonate/MXene nanocomposite as binder-free electrode for high-performance capacitive deionization. Desalination 2024 573 117187 10.1016/j.desal.2023.117187
    [Google Scholar]
  12. Naskar A. Kilari S. Misra S. Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications. Polymers (Basel) 2024 16 10 1327 10.3390/polym16101327 38794520
    [Google Scholar]
  13. Rabiee N. Iravani S. MXenes and their composites: A versatile platform for biomedical applications. Mater. Chem. Horizons 2023 2 3 171 184
    [Google Scholar]
  14. Pires L.S. Magalhães F.D. Pinto A.M. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers (Basel) 2022 14 7 1464 10.3390/polym14071464 35406337
    [Google Scholar]
  15. Ferracini R. Martínez Herreros I. Russo A. Casalini T. Rossi F. Perale G. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery. Pharmaceutics 2018 10 3 122 10.3390/pharmaceutics10030122 30096765
    [Google Scholar]
  16. Nagarajan R.D. Sundaramurthy A. Sundramoorthy A.K. Synthesis and characterization of MXene (Ti3C2Tx)/Iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide. Chemosphere 2022 286 Pt 1 131478 10.1016/j.chemosphere.2021.131478 34303904
    [Google Scholar]
  17. Li W. Huang Y. Liu Y. Tekell M.C. Fan D.E. Three dimensional nanosuperstructures made of two-dimensional materials by design: Synthesis, properties, and applications. Nano Today 2019 29 100799 10.1016/j.nantod.2019.100799
    [Google Scholar]
  18. Amiryaghoubi N. Fathi M. Adibkia K. Barar J. Omidian H. Omidi Y. Chitosan-Based Biomaterials: Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering. Engineering Materials for Stem Cell Regeneration. Sheikh F.A. Singapore Springer Singapore 2021 619 650 10.1007/978‑981‑16‑4420‑7_22
    [Google Scholar]
  19. Rajendran J. Sundramoorthy A.K. Ganapathy D. Atchudan R. Habila M.A. Nallaswamy D. 2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. J. Hazard. Mater. 2022 440 129705 10.1016/j.jhazmat.2022.129705 35963090
    [Google Scholar]
  20. O’Dell K. Sinha U. Osteoradionecrosis. Oral Maxillofac. Surg. Clin. North Am. 2011 23 3 455 464 10.1016/j.coms.2011.04.011 21798443
    [Google Scholar]
  21. Rezvan G. Gholamirad F. Walden M.K. Wang Y. Zhao P. Sadati M. He T-C. Taheri-Qazvini N. Hybrid functional membranes through layer-by-layer assembly of Ti3C2Tx MXene and gelatin-stabilized calcium phosphate nanospheres. Appl. Mater. Today 2024 37 102144 10.1016/j.apmt.2024.102144
    [Google Scholar]
  22. Chen X. Cheng Y. Wu H. Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene. Ceram. Int. 2023 49 12 19578 19594 10.1016/j.ceramint.2023.03.109
    [Google Scholar]
  23. Enoch K. Sundaram A. Ponraj S.S. Palaniyappan S. George S.D.B. Manavalan R.K. Enhancement of MXene optical properties towards medical applications via metal oxide incorporation. Nanoscale 2023 15 42 16874 16889 10.1039/D3NR02527F 37853782
    [Google Scholar]
  24. Mohajer F. Ziarani G.M. Badiei A. Iravani S. Varma R.S. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines (Basel) 2022 13 10 1773 10.3390/mi13101773 36296126
    [Google Scholar]
  25. Zarepour A. Rafati N. Khosravi A. Rabiee N. Iravani S. Zarrabi A. MXene-based composites in smart wound healing and dressings. Nanoscale Adv. 2024 6 14 3513 3532 10.1039/D4NA00239C 38989508
    [Google Scholar]
  26. Zhang X. Wang Y. Gao Z. Mao X. Cheng J. Huang L. Tang J. Advances in wound dressing based on electrospinning nanofibers. J. Appl. Polym. Sci. 2024 141 1 e54746 10.1002/app.54746
    [Google Scholar]
  27. Parajuli D. MXenes-polymer nanocomposites for biomedical applications: Fundamentals and future perspectives. Front Chem. 2024 12 1400375 10.3389/fchem.2024.1400375 38863676
    [Google Scholar]
  28. Mayerberger E.A. Street R.M. McDaniel R.M. Barsoum M.W. Schauer C.L. Antibacterial properties of electrospun Ti 3 C 2 T z (MXene)/chitosan nanofibers. RSC Advances 2018 8 62 35386 35394 10.1039/C8RA06274A 35547922
    [Google Scholar]
  29. Liu S. Wang S. Sang M. Zhou J. Zhang J. Xuan S. Gong X. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding. ACS Nano 2022 16 11 19067 19086 10.1021/acsnano.2c08104 36302097
    [Google Scholar]
  30. Sarkhosh-Inanlou R. Shafiei-Irannejad V. Azizi S. Jouyban A. Ezzati-Nazhad Dolatabadi J. Mobed A. Adel B. Soleymani J. Hamblin M.R. Applications of scaffold-based advanced materials in biomedical sensing. Trends Analyt. Chem. 2021 143 116342 10.1016/j.trac.2021.116342 34602681
    [Google Scholar]
  31. Yousefiasl S. Sharifi E. Salahinejad E. Makvandi P. Irani S. Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering. Eng. Regen. 2023 4 1 1 11 10.1016/j.engreg.2022.09.005
    [Google Scholar]
  32. Chen L. Mai T. Ji X.X. Wang P.L. Qi M.Y. Liu Q. Ding Y. Ma M-G. 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing. Chem. Eng. J. 2023 476 146652 10.1016/j.cej.2023.146652
    [Google Scholar]
  33. Xie C. Ding R. Wang X. Hu C. Yan J. Zhang W. Wang Y. Qu Y. Zhang S. He P. Wang Z. A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment. Nanotechnology 2020 31 11 115101 10.1088/1361‑6528/ab5b35 31766038
    [Google Scholar]
  34. Lipton J. Weng G.M. Rӧhr J.A. Wang H. Taylor A.D. Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter 2020 2 5 1148 1165 10.1016/j.matt.2020.03.012
    [Google Scholar]
  35. Bagheri M. Validi M. Gholipour A. Makvandi P. Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 2022 7 1 e10254 10.1002/btm2.10254 35111951
    [Google Scholar]
  36. Xiong D. Shi Y. Yang H.Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater. Today 2021 46 183 211 10.1016/j.mattod.2020.12.004
    [Google Scholar]
  37. Post W. Kuijpers L.J. Zijlstra M. van der Zee M. Molenveld K. Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers. Polymers (Basel) 2021 13 3 394 10.3390/polym13030394 33513697
    [Google Scholar]
  38. Nagarajan R.D. Murugan P. Palaniyandi K. Atchudan R. Sundramoorthy A.K. Biocompatible MXene (Ti3C2Tx) Immobilized with Flavin Adenine Dinucleotide as an Electrochemical Transducer for Hydrogen Peroxide Detection in Ovarian Cancer Cell Lines. Micromachines (Basel) 2021 12 8 862 10.3390/mi12080862 34442484
    [Google Scholar]
  39. Kozusko S.D. Riccio C. Goulart M. Bumgardner J. Jing X.L. Konofaos P. Chitosan as a Bone Scaffold Biomaterial. J. Craniofac. Surg. 2018 29 7 1788 1793 10.1097/SCS.0000000000004909 30157141
    [Google Scholar]
  40. Akpan E.I. Gbenebor O.P. Adeosun S.O. Cletus O. Chitin and chitosan composites for bone tissue regeneration. Handbook of Chitin and Chitosan. Gopi S. Thomas S. Pius A. Amsterdam Elsevier 2020 499 553 10.1016/B978‑0‑12‑817966‑6.00016‑9
    [Google Scholar]
  41. Goller S. Turner N.J. The Antimicrobial Effectiveness and Cytotoxicity of the Antibiotic-Loaded Chitosan: ECM Scaffolds. Appl. Sci. (Basel) 2020 10 10 3446 10.3390/app10103446
    [Google Scholar]
  42. Seidi F. Arabi Shamsabadi A. Dadashi Firouzjaei M. Elliott M. Saeb M.R. Huang Y. Li C. Xiao H. Anasori B. MXenes Antibacterial Properties and Applications: A Review and Perspective. Small 2023 19 14 2206716 10.1002/smll.202206716 36604987
    [Google Scholar]
  43. Ma J. Zhang L. Lei B. Multifunctional MXene-Based Bioactive Materials for Integrated Regeneration Therapy. ACS Nano 2023 17 20 19526 19549 10.1021/acsnano.3c01913 37804317
    [Google Scholar]
  44. Luo R. Li F. Wang Y. Zou H. Shang J. Fan Y. Liu H. Xu Z. Li R. Liu H. MXene-modified 3D printed scaffold for photothermal therapy and facilitation of oral mucosal wound reconstruction. Mater. Des. 2023 227 111731 10.1016/j.matdes.2023.111731
    [Google Scholar]
  45. Pektas H.K. Demidov Y. Ahvan A. Abie N. Georgieva V.S. Chen S. Farè S. Brachvogel B. Mathur S. Maleki H. MXene-Integrated Silk Fibroin-Based Self-Assembly-Driven 3D-Printed Theragenerative Scaffolds for Remotely Photothermal Anti-Osteosarcoma Ablation and Bone Regeneration. ACS Mater. Au 2023 3 6 711 726 10.1021/acsmaterialsau.3c00040 38089660
    [Google Scholar]
  46. Li F. Yan Y. Wang Y. Fan Y. Zou H. Liu H. Luo R. Li R. Liu H. A bifunctional MXene-modified scaffold for photothermal therapy and maxillofacial tissue regeneration. Regen. Biomater. 2021 8 rbab057 10.1093/rb/rbab057
    [Google Scholar]
  47. Maleki A. Ghomi M. Nikfarjam N. Akbari M. Sharifi E. Shahbazi M.A. Kermanian M. Seyedhamzeh M. Nazarzadeh Zare E. Mehrali M. Moradi O. Sefat F. Mattoli V. Makvandi P. Chen Y. Biomedical applications of MXene‐integrated composites: Regenerative medicine, infection therapy, cancer treatment, and biosensing. Adv. Funct. Mater. 2022 32 34 2203430 10.1002/adfm.202203430
    [Google Scholar]
  48. Dong Y. Liu J. Chen Y. Zhu T. Li Y. Zhang C. Zeng X. Chen Q. Peng Q. Photothermal and natural activity-based synergistic antibacterial effects of Ti3C2Tx MXene-loaded chitosan hydrogel against methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2023 240 124482 10.1016/j.ijbiomac.2023.124482 37076073
    [Google Scholar]
  49. Iravani S. Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021 2 9 2906 2917 10.1039/D1MA00189B
    [Google Scholar]
  50. Iravani S. Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021 7 6 1900 1913 10.1021/acsbiomaterials.0c01763 33851823
    [Google Scholar]
  51. Andreeßen C. Steinbüchel A. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Appl. Microbiol. Biotechnol. 2019 103 1 143 157 10.1007/s00253‑018‑9483‑6 30397765
    [Google Scholar]
  52. Duttagupta D. Jadhav V. Kadam V. Chitosan: A propitious biopolymer for drug delivery. Curr. Drug Deliv. 2015 12 4 369 381 10.2174/1567201812666150310151657 25761010
    [Google Scholar]
  53. Zamboulis A. Nanaki S. Michailidou G. Koumentakou I. Lazaridou M. Ainali N.M. Xanthopoulou E. Bikiaris D.N. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020 12 7 1519 10.3390/polym12071519 32650536
    [Google Scholar]
  54. de Sousa Victor R. Marcelo da Cunha Santos A. Viana de Sousa B. de Araújo Neves G. Navarro de Lima Santana L. Rodrigues Menezes R. A review on chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment. Materials (Basel) 2020 13 21 4995 10.3390/ma13214995 33171898
    [Google Scholar]
  55. Irimia T. Ghica M. Popa L. Anuţa V. Arsene A.L. Dinu-Pîrvu C.E. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel) 2018 10 11 1221 10.3390/polym10111221 30961146
    [Google Scholar]
  56. Nave O.P. Sigron M. A Mathematical Model for the Treatment of Melanoma with the BRAF/MEK Inhibitor and Anti-PD-1. Appl. Sci. (Basel) 2022 12 23 12474 10.3390/app122312474
    [Google Scholar]
  57. Peptu C. Humelnicu A.C. Rotaru R. Fortuna M.E. Patras X. Teodorescu M. Chitosan-based drug delivery systems. Chitin and Chitosan. Chichester, UK John Wiley & Sons, Ltd 2019 259 289
    [Google Scholar]
  58. Thanou M. Verhoef J.C. Junginger H.E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 2001 52 2 117 126 10.1016/S0169‑409X(01)00231‑9 11718935
    [Google Scholar]
  59. Ashique S. Garg A. Mishra N. Raina N. Ming L.C. Tulli H.S. Behl T. Rani R. Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 2769 2792 10.1007/s00210‑023‑02522‑5 37219615
    [Google Scholar]
  60. Liu Q. Zhang Z. Jin X. Jiang Y.R. Jia X.B. Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan. J. Pharm. Pharmacol. 2013 65 6 839 846 10.1111/jphp.12047 23647677
    [Google Scholar]
  61. Kurakula M. Sobahi T.R. Abdelaal M.Y. El-Helw A.M. Chitosan based atorvastatin nanocrystals: Effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int. J. Nanomedicine 2015 10 321 334 10.2147/IJN.S77731 25609947
    [Google Scholar]
  62. Al-Hilal T.A. Alam F. Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv. Drug Deliv. Rev. 2013 65 6 845 864 10.1016/j.addr.2012.11.002 23220326
    [Google Scholar]
  63. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted Drug Delivery: Trends and Perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  64. Ahmad M.Z. Rizwanullah M. Ahmad J. Alasmary M.Y. Akhter M.H. Abdel-Wahab B.A. Warsi M.H. Haque A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. Int. J. Polym. Mater. 2022 71 8 602 623 10.1080/00914037.2020.1869737
    [Google Scholar]
  65. Pathak R. Bhatt S. Punetha V.D. Punetha M. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review. Int. J. Biol. Macromol. 2023 253 Pt 7 127369 10.1016/j.ijbiomac.2023.127369 37839608
    [Google Scholar]
  66. Damiri F. Rahman M.H. Zehravi M. Awaji A.A. Nasrullah M.Z. Gad H.A. Bani-Fwaz M.Z. Varma R.S. Germoush M.O. Al-malky H.S. Sayed A.A. Rojekar S. Abdel-Daim M.M. Berrada M. MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. Materials (Basel) 2022 15 5 1666 10.3390/ma15051666 35268907
    [Google Scholar]
  67. Fu Y. Zhang J. Lin H. Mo A. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: In vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C 2021 118 111367 10.1016/j.msec.2020.111367 33254986
    [Google Scholar]
  68. Cazón P. Vázquez M. Applications of Chitosan as Food Packaging Materials. Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment. Crini G. Lichtfouse E. Cham Springer International Publishing 2019 81 123 10.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  69. Liu L. Yang Z. Zhang J. Wang L. Pang J. Wang A. Ding L. Liu H. Yu X. Research progress in the application of MXene in bacterial detection and eradication. Mater. Today Phys. 2024 43 101412 10.1016/j.mtphys.2024.101412
    [Google Scholar]
  70. Taokaew S. Kaewkong W. Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023 9 4 277 10.3390/gels9040277 37102889
    [Google Scholar]
  71. Frigaard J. Jensen J.L. Galtung H.K. Hiorth M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022 13 880377 10.3389/fphar.2022.880377 35600854
    [Google Scholar]
  72. Wang L. Wang D. Wang K. Jiang K. Shen G. Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring. ACS Mater. Lett. 2021 3 7 921 929 10.1021/acsmaterialslett.1c00246
    [Google Scholar]
  73. Huang Y. Wang X. Luo B. Jin P. Zheng Y. Xu C. Wu Z. MXene-NH2/chitosan hemostatic sponges for rapid wound healing. Int. J. Biol. Macromol. 2024 260 Pt 1 129489 10.1016/j.ijbiomac.2024.129489 38242399
    [Google Scholar]
  74. Zhao H. Fu Q. Wang Z. Wang Z. Hu J. Wang J. Fabrication and characterization of bifunctional PCL/chitosan scaffolds decorated with MXene nanoflakes for bone tissue engineering. Polymer (Guildf.) 2024 303 127111 10.1016/j.polymer.2024.127111
    [Google Scholar]
  75. Ahmed B. Hossain M.J. Al Parvez A. Talukder A. Al-Amin M. Al Mahmud M.A. Islam T. Recent advancements of MXene/nanocellulose‐based hydrogel and aerogel: A review. Adv. Energy Sustain. Res. 2024 5 3 2300231 10.1002/aesr.202300231
    [Google Scholar]
  76. Savage D.T. Hilt J.Z. Dziubla T.D. In Vitro Methods for Assessing Nanoparticle Toxicity. Methods Mol. Biol. 2019 1894 1 29 10.1007/978‑1‑4939‑8916‑4_1 30547452
    [Google Scholar]
  77. Iravani P. Iravani S. Varma R.S. MXene-Chitosan Composites and Their Biomedical Potentials. Micromachines (Basel) 2022 13 9 1383 10.3390/mi13091383 36144006
    [Google Scholar]
  78. Yalcin S. Cankaya N. Chitosan-Based Nanocomposites for Biological Applications. Nanoclay-Recent Advances, New Perspectives and Applications. London IntechOpen 2022 10.5772/intechopen.106379
    [Google Scholar]
  79. Antaby E. Klinkhammer K. Sabantina L. Electrospinning of Chitosan for Antibacterial Applications—Current Trends. Appl. Sci. (Basel) 2021 11 24 11937 10.3390/app112411937
    [Google Scholar]
  80. Vasyukova I.A. Zakharova O.V. Kuznetsov D.V. Gusev A.A. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. Nanomaterials (Basel) 2022 12 11 1797 10.3390/nano12111797 35683652
    [Google Scholar]
  81. George S.M. Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2020 46 7 8522 8535 10.1016/j.ceramint.2019.12.257
    [Google Scholar]
  82. Nasrallah G.K. Al-Asmakh M. Rasool K. Mahmoud K.A. Ecotoxicological assessment of Ti 3 C 2 T x (MXene) using a zebrafish embryo model. Environ. Sci. Nano 2018 5 4 1002 1011 10.1039/C7EN01239J
    [Google Scholar]
  83. Sagadevan S. Oh W.C. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J. Drug Deliv. Sci. Technol. 2023 85 104569 10.1016/j.jddst.2023.104569
    [Google Scholar]
  84. Rozmysłowska-Wojciechowska A. Karwowska E. Gloc M. Woźniak J. Petrus M. Przybyszewski B. Wojciechowski T. Jastrzębska A.M. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials (Basel) 2020 13 20 4587 10.3390/ma13204587 33076362
    [Google Scholar]
  85. El Idrissi El Hassani C. Daoudi H. El Achaby M. Kassab Z. Biomedical Applications of Chitosan-Based Nanostructured Composite Materials. Chitosan Nanocomposites. Swain S.K. Biswal A. Cham, Singapore Springer Nature Singapore 2023 81 107 10.1007/978‑981‑19‑9646‑7_4
    [Google Scholar]
  86. Friggeri G. Moretti I. Amato F. Marrani A.G. Sciandra F. Colombarolli S.G. Vitali A. Viscuso S. Augello A. Cui L. Perini G. De Spirito M. Papi M. Palmieri V. Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide. APL Bioeng. 2024 8 1 016115 10.1063/5.0184933 38435469
    [Google Scholar]
  87. Lee I.C. Li Y.C.E. Thomas J.L. Lee M.H. Lin H.Y. Recent advances using MXenes in biomedical applications. Mater. Horiz. 2024 11 4 876 902 10.1039/D3MH01588B 38175543
    [Google Scholar]
  88. Kuo C.Y. Lin T.Y. Yeh Y.C. Hydrogel-Based Strategies for the Management of Osteomyelitis. ACS Biomater. Sci. Eng. 2023 9 4 1843 1861 10.1021/acsbiomaterials.2c01057 36995966
    [Google Scholar]
  89. Perera A.A.P.R. Madhushani K.A.U. Punchihewa B.T. Kumar A. Gupta R.K. MXene-Based Nanomaterials for Multifunctional Applications. Materials (Basel) 2023 16 3 1138 10.3390/ma16031138 36770145
    [Google Scholar]
  90. Rasool K. Helal M. Ali A. Ren C.E. Gogotsi Y. Mahmoud K.A. Antibacterial Activity of Ti 3 C 2 T x MXene. ACS Nano 2016 10 3 3674 3684 10.1021/acsnano.6b00181 26909865
    [Google Scholar]
  91. Li Q. Zhou R. Xie Y. Li Y. Chen Y. Cai X. Sulphur‐doped carbon dots as a highly efficient nano‐photodynamic agent against oral squamous cell carcinoma. Cell Prolif. 2020 53 4 e12786 10.1111/cpr.12786 32301195
    [Google Scholar]
  92. Wu S. Chen D. Han W. Xie Y. Zhao G. Dong S. Tan M. Huang H. Xu S. Chen G. Cheng Y. Zhang X. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022 446 137093 10.1016/j.cej.2022.137093
    [Google Scholar]
  93. Aswathanarayan JB Madhunapantula SV Vittal RR MXene‐based polymer composites for various biomedical applications. MXene Reinforced Polymer Composites Hoboken, New Jersey Wiley 2024 10.1002/9781119901280.ch13
    [Google Scholar]
  94. Kumar A. Kumar A. Chitosan-Based Drug Conjugated Nanocomposites: Advances and Innovation in Cancer Therapy. Regen. Eng. Transl. Med. 2024 10 1 1 8 10.1007/s40883‑023‑00310‑4
    [Google Scholar]
  95. Yang Z. Sun Z. Ren Y. Chen X. Zhang W. Zhu X. Mao Z. Shen J. Nie S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol. Med. Rep. 2019 20 1 5 15 10.3892/mmr.2019.10218 31115497
    [Google Scholar]
  96. Soman S. Kulkarni S. Pandey A. Dhas N. Shirur K.S. Gude R.S. Vidya S.M. Nayak S. George S.D. Mutalik S. Unlocking the power of MXenes – Crafting a 2D nanoplatform for tomorrow: Synthesis, functionalization, stability, and biomedical applications. Mater. Today Commun. 2024 38 107711 10.1016/j.mtcomm.2023.107711
    [Google Scholar]
  97. Wang Y. Chang L. Gao H. Yu C. Gao Y. Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur. J. Med. Chem. 2024 272 116508 10.1016/j.ejmech.2024.116508 38761583
    [Google Scholar]
  98. Huang M. Huang Y. Liu H. Tang Z. Chen Y. Huang Z. Xu S. Du J. Jia B. Hydrogels for the treatment of oral and maxillofacial diseases: Current research, challenges, and future directions. Biomater. Sci. 2022 10 22 6413 6446 10.1039/D2BM01036D 36069391
    [Google Scholar]
  99. Lin Y. Xu S. Zhao X. Chang L. Hu Y. Chen Z. Mei X. Chen D. Preparation of NIR-sensitive, photothermal and photodynamic multi-functional Mxene nanosheets for laryngeal cancer therapy by regulating mitochondrial apoptosis. Mater. Des. 2022 220 110887 10.1016/j.matdes.2022.110887
    [Google Scholar]
  100. Lin X. Li Z. Qiu J. Wang Q. Wang J. Zhang H. Chen T. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field. Biomater. Sci. 2021 9 16 5437 5471 10.1039/D1BM00526J 34296233
    [Google Scholar]
  101. Do A.V. Khorsand B. Geary S.M. Salem A.K. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv. Healthc. Mater. 2015 4 12 1742 1762 10.1002/adhm.201500168 26097108
    [Google Scholar]
  102. Zorrón M. Cabrera A.L. Sharma R. Radhakrishnan J. Abbaszadeh S. Shahbazi M.A. Tafreshi O.A. Karamikamkar S. Maleki H. Emerging 2D nanomaterials-integrated hydrogels: Advancements in designing theragenerative materials for bone regeneration and disease therapy. Adv. Sci. (Weinh.) 2024 11 31 2403204 10.1002/advs.202403204 38874422
    [Google Scholar]
  103. Pan S. Yin J. Yu L. Zhang C. Zhu Y. Gao Y. Chen Y. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. (Weinh.) 2020 7 2 1901511 10.1002/advs.201901511 31993282
    [Google Scholar]
  104. Khabisi M.A. Shirini F. Shirini K. Khorsand H. Marian M. Rosenkranz A. Additively manufactured MAX- and MXene-composite scaffolds for bone regeneration- recent advances and future perspectives. Colloids Surf. B Biointerfaces 2023 225 113282 10.1016/j.colsurfb.2023.113282 37003247
    [Google Scholar]
  105. Nie R. Sun Y. Lv H. Lu M. Huangfu H. Li Y. Zhang Y. Wang D. Wang L. Zhou Y. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale 2022 14 22 8112 8129 10.1039/D2NR02176E 35612416
    [Google Scholar]
  106. Iravani S. Nazarzadeh Zare E. Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater. Sci. Eng. 2024 10 4 1892 1909 10.1021/acsbiomaterials.3c01770 38466909
    [Google Scholar]
  107. Zhang G. Lu Y. Song J. Huang D. An M. Chen W. Han P. Yao X. Zhang X. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration. J. Colloid Interface Sci. 2023 652 Pt B 1673 1684 10.1016/j.jcis.2023.08.176 37666199
    [Google Scholar]
  108. Ho T.T.P. Doan V.K. Tran N.M.P. Nguyen L.K.K. Le A.N.M. Ho M.H. Trinh N.T. Van Vo T. Tran L.D. Nguyen T.H. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. Mater. Sci. Eng. C 2021 120 111724 10.1016/j.msec.2020.111724 33545875
    [Google Scholar]
  109. Li S. Lei H. Liu H. Song P. Fan S. Wu L. Liao D. Xian G. Xiong L. Zhou C. Fan H. Pulsed electrodeposition of MXenes/HAp multiple biological functional coatings on 3D printed porous Ti-6Al-4V bone tissue engineering scaffold. Surf. Coat. Tech. 2023 464 129532 10.1016/j.surfcoat.2023.129532
    [Google Scholar]
  110. Rashid B. Anwar A. Shahabuddin S. Mohan G. Saidur R. Aslfattahi N. Sridewi N. A Comparative Study of Cytotoxicity of PPG and PEG Surface-Modified 2-D Ti3C2 MXene Flakes on Human Cancer Cells and Their Photothermal Response. Materials (Basel) 2021 14 16 4370 10.3390/ma14164370 34442891
    [Google Scholar]
  111. Zhang X. Wang T. Zhang Z. Liu H. Li L. Wang A. Ouyang J. Xie T. Zhang L. Xue J. Tao W. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Mater. Today 2023 68 177 203 10.1016/j.mattod.2023.06.011
    [Google Scholar]
  112. Wei H. Cui J. Lin K. Xie J. Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022 10 1 17 10.1038/s41413‑021‑00180‑y 35197462
    [Google Scholar]
  113. Kang M.S. Jang H.J. Jo H.J. Raja I.S. Han D.W. MXene and Xene: Promising frontier beyond graphene in tissue engineering and regenerative medicine. Nanoscale Horiz. 2023 9 1 93 117 10.1039/D3NH00428G 38032647
    [Google Scholar]
  114. Koyappayil A. Chavan S.G. Roh Y.G. Lee M.H. Advances of MXenes; Perspectives on Biomedical Research. Biosensors (Basel) 2022 12 7 454 10.3390/bios12070454 35884257
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947326282240924003811
Loading
/content/journals/cctr/10.2174/0115733947326282240924003811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test