
Full text loading...
Oral cancer treatment frequently results in bone damage and complications such as osteoradionecrosis (ORN) and impeding bone regeneration. Chitosan, a biocompatible and biodegradable natural polymer, demonstrates potential for bone regeneration but suffers from insufficient mechanical strength. MXene, a novel 2D material exhibiting high electrical conductivity and mechanical strength, offers a promising synergistic solution. This review explores the potential of chitosan-MXene composite scaffolds for bone regeneration within the context of oral cancer treatment. The advantages of these composites are discussed, including enhanced mechanical strength, electrical stimulation of bone cell activity, controlled drug delivery, and improved biocompatibility. Various synthesis methods for chitosan/MXene scaffolds are examined, highlighting their advantages and limitations. Critical aspects of biocompatibility and cytotoxicity of these materials are also addressed. The review concludes by delving into the future prospects of chitosan/MXene composites, encompassing tailored scaffold designs, enhanced bioactivity, improved electrical stimulation, and the development of multifunctional and bioresorbable scaffolds. This research holds significant promise for enhancing treatment outcomes and improving the quality of life for oral cancer patients.
Article metrics loading...
Full text loading...
References
Data & Media loading...