Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Radiation exposure poses a substantial occupational risk for healthcare professionals in the catheterization laboratory (cath lab). The escalating complexity and frequency of interventional procedures, such as cardiac catheterizations and percutaneous coronary interventions, underscore the need for innovative strategies to mitigate radiation exposure. While traditional measures like lead aprons, thyroid collars, and goggles have been pivotal in reducing radiation exposure, they have limitations, especially during prolonged and intricate procedures. Consequently, there is a growing demand for advanced radiation protection methods that prioritize safety without compromising procedural efficacy. Recent strides in radiation protection technology have given rise to novel shielding devices and zero-radiation approaches tailored for cath lab use. The novel shields leverage innovative materials and designs to achieve superior attenuation of both scattered and direct radiation. Their ergonomic and adjustable features also ensure optimal shielding coverage without impeding the operator's skill or workflow. Multiple studies have validated the effectiveness of these advanced radiation protection methods in diminishing occupational radiation exposure in the cath lab. Initial findings suggest a significant reduction in doses for operators and staff, potentially lowering the risk of radiation-induced health complications over the long term. This article provides a comprehensive review of the current landscape of radiation protection shields in the cath lab, emphasizing the efficacy and potential of these cutting-edge shielding technologies.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X304828240819050538
2024-08-20
2025-05-25
Loading full text...

Full text loading...

References

  1. ElmaraezyA. Ebraheem MorraM. Tarek MohammedA. Risk of cataract among interventional cardiologists and catheterization lab staff: A systematic review and meta-analysis.Catheter. Cardiovasc. Interv.20179011910.1002/ccd.27114 28500744
    [Google Scholar]
  2. SciahbasiA. FerranteG. FischettiD. Radiation dose among different cardiac and vascular invasive procedures: The RODEO study.Int. J. Cardiol.2017240929610.1016/j.ijcard.2017.03.031 28318657
    [Google Scholar]
  3. GaitaF. GuerraP.G. BattagliaA. AnselminoM. The dream of near-zero X-rays ablation comes true.Eur. Heart J.201637362749275510.1093/eurheartj/ehw223 27354053
    [Google Scholar]
  4. ShaghaghiZ. AlvandiM. NosratiS. HadeiS.K. Potential utility of peptides against damage induced by ionizing radiation.Future Oncol.202117101219123510.2217/fon‑2020‑0577 33593084
    [Google Scholar]
  5. WassefA.W.A. HiebertB. RavandiA. Radiation dose reduction in the cardiac catheterization laboratory utilizing a novel protocol.JACC Cardiovasc. Interv.20147555055710.1016/j.jcin.2013.11.022 24746655
    [Google Scholar]
  6. AlvandiM. ShaghaghiZ. PolgardaniN.Z. Etodolac enhances the radiosensitivity of irradiated ht-29 human colorectal cancer cells.Curr. Radiopharm.202215324224810.2174/1874471015666220321143139 35319403
    [Google Scholar]
  7. AlvandiM. JavidR.N. ShaghaghiZ. FarzipourS. NosratiS. An in-depth analysis of the adverse effects of ionizing radiation exposure on cardiac catheterization staffs.Curr. Radiopharm.202417321922810.2174/0118744710283181231229112417 38314600
    [Google Scholar]
  8. StewartF.A. AkleyevA.V. Hauer-JensenM. Authors on behalf of ICRP.ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context.Ann. ICRP2012411-2132210.1016/j.icrp.2012.02.001 22925378
    [Google Scholar]
  9. DehairsM. MarshallN.W. BosmansH. LeghissaM. Radiation protection of operators and patients in a hybrid Angio-MR suite.Phys. Med.20207414315410.1016/j.ejmp.2020.04.028 32473413
    [Google Scholar]
  10. KaratasakisA. BrilakisE.S. Shields and garb for decreasing radiation exposure in the cath lab.Expert Rev. Med. Devices201815968368810.1080/17434440.2018.1510771 30092660
    [Google Scholar]
  11. LópezP.O. DauerL.T. LooseR. Authors on Behalf of ICRP.ICRP publication 139: Occupational radiological protection in interventional procedures.Ann. ICRP2018472111810.1177/0146645317750356 29532669
    [Google Scholar]
  12. YazdiA.H. Ghadimi FarahA. AlvandiM. ShaghaghiZ. Survey on ionizing radiation including gamma-ray exposure among the medical staff working in the non-intensive ward of farshchian cardiovascular hospital in hamadan, iran.Avicenna Journal of Clinical Medicine2022293156160
    [Google Scholar]
  13. SalamaS GomaaM AlshoufiJ Education and training in radiological protection for diagnostic and interventional procedures ICRP 113 in brief.2013
    [Google Scholar]
  14. SánchezR.M. VanoE. FernándezJ.M. Staff doses in interventional radiology: A national survey.J. Vasc. Interv. Radiol.201223111496150110.1016/j.jvir.2012.05.056 22832138
    [Google Scholar]
  15. VañóE. FernándezJ.M. SánchezR.M. DauerL.T. Realistic approach to estimate lens doses and cataract radiation risk in cardiology when personal dosimeters have not been regularly used.Health Phys.2013105433033910.1097/HP.0b013e318299b5d9 23982609
    [Google Scholar]
  16. ClairandI. BordyJ.M. CarinouE. Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations - ORAMED project.Radiat. Meas.201146111252125710.1016/j.radmeas.2011.07.008
    [Google Scholar]
  17. MuratD. Wilken-TergauC. GottwaldU. NemitzO. UherT. SchulzE. Effects of real-time dosimetry on staff radiation exposure in the cardiac catheterization laboratory.J. Invasive Cardiol.2021335E337E341 33833127
    [Google Scholar]
  18. BudošováD. HorváthováM. BárdyováZ. BalázsT. Current trends of radiation protection equipment in interventional radiology.Radiat. Prot. Dosimetry20221989-1155455910.1093/rpd/ncac098 36005965
    [Google Scholar]
  19. CheonB.K. KimC.L. KimK.R. Radiation safety: A focus on lead aprons and thyroid shields in interventional pain management.Korean J. Pain201831424425210.3344/kjp.2018.31.4.244 30310549
    [Google Scholar]
  20. AndrewS. AbdelmonemM.R. KohliS. DabkeH. Evaluation of back pain and lead apron use among staff at a district general hospital.Cureus20211310e1885910.7759/cureus.18859 34804712
    [Google Scholar]
  21. KleinL.W. TraY. GarrattK.N. Society for cardiovascular angiography and interventions.Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey.Catheter. Cardiovasc. Interv.201586591392410.1002/ccd.25927 25810341
    [Google Scholar]
  22. Behr-MeenenC. BoetticherH.V. LynnykO. LangerC. KerstenJ.F. NienhausA. Radiation dose to the lens of the eye in medical staff performing fluoroscopy.Dtsch. Arztebl. Int.202211845769770 35125133
    [Google Scholar]
  23. CousinsC. MillerD.L. BernardiG. International Commission on Radiological Protection.ICRP PUBLICATION 120: Radiological protection in cardiology.Ann. ICRP2013421112510.1016/j.icrp.2012.09.001 23141687
    [Google Scholar]
  24. von BoetticherH. MeenenC. LachmundJ. HoffmannW. EngelH.J. Radiation exposure to personnel in cardiac catheterization laboratoriesZ. Med. Phys.200313425125610.1078/0939‑3889‑00180 14732954
    [Google Scholar]
  25. AlazzoniA. GordonC.L. SyedJ. Randomized controlled trial of radiation protection with a patient lead shield and a novel, nonlead surgical cap for operators performing coronary angiography or intervention.Circ. Cardiovasc. Interv.201588e00238410.1161/CIRCINTERVENTIONS.115.002384 26253734
    [Google Scholar]
  26. UthoffH. PeñaC. WestJ. ContrerasF. BenenatiJ.F. KatzenB.T. Evaluation of novel disposable, light-weight radiation protection devices in an interventional radiology setting: A randomized controlled trial.AJR Am. J. Roentgenol.2013200491592010.2214/AJR.12.8830 23521470
    [Google Scholar]
  27. ReevesR.R. AngL. BahadoraniJ. Invasive cardiologists are exposed to greater left sided cranial radiation.JACC Cardiovasc. Interv.2015891197120610.1016/j.jcin.2015.03.027 26292583
    [Google Scholar]
  28. UthoffH. QuesadaR. RobertsJ.S. Radioprotective lightweight caps in the interventional cardiology setting: A randomised controlled trial (PROTECT).EuroIntervention2015111535910.4244/EIJV11I1A9 25982649
    [Google Scholar]
  29. KoenigA.M. EtzelR. GregerW. Protective efficacy of different ocular radiation protection devices: A Phantom Study.Cardiovasc. Intervent. Radiol.202043112713410.1007/s00270‑019‑02319‑1 31489475
    [Google Scholar]
  30. KamusellaP. ScheerF. LüdtkeC.W. WiggermannP. WissgottC. AndresenR. Interventional angiography: Radiation protection for the examiner by using lead-free gloves.J. Clin. Diagn. Res.2017117TC26TC2910.7860/JCDR/2017/25226.10305 28893002
    [Google Scholar]
  31. FetterlyK. SchuelerB. GramsM. SturchioG. BellM. GulatiR. Head and Neck Radiation Dose and Radiation Safety for Interventional Physicians.JACC Cardiovasc. Interv.201710552052810.1016/j.jcin.2016.11.026 28279321
    [Google Scholar]
  32. MillerD.L. VañóE. BartalG. Cardiovscular and Interventional Radiology Society of Europe.Society of Interventional Radiology.Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology.Cardiovasc. Intervent. Radiol.201033223023910.1007/s00270‑009‑9756‑7 20020300
    [Google Scholar]
  33. MarichalD.A. AnwarT. KirschD. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist.J. Vasc. Interv. Radiol.201122443744210.1016/j.jvir.2010.12.016 21354818
    [Google Scholar]
  34. ReesC.R. DuncanB.W.C. Get the lead off our backs!Tech. Vasc. Interv. Radiol.201821171510.1053/j.tvir.2017.12.003 29472000
    [Google Scholar]
  35. ScottH. GallagherS. AbbottW. TalboysM. Assessment of occupational dose reduction with the use of a floor mounted mobile lead radiation protection shield.J. Radiol. Prot.202242303350110.1088/1361‑6498/ac8203 35850100
    [Google Scholar]
  36. RabahM. AllenS. AbbasA.E. DixonS. A novel comprehensive radiation shielding system eliminates need for personal lead aprons in the catheterization laboratory.Catheter. Cardiovasc. Interv.20231011798610.1002/ccd.30490 36453459
    [Google Scholar]
  37. BrilakisE.S. Innovations in radiation safety during cardiovascular catheterization.Circulation2018137131317131910.1161/CIRCULATIONAHA.117.032808 29581362
    [Google Scholar]
  38. DragusinO. WeerasooriyaR. JaïsP. Evaluation of a radiation protection cabin for invasive electrophysiological procedures.Eur. Heart J.200628218318910.1093/eurheartj/ehl420 17172281
    [Google Scholar]
  39. GuersenJ. KarmoucheK. MoyonJ.B. Use of a prototype radioprotection cabin in vascular neuroradiology: Dosimetry and ergonomics.J. Neuroradiol.201542632633110.1016/j.neurad.2015.04.005 26026192
    [Google Scholar]
  40. PlouxS. JeselL. EschalierR. Performance of a radiation protection cabin during extraction of cardiac devices.Can. J. Cardiol.201430121602160610.1016/j.cjca.2014.08.011 25418216
    [Google Scholar]
  41. SchernthanerC. DanmayrF. StrohmerB. Significant reduction of radiation exposure using a protection cabin for electrophysiological procedures.Medical Imaging and Radiology201311110.7243/2054‑1945‑1‑1
    [Google Scholar]
  42. Gutierrez-BarriosA. Cañadas-PruañoD. Noval-MorillasI. GheorgheL. Zayas-RuedaR. Calle-PerezG. Radiation protection for the interventional cardiologist: Practical approach and innovations.World J. Cardiol.202214111210.4330/wjc.v14.i1.1 35126868
    [Google Scholar]
  43. Gutierrez-BarriosA Angulo-PainE Noval-MorillasI The radioprotective effect of the Cathpax® AIR cabin during interventional cardiology procedures. Catheter Cardiovasc Interv 2021984ccd.2977310.1002/ccd.2977333979479
    [Google Scholar]
  44. AnadolR. BrandtM. MerzN. Effectiveness of additional X-ray protection devices in reducing scattered radiation in radial intervention: the ESPRESSO randomised trial.EuroIntervention202016866367110.4244/EIJ‑D‑19‑00945 32338611
    [Google Scholar]
  45. MarcusohnE. PostnikovM. MusallamA. Usefulness of pelvic radiation protection shields during transfemoral procedures—operator and patient considerations.Am. J. Cardiol.201812261098110310.1016/j.amjcard.2018.06.003 30057233
    [Google Scholar]
  46. McCutcheonK. VanhaverbekeM. DabinJ. Efficacy of MAVIG X-ray protective drapes in reducing CTO operator radiation.J. Interv. Cardiol.202120211410.1155/2021/3146104 34987314
    [Google Scholar]
  47. McCutcheonK. VanhaverbekeM. PauwelsR. Efficacy of MAVIG X-Ray Protective Drapes in Reducing Operator Radiation Dose in the Cardiac Catheterization Laboratory.Circ. Cardiovasc. Interv.20201311e00962710.1161/CIRCINTERVENTIONS.120.009627 33092401
    [Google Scholar]
  48. MusallamA. VolisI. DadaevS. A randomized study comparing the use of a pelvic lead shield during trans‐radial interventions: Threefold decrease in radiation to the operator but double exposure to the patient.Catheter. Cardiovasc. Interv.20158571164117010.1002/ccd.25777 25510441
    [Google Scholar]
  49. VlastraW. DelewiR. SjauwK.D. Efficacy of the RADPAD Protection Drape in Reducing Operators’ Radiation Exposure in the Catheterization Laboratory.Circ. Cardiovasc. Interv.20171011e00605810.1161/CIRCINTERVENTIONS.117.006058 29089313
    [Google Scholar]
  50. MurphyJ.C. DarraghK. WalshS.J. HanrattyC.G. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures.The American journal of cardiology2011108101408141010.1016/j.amjcard.2011.06.061 21861961
    [Google Scholar]
  51. ShorrockD. ChristopoulosG. WosikJ. Impact of a Disposable Sterile Radiation Shield on Operator Radiation Exposure During Percutaneous Coronary Intervention of Chronic Total Occlusions.J. Invasive Cardiol.2015277313316 26136277
    [Google Scholar]
  52. ErtelA. NadelsonJ. ShroffA.R. SweisR. FerreraD. VidovichM.I. Radiation dose reduction during radial cardiac catheterization: Evaluation of a dedicated radial angiography absorption shielding drape.ISRN Cardiol.201220121510.5402/2012/769167 22988525
    [Google Scholar]
  53. KheradB. JerichowT. BlaschkeF. Efficacy of RADPAD protective drape during coronary angiography.Herz201843431031410.1007/s00059‑017‑4560‑7 28389764
    [Google Scholar]
  54. DavidsenC. BolstadK. Ytre-HaugeK. SamnøyA.T. VikenesK. TusethV. Effect of an optimized X-ray blanket design on operator radiation dose in cardiac catheterization based on real-world angiography.PLoS One20221711e027743610.1371/journal.pone.0277436 36356038
    [Google Scholar]
  55. FukudaA. IchikawaN. HayashiT. LinP.J.P. MatsubaraK. Reducing stray radiation with a novel detachable lead arm support in percutaneous coronary intervention.J. Appl. Clin. Med. Phys.20222310e1376310.1002/acm2.13763 36001385
    [Google Scholar]
  56. Laish-FarkashA. HarariE. RahkovichM. A novel robotic radiation shielding device for electrophysiologic procedures: A prospective study.Am. Heart J.202326112713610.1016/j.ahj.2023.03.009 37225386
    [Google Scholar]
  57. Al KharjiS. ConnellT. BernierM. EisenbergM.J. Ionizing Radiation in Interventional Cardiology and Electrophysiology.Can. J. Cardiol.201935453553810.1016/j.cjca.2019.01.006 30935644
    [Google Scholar]
  58. MallietN. AndradeJ.G. KhairyP. Impact of a novel catheter tracking system on radiation exposure during the procedural phases of atrial fibrillation and flutter ablation.Pacing Clin. Electrophysiol.201538778479010.1111/pace.12611 25682843
    [Google Scholar]
  59. SharifkazemiM. NazariniaM. ArjangzadeA. GoldustM. HooshanginezhadZ. Diagnosis of Simultaneous Atrial and Ventricular Mechanical Performance in Patients with Systemic Sclerosis.Biology (Basel)202211230510.3390/biology11020305 35205171
    [Google Scholar]
  60. MianM. KhanH.R. Ultrasound utilization for implantation of cardiac implantable electronic devices.Wien. Klin. Wochenschr.202313523-2471271810.1007/s00508‑023‑02215‑2 37353694
    [Google Scholar]
  61. KhanH.R. A first-in-human complete insertion of single-chamber cardiac pacemaker using ultrasound.JACC. Case Rep.202242310152810.1016/j.jaccas.2022.05.034 36507287
    [Google Scholar]
  62. KhanH.R. MoustafaA.T. TriemstraS. Vascular and cardiac ultrasound as the primary imaging tool to safely deliver pacing leads while implanting single-chamber permanent pacemakers: A single-operator experience in a tertiary cardiac center.Heart Rhythm20232081210121110.1016/j.hrthm.2023.05.032 37271353
    [Google Scholar]
  63. SabaS. MarekJ. SchwartzmanD. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial.Circ. Heart Fail.20136342743410.1161/CIRCHEARTFAILURE.112.000078 23476053
    [Google Scholar]
  64. BeaserA.D. AzizZ. BesserS.A. Characterization of Lead Adherence Using Intravascular Ultrasound to Assess Difficulty of Transvenous Lead Extraction.Circ. Arrhythm. Electrophysiol.2020138e00772610.1161/CIRCEP.119.007726 32628867
    [Google Scholar]
  65. BongiorniM.G. Di CoriA. SoldatiE. Intracardiac echocardiography in patients with pacing and defibrillating leads: a feasibility study.Echocardiography200825663263810.1111/j.1540‑8175.2008.00656.x 18652009
    [Google Scholar]
  66. ChuaK.C.M. LimE.T.S. ChongD.T.T. TanB.Y. HoK.L. ChingC.K. Implantation of a dual-chamber permanent pacemaker in a pregnant patient guided by intracardiac echocardiography and electroanatomic mapping.HeartRhythm Case Rep.201731154254510.1016/j.hrcr.2017.09.003 29204351
    [Google Scholar]
  67. CunninghamK.S. VeinotJ.P. ButanyJ. An approach to endomyocardial biopsy interpretation.J. Clin. Pathol.200659212112910.1136/jcp.2005.026443 16443725
    [Google Scholar]
  68. RogersT. RatnayakaK. KarmarkarP. Real-time magnetic resonance imaging guidance improves the diagnostic yield of endomyocardial biopsy.JACC Basic Transl. Sci.20161537638310.1016/j.jacbts.2016.05.007 27631028
    [Google Scholar]
  69. RatnayakaK. SaikusC.E. FaraneshA.Z. Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine.JACC Cardiovasc. Interv.20114121326133410.1016/j.jcin.2011.09.012 22192373
    [Google Scholar]
  70. TzifaA. KrombachG.A. KrämerN. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions.Circ. Cardiovasc. Interv.20103658559210.1161/CIRCINTERVENTIONS.110.957209 21098745
    [Google Scholar]
  71. KruegerJ.J. EwertP. YilmazS. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study.Circulation200611381093110010.1161/CIRCULATIONAHA.105.578112 16490822
    [Google Scholar]
  72. DickfeldT. TianJ. AhmadG. MRI-Guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators.Circ. Arrhythm. Electrophysiol.20114217218410.1161/CIRCEP.110.958744 21270103
    [Google Scholar]
  73. GrantE.K. BerulC. CrossR.R. Acute Cardiac MRI assessment of radiofrequency ablation lesions for pediatric ventricular arrhythmia: feasibility and clinical correlation.J. Cardiovasc. Electrophysiol.201728551752210.1111/jce.13197 28245348
    [Google Scholar]
  74. MukherjeeR.K. WhitakerJ. WilliamsS.E. RazaviR. O’NeillM.D. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation.Europace201820111721173210.1093/europace/euy040 29584897
    [Google Scholar]
  75. SmitsonC.C. AngL. PourdjabbarA. ReevesR. PatelM. MahmudE. Safety and Feasibility of a Novel, Second-Generation Robotic-Assisted System for Percutaneous Coronary Intervention: First-in-Human Report.J. Invasive Cardiol.2018304152156 29335386
    [Google Scholar]
  76. KagiyamaK. MitsutakeY. UenoT. SakaiS. NakamuraT. YamajiK. Successful introduction of robotic-assisted percutaneous coronary intervention system into Japanese clinical practice: a first-year survey at single center.Heart Vessels2021367955964
    [Google Scholar]
  77. HarrisonJ. AngL. NaghiJ. Robotically-assisted percutaneous coronary intervention: Reasons for partial manual assistance or manual conversion.Cardiovasc. Revasc. Med.20181955 Pt A52653110.1016/j.carrev.2017.11.003 29221959
    [Google Scholar]
  78. MahmudE. NaghiJ. AngL. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions.JACC Cardiovasc. Interv.201710131320132710.1016/j.jcin.2017.03.050 28683937
    [Google Scholar]
  79. WeiszG. MetzgerD.C. CaputoR.P. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study.J. Am. Coll. Cardiol.201361151596160010.1016/j.jacc.2012.12.045 23500318
    [Google Scholar]
  80. SmilowitzN.R. MosesJ.W. SosaF.A. Robotic-enhanced PCI compared to the traditional manual approach.J. Invasive Cardiol.2014267318321 24993988
    [Google Scholar]
  81. PatelT.M. ShahS.C. SoniY.Y. Comparison of robotic percutaneous coronary intervention with traditional percutaneous coronary intervention.Circ. Cardiovasc. Interv.2020135e00888810.1161/CIRCINTERVENTIONS.119.008888 32406263
    [Google Scholar]
  82. MadderR.D. VanOosterhoutS. MulderA. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.Cardiovasc. Revasc. Med.201718319019610.1016/j.carrev.2016.12.011 28041859
    [Google Scholar]
  83. BassilG. MarkowitzS.M. LiuC.F. Robotics for catheter ablation of cardiac arrhythmias: Current technologies and practical approaches.J. Cardiovasc. Electrophysiol.202031373975210.1111/jce.14380 32022316
    [Google Scholar]
  84. BhaskaranA. BarryM.A. Al RaisiS.I. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom.J. Interv. Card. Electrophysiol.20154411810.1007/s10840‑015‑0023‑3 26123094
    [Google Scholar]
  85. PapponeC. VicedominiG. FrigoliE. Irrigated-tip magnetic catheter ablation of AF: A long-term prospective study in 130 patients.Heart Rhythm20118181510.1016/j.hrthm.2010.09.074 20887808
    [Google Scholar]
  86. MaurerT. SohnsC. DeissS. Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system.J. Interv. Card. Electrophysiol.201749321922610.1007/s10840‑017‑0261‑7 28600672
    [Google Scholar]
  87. YuanS. HolmqvistF. KongstadO. Long-term outcomes of the current remote magnetic catheter navigation technique for ablation of atrial fibrillation.Scand. Cardiovasc. J.201751630831510.1080/14017431.2017.1384566 28958165
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X304828240819050538
Loading
/content/journals/ccr/10.2174/011573403X304828240819050538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test