Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Thirty percent of deaths worldwide are caused by cardiovascular disorders (CVDs). As per the WHO data, the number of fatalities due to CVDs is 17.9 million years, and it is projected to cause 22.2 million deaths by 2030. In terms of gender, women die from CVD at a rate of 51% compared to 42% for males. Most people use phytochemicals, a type of traditional medicine derived from plants, either in addition to or instead of commercially available medications to treat and prevent CVD. Phytochemicals are useful in lowering cardiovascular risks, especially for lowering blood cholesterol, lowering obesity-related factors, controlling blood sugar and the consequences of type 2 diabetes, controlling oxidative stress factors and inflammation, and preventing platelet aggregation. Medicinal plants that are widely known for treating CVD include ginseng, , ganoderma lucidum, gynostemma pentaphyllum, viridis amaranthus, . Plant sterol, flavonoids, polyphenols, sulphur compound and terpenoid are the active phytochemicals present in these plants. The aim of this article is to cover more and more drugs that are used for cardiovascular diseases. In this article, we will learn about the use of different herbal drugs, mechanism of action, phytochemical compounds, side effects, . However, more research is required to comprehend the process and particular phytochemicals found in plants that treat CVD.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X323724240830075719
2024-09-03
2025-05-26
Loading full text...

Full text loading...

References

  1. NdejjoR. Cardiovascular disease prevention in Mukono and Buikwe districts in Uganda: evidence to implementation.Doctoral thesis, University of Antwerp,2021
    [Google Scholar]
  2. MartinetW. CoornaertI. PuylaertP. De MeyerG.R.Y. Macrophage death as a pharmacological target in atherosclerosis.Front. Pharmacol.20191030610.3389/fphar.2019.00306 31019462
    [Google Scholar]
  3. BenjaminE.J. MuntnerP. AlonsoA. Heart disease and stroke statistics—2019 update: a report from the American Heart Association.Circulation201913910e56e52810.1161/CIR.0000000000000659 30700139
    [Google Scholar]
  4. ReinerŽ. LaufsU. CosentinoF. LandmesserU. The year in cardiology 2018: prevention.Eur. Heart J.201940433634410.1093/eurheartj/ehy894 30601998
    [Google Scholar]
  5. ChenL. FuG. HuaQ. Efficacy of add-on Danhong injection in patients with unstable angina pectoris: A double-blind, randomized, placebo-controlled, multicenter clinical trial.J. Ethnopharmacol.202228411479410.1016/j.jep.2021.114794 34732357
    [Google Scholar]
  6. TagdeP. TagdeP. TagdeS. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme.Biomed. Pharmacother.202114111192810.1016/j.biopha.2021.111928 34323701
    [Google Scholar]
  7. AggarwalB.B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases:‘reverse pharmacology’ and ‘bedside to bench’ approach.Curr. Drug Targets2011121115951653
    [Google Scholar]
  8. RupareliaN. ChaiJ.T. FisherE.A. ChoudhuryR.P. Inflammatory processes in cardiovascular disease: a route to targeted therapies.Nat. Rev. Cardiol.201714313314410.1038/nrcardio.2016.185 27905474
    [Google Scholar]
  9. ShaitoA. ThuanD.T.B. PhuH.T. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.00422 32317975
    [Google Scholar]
  10. HarveyA. Strategies for discovering drugs from previously unexplored natural products.Drug Discov. Today20005729430010.1016/S1359‑6446(00)01511‑7 10856912
    [Google Scholar]
  11. WeberM.A. SchiffrinE.L. WhiteW.B. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension.J. Hypertens.201432131510.1097/HJH.0000000000000065 24270181
    [Google Scholar]
  12. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.2013183063670369510.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  13. FabricantD.S. FarnsworthN.R. The value of plants used in traditional medicine for drug discovery.Environ. Health Perspect.2001109S16975
    [Google Scholar]
  14. ValliG. GiardinaE.G.V. Benefits, adverse effects and drug interactionsof herbal therapies with cardiovascular effects.J. Am. Coll. Cardiol.20023971083109510.1016/S0735‑1097(02)01749‑7 11923030
    [Google Scholar]
  15. GaoS. LiuZ. LiH. LittleP.J. LiuP. XuS. Cardiovascular actions and therapeutic potential of tanshinone IIA.Atherosclerosis2012220131010.1016/j.atherosclerosis.2011.06.041 21774934
    [Google Scholar]
  16. KimJ.H. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications.J. Ginseng Res.2012361162610.5142/jgr.2012.36.1.16 23717100
    [Google Scholar]
  17. KimW.Y. KimJ.M. HanS.B. Steaming of ginseng at high temperature enhances biological activity.J. Nat. Prod.200063121702170410.1021/np990152b 11141123
    [Google Scholar]
  18. MahadyG.B. GyllenhaalC. FongH.H.S. FarnsworthN.R. Ginsengs: a review of safety and efficacy.Nutr. Clin. Care2000329010110.1046/j.1523‑5408.2000.00020.x
    [Google Scholar]
  19. LeeC.H. KimJ.H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases.J. Ginseng Res.201438316116610.1016/j.jgr.2014.03.001 25378989
    [Google Scholar]
  20. PanSY New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid based Compl Altern Med20132013627375
    [Google Scholar]
  21. KimN.D. KangS.Y. KimM.J. ParkJ.H. Schini-KerthV.B. The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings: role of K+ channels.Eur. J. Pharmacol.19993671515710.1016/S0014‑2999(98)00899‑1 10082264
    [Google Scholar]
  22. TodaN. AyajikiK. FujiokaH. OkamuraT. Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries.J. Ethnopharmacol.200176110911310.1016/S0378‑8741(01)00217‑3 11378291
    [Google Scholar]
  23. ShinW. YoonJ. OhG.T. RyooS. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling.J. Ginseng Res.2013371647310.5142/jgr.2013.37.64 23717158
    [Google Scholar]
  24. PerssonI.A.L. DongL. PerssonK. Effect of Panax ginseng extract (G115) on angiotensin-converting enzyme (ACE) activity and nitric oxide (NO) production.J. Ethnopharmacol.2006105332132510.1016/j.jep.2005.10.030 16387458
    [Google Scholar]
  25. LeeH. HongY. TranQ. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts.J. Ginseng Res.201943343144110.1016/j.jgr.2018.07.003 31308815
    [Google Scholar]
  26. KeumY.S. HanS.S. ChunK.S. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-κB activation and tumor promotion.Mutat. Res.2003523-524758510.1016/S0027‑5107(02)00323‑8 12628505
    [Google Scholar]
  27. ParkM.Y. LeeK.S. SungM.K. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-α, PPAR-γ, and LPL mRNA expressions.Life Sci.200577263344335410.1016/j.lfs.2005.05.043 15979095
    [Google Scholar]
  28. KimN.D. KangS.Y. ParkJ.H. Schini-KerthV.B. Ginsenoside Rg3 mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of K+ channels.Eur. J. Pharmacol.19993671414910.1016/S0014‑2999(98)00898‑X 10082263
    [Google Scholar]
  29. BaekK.S. YiY.S. SonY.J. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components.J. Ginseng Res.201640443744410.1016/j.jgr.2016.08.003 27746698
    [Google Scholar]
  30. HwangS.Y. SonD.J. KimI.W. Korean red ginseng attenuates hypercholesterolemia‐enhanced platelet aggregation through suppression of diacylglycerol liberation in high‐cholesterol‐diet‐fed rabbits.Phytother. Res.200822677878310.1002/ptr.2363 18446850
    [Google Scholar]
  31. JiaY. LiZ.Y. ZhangH.G. LiH.B. LiuY. LiX.H. Panax notoginseng saponins decrease cholesterol ester via up-regulating ATP-binding cassette transporter A1 in foam cells.J. Ethnopharmacol.2010132129730210.1016/j.jep.2010.08.033 20727959
    [Google Scholar]
  32. LeeW.M. KimS.D. ParkM.H. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: Critical roles of ERK2 and cAMP.J. Pharm. Pharmacol.201060111531153610.1211/jpp.60.11.0015 18957175
    [Google Scholar]
  33. LeeN.H. YooS.R. KimH.G. ChoJ.H. SonC.G. Safety and tolerability of Panax ginseng root extract: a randomized, placebo-controlled, clinical trial in healthy Korean volunteers.J. Altern. Complement. Med.201218111061106910.1089/acm.2011.0591 22909282
    [Google Scholar]
  34. CoonJ.T. ErnstE. Panax ginseng.Drug Saf.200225532334410.2165/00002018‑200225050‑00003 12020172
    [Google Scholar]
  35. YuanC.S. WeiG. DeyL. Brief communication: American ginseng reduces warfarin’s effect in healthy patients: a randomized, controlled Trial.Ann. Intern. Med.20041411232710.7326/0003‑4819‑141‑1‑200407060‑00011 15238367
    [Google Scholar]
  36. DongH. MaJ. LiT. Global deregulation of ginseng products may be a safety hazard to warfarin takers: solid evidence of ginseng-warfarin interaction.Sci. Rep.201771581310.1038/s41598‑017‑05825‑9 28725042
    [Google Scholar]
  37. HoriT. RidgeR.W. TuleckeW. Del TrediciP. Trémouillaux-GuillerJ. TobeH. Ginkgo biloba a global treasure: from biology to medicine.Springer2012
    [Google Scholar]
  38. JaggyH. KochE. Chemistry and biology of alkylphenols from Ginkgo biloba L.Pharmazie19975210735738 9362086
    [Google Scholar]
  39. XiangK. YangJ. WuX. PengJ. GuoJ. FanC. Advances in traditional Chinese medicine for cardiovascular disease therapy in 2020.Traditional Medicine Research2021632710.53388/TMR20210318226
    [Google Scholar]
  40. DiamondB.J. BaileyM.R. Ginkgo biloba.Psychiatr. Clin. North Am.2013361738310.1016/j.psc.2012.12.006 23538078
    [Google Scholar]
  41. BentS. GoldbergH. PadulaA. AvinsA.L. Spontaneous bleeding associated with Ginkgo biloba.J. Gen. Intern. Med.200520765766110.1007/s11606‑005‑0114‑4 16050865
    [Google Scholar]
  42. IzzoA.A. ErnstE. Interactions between herbal medicines and prescribed drugs: an updated systematic review.Drugs200969131777179810.2165/11317010‑000000000‑00000 19719333
    [Google Scholar]
  43. MatthewsM.K.Jr Association of Ginkgo biloba with intracerebral hemorrhage.Neurology19985061933193410.1212/WNL.50.6.1933 9633781
    [Google Scholar]
  44. DugouaJ-J. MillsE. PerriD. KorenG. Safety and efficacy of ginkgo (Ginkgo biloba) during pregnancy and lactation.Can. J. Clin. Pharmacol.2006133e277e284 17085776
    [Google Scholar]
  45. AhmadM.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement.Biomed. Pharmacother.201810750751910.1016/j.biopha.2018.08.036 30114634
    [Google Scholar]
  46. CuongV.T. ChenW. ShiJ. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans.Exp. Gerontol.20191179910510.1016/j.exger.2018.11.016 30476533
    [Google Scholar]
  47. ShiY. JamesA.E. BenzieI.F.F. BuswellJ.A. Mushroom‐derived preparations in the prevention of H 2 O 2 ‐induced oxidative damage to cellular DNA.Teratog. Carcinog. Mutagen.200222210311110.1002/tcm.10008 11835288
    [Google Scholar]
  48. YoonH-M. LeeY. KimJ. Ethanol extract of Ganoderma lucidum augments cellular anti-oxidant defense through activation of Nrf2/HO-1.J. Pharmacopuncture2016191596910.3831/KPI.2016.19.008 27280051
    [Google Scholar]
  49. WuQ. LiY. PengK. Isolation and characterization of three antihypertension peptides from the mycelia of Ganoderma lucidum (Agaricomycetes).J. Agric. Food Chem.201967298149815910.1021/acs.jafc.9b02276 31246442
    [Google Scholar]
  50. KwokY. NgK.F.J. LiC.C.F. LamC.C.K. ManR.Y.K. A prospective, randomized, double-blind, placebo-controlled study of the platelet and global hemostatic effects of Ganoderma lucidum (Ling-Zhi) in healthy volunteers.Anesth. Analg.2005101242342610.1213/01.ANE.0000155286.20467.28 16037156
    [Google Scholar]
  51. LiY. LinW. HuangJ. XieY. MaW. Anti-cancer effects of Gynostemma pentaphyllum (thunb.) makino (jiaogulan).Chin. Med.20161114310.1186/s13020‑016‑0114‑9 27708693
    [Google Scholar]
  52. NguyenN.H. HaT.K.Q. YangJ.L. PhamH.T.T. OhW.K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities.J. Ethnopharmacol.202126811357410.1016/j.jep.2020.113574 33186700
    [Google Scholar]
  53. ChiranthanutN. TeekachunhateanS. PanthongA. KhonsungP. KanjanapothiD. LertprasertsukN. Toxicity evaluation of standardized extract of Gynostemma pentaphyllum Makino.J. Ethnopharmacol.2013149122823410.1016/j.jep.2013.06.027 23796877
    [Google Scholar]
  54. ChavalittumrongP. A phase I trial of Gynostemma pentaphyllum Makino in healthy volunteers.Songklanakarin J. Sci. Technol.2007298393
    [Google Scholar]
  55. SarveswaranR. JayasuriyaW. SureshT.S. In vitro assays to investigate the anti-inflammatory activity of herbal extracts a review.World J. Pharmaceut. Res.2017617131141
    [Google Scholar]
  56. Souza-JuniorF.J.C. Luz-MoraesD. PereiraF.S. Aniba canelilla (Kunth) mez (Lauraceae): A review of ethnobotany, phytochemical, antioxidant, anti-inflammatory, cardiovascular, and neurological properties.Front. Pharmacol.20201169910.3389/fphar.2020.00699 32528283
    [Google Scholar]
  57. SmithC. SwartA. Aspalathus linearis (Rooibos) – a functional food targeting cardiovascular disease.Food Funct.20189105041505810.1039/C8FO01010B 30183052
    [Google Scholar]
  58. SouzaM.M.Q. SilvaG.R. ColaI.M. Baccharis trimera (Less.) DC: an innovative cardioprotective herbal medicine against multiple risk factors for cardiovascular disease.J. Med. Food202023667668410.1089/jmf.2019.0165 31702422
    [Google Scholar]
  59. NeagM.A. MocanA. EcheverríaJ. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955710.3389/fphar.2018.00557 30186157
    [Google Scholar]
  60. SinghD. ChaudhuriP.K. Structural characteristics, bioavailability and cardioprotective potential of saponins.Integr. Med. Res.201871334310.1016/j.imr.2018.01.003 29629289
    [Google Scholar]
  61. FürstR. ZündorfI. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress.Mediators Inflamm.20142014146832
    [Google Scholar]
  62. ZhouDD Antioxidant food components for the prevention and treatment of cardiovascular diseases: effects, mechanisms, and clinical studies.202120216627355
    [Google Scholar]
  63. AnwarM.A. Al DisiS.S. EidA.H. Anti-hypertensive herbs and their mechanisms of action: part II.Front. Pharmacol.201675010.3389/fphar.2016.00050 27014064
    [Google Scholar]
  64. MaiuoloJ. CarresiC. GliozziM. Effects of bergamot polyphenols on mitochondrial dysfunction and sarcoplasmic reticulum stress in diabetic cardiomyopathy.Nutrients2021137247610.3390/nu13072476 34371986
    [Google Scholar]
  65. MounikaS. JayaramanR. JayashreeD. A comprehensive review of medicinal plants for cardioprotective potential.Int J Adv Pharm Biotechnol202171242910.38111/ijapb.20210701005
    [Google Scholar]
  66. PrachayasittikulV. PrachayasittikulS. RuchirawatS. PrachayasittikulV. Coriander (Coriandrum sativum): A promising functional food toward the well-being.Food Res. Int.201810530532310.1016/j.foodres.2017.11.019 29433220
    [Google Scholar]
  67. XinL.T. YueS.J. FanY.C. Cudrania tricuspidata: an updated review on ethnomedicine, phytochemistry and pharmacology.RSC Advances2017751318073183210.1039/C7RA04322H
    [Google Scholar]
  68. WangZ. MuW. LiP. LiuG. YangJ. Anti-inflammatory activity of ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives in vitro and in vivo.Eur. J. Pharm. Sci.202116010575610.1016/j.ejps.2021.105756 33588045
    [Google Scholar]
  69. HesariM. MohammadiP. KhademiF. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases.Int. J. Nanomedicine2021163293331510.2147/IJN.S295508 34007178
    [Google Scholar]
  70. ZhangY. XuH. HuZ. Eleocharis Dulcis corm: phytochemicals, health benefits, processing and food products.J. Sci. Food Agric.20221021194010.1002/jsfa.11508 34453323
    [Google Scholar]
  71. PurohitB.M. KharadiG.B. PatelK.J. BaxiS. TripathiC.B. Evaluation of cardioprotective effect of aqueous extract of Allium cepa Linn. bulb on isoprenaline-induced myocardial injury in Wistar albino rats.Res. Pharm. Sci.201611541942710.4103/1735‑5362.192494 27920825
    [Google Scholar]
  72. VasanthiH.R. ShriShriMal N, Das DK. Retraction Notice: Phytochemicals from plants to combat cardiovascular disease.Curr. Med. Chem.201219142242225110.2174/092986712800229078 22414106
    [Google Scholar]
  73. AdekanmiA.A. AdekanmiS.A. AdekanmiO.S. Qualitative and quantitative phytochemical constituents of moringa leaf.Int J Eng Inf Syst2020451017
    [Google Scholar]
  74. CastejónM.L. MontoyaT. Alarcón-de-la-LastraC. Sánchez-HidalgoM. Potential protective role exerted by secoiridoids from Olea europaea L. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases.Antioxidants20209214910.3390/antiox9020149 32050687
    [Google Scholar]
  75. ShamlanG. Ethanolic and aqueous extracts of avocado (Persea americana) seeds attenuates doxorubicin-induced cardiotoxicity in male albino rats.Arab. J. Sci. Eng.20214665265527410.1007/s13369‑020‑04994‑6
    [Google Scholar]
  76. Mohammadi PourP. FarzaeiM.H. Soleiman DehkordiE. BishayeeA. AsgaryS. Therapeutic targets of natural products for the management of cardiovascular symptoms of coronavirus disease 2019.Phytother. Res.202135105417542610.1002/ptr.7172 34110678
    [Google Scholar]
  77. ShahS.M.A. AkramM. RiazM. MunirN. RasoolG. Cardioprotective potential of plant-derived molecules: a scientific and medicinal approach.Dose Response201917210.1177/1559325819852243 31205459
    [Google Scholar]
  78. JiangM. CuiB.W. WuY.L. NanJ.X. LianL.H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism.J. Ethnopharmacol.202126411339110.1016/j.jep.2020.113391 32931880
    [Google Scholar]
  79. BeshelJ.A. PalaciosJ. BeshelF.N. Blood pressure-reducing activity of Gongronema latifolium Benth. (Apocynaeceae) and the identification of its main phytochemicals by UHPLC Q-Orbitrap mass spectrometry.J. Basic Clin. Physiol. Pharmacol.20203112018017810.1515/jbcpp‑2018‑0178 32037779
    [Google Scholar]
  80. SoonthornkalumpS. ChuenboonngarmN. SoontornchainaksaengP. JenjittikulT. ThammasiriK. Effect of colchicine incubation time on tetraploid induction of Kaempferia rotunda.Acta Hortic.201410258992
    [Google Scholar]
  81. HartadyT. SyamsunarnoM.R.A.A. PriosoeryantoB.P. JasniS. BaliaR.L. Review of herbal medicine works in the avian species.Vet. World202114112889290610.14202/vetworld.2021.2889‑2906 35017836
    [Google Scholar]
  82. BachhetiR.K. WorkuL.A. GonfaY.H. Prevention and treatment of cardiovascular diseases with plant phytochemicals: a review.Evid. Based Complement. Alternat. Med.20222022112110.1155/2022/5741198 35832515
    [Google Scholar]
  83. GöttngK.J. Origin and relationships of the Mollusca.J. Zool. Syst. Evol. Res.1980181242710.1111/j.1439‑0469.1980.tb00725.x
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X323724240830075719
Loading
/content/journals/ccr/10.2174/011573403X323724240830075719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test