Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Recent endeavors have led to the exploration of Machine Learning (ML) to enhance the detection and accurate diagnosis of heart pathologies. This is due to the growing need to improve efficiency in diagnostics and hasten the process of delivering treatment. Several institutions have actively assessed the possibility of creating algorithms for advancing our understanding of atrial fibrillation (AF), a common form of sustained arrhythmia. This means that artificial intelligence is now being used to analyze electrocardiogram (ECG) data. The data is typically extracted from large patient databases and then subsequently used to train and test the algorithm with the help of neural networks. Machine learning has been used to effectively detect atrial fibrillation with more accuracy than clinical experts, and if applied to clinical practice, it will aid in early diagnosis and management of the condition and thus reduce thromboembolic complications of the disease. In this text, a review of the application of machine learning in the analysis and detection of atrial fibrillation, a comparison of the outcomes (sensitivity, specificity, and accuracy), and the framework and methods of the studies conducted have been presented.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X293703240715104503
2024-07-31
2025-05-21
Loading full text...

Full text loading...

References

  1. NesheiwatZ. StatPearlsStatPearls Publishing2023
    [Google Scholar]
  2. What Is Afib?2023Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/atrial-fibrillation(accessed on 25-6-2024)
  3. ChughS.S. HavmoellerR. NarayananK. SinghD. RienstraM. BenjaminE.J. GillumR.F. KimY.H. McAnultyJ.H.Jr ZhengZ.J. ForouzanfarM.H. NaghaviM. MensahG.A. EzzatiM. MurrayC.J.L. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study.Circulation2014129883784710.1161/CIRCULATIONAHA.113.00511924345399
    [Google Scholar]
  4. ZaprutkoT. ZaprutkoJ. SprawkaJ. PogodzińskaM. MichalakM. PaczkowskaA. KusK. NowakowskaE. BaszkoA. The comparison of Kardia Mobile and Hartmann Veroval 2 in 1 in detecting first diagnosed atrial fibrillation.Cardiol. J.202330576277010.5603/CJ.a2021.008334355779
    [Google Scholar]
  5. WegnerF.K. PlagwitzL. DoldiF. EllermannC. WillyK. WolfesJ. SandmannS. VargheseJ. EckardtL. Machine learning in the detection and management of atrial fibrillation.Clin. Res. Cardiol.202211191010101710.1007/s00392‑022‑02012‑335353207
    [Google Scholar]
  6. PetersenP. Thromboembolic complications in atrial fibrillation.Stroke199021141310.1161/01.STR.21.1.4
    [Google Scholar]
  7. ZakeriR. MorganJ.M. PhillipsP. KittS. NgG.A. McCombJ.M. WilliamsS. WrightD.J. GillJ.S. SeedA. WitteK.K. CowieM.R. REM-HF Investigators Prevalence and prognostic significance of device-detected subclinical atrial fibrillation in patients with heart failure and reduced ejection fraction.Int. J. Cardiol.2020312647010.1016/j.ijcard.2020.03.00832169346
    [Google Scholar]
  8. LubitzS.A. BenjaminE.J. EllinorP.T. Atrial fibrillation in congestive heart failure.Heart Fail. Clin.20106218720010.1016/j.hfc.2009.11.00120347787
    [Google Scholar]
  9. JohnsonD.L. DayJ.D. MahapatraS. BunchT.J. Adverse outcomes from atrial fibrillation;mechanisms, risks, and insights learned from therapeutic options.J Atr Fibrillation.20124477
    [Google Scholar]
  10. BlumS. AeschbacherS. CoslovskyM. MeyreP.B. ReddiessP. AmmannP. ErneP. MoschovitisG. Di ValentinoM. ShahD. SchläpferJ. MüllerR. BeerJ.H. KobzaR. BonatiL.H. MoutzouriE. RodondiN. Meyer-ZürnC. KühneM. SticherlingC. OsswaldS. ConenD. Long-term risk of adverse outcomes according to atrial fibrillation type.Sci Rep202212220810.1038/s41598‑022‑05688‑9
    [Google Scholar]
  11. Martínez-SellésM. Marina-BreysseM. Current and Future Use of Artificial Intelligence in Electrocardiography.J. Cardiovasc. Dev. Dis.202310417510.3390/jcdd1004017537103054
    [Google Scholar]
  12. de HondAAH. LeeuwenbergAM. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: A scoping review.NPJ Digit Med.2022512
    [Google Scholar]
  13. HindricksG. PotparaT. DagresN. ArbeloE. BaxJ.J. Blomström-LundqvistC. BorianiG. CastellaM. DanG.A. DilaverisP.E. FauchierL. FilippatosG. KalmanJ.M. La MeirM. LaneD.A. LebeauJ.P. LettinoM. LipG.Y.H. PintoF.J. ThomasG.N. ValgimigliM. Van GelderI.C. Van PutteB.P. WatkinsC.L. KirchhofP. KühneM. AboyansV. AhlssonA. BalsamP. BauersachsJ. BenussiS. BrandesA. BraunschweigF. CammA.J. CapodannoD. CasadeiB. ConenD. CrijnsH.J.G.M. DelgadoV. DobrevD. DrexelH. EckardtL. FitzsimonsD. FolliguetT. GaleC.P. GorenekB. HaeuslerK.G. HeidbuchelH. IungB. KatusH.A. KotechaD. LandmesserU. LeclercqC. LewisB.S. MascherbauerJ. MerinoJ.L. MerkelyB. MontL. MuellerC. NagyK.V. OldgrenJ. PavlovićN. PedrettiR.F.E. PetersenS.E. PicciniJ.P. PopescuB.A. PürerfellnerH. RichterD.J. RoffiM. RubboliA. ScherrD. SchnabelR.B. SimpsonI.A. ShlyakhtoE. SinnerM.F. SteffelJ. Sousa-UvaM. SuwalskiP. SvetlosakM. TouyzR.M. DagresN. ArbeloE. BaxJ.J. Blomström-LundqvistC. BorianiG. CastellaM. DanG-A. DilaverisP.E. FauchierL. FilippatosG. KalmanJ.M. La MeirM. LaneD.A. LebeauJ-P. LettinoM. LipG.Y.H. PintoF.J. Neil ThomasG. ValgimigliM. Van GelderI.C. WatkinsC.L. DelassiT. SisakianH.S. ScherrD. ChasnoitsA. PauwM.D. SmajićE. ShalganovT. AvraamidesP. KautznerJ. GerdesC. AlazizA.A. KampusP. RaatikainenP. BovedaS. PapiashviliG. EckardtL. VassilikosV. CsanádiZ. ArnarD.O. GalvinJ. BarsheshetA. CaldarolaP. RakishevaA. BytyçiI. KerimkulovaA. KalejsO. NjeimM. PuodziukynasA. GrobenL. SammutM.A. GrosuA. BoskovicA. MoustaghfirA. GrootN. PoposkaL. AnfinsenO-G. MitkowskiP.P. CavacoD.M. SilisteC. MikhaylovE.N. BertelliL. KojicD. HatalaR. FrasZ. ArribasF. JuhlinT. SticherlingC. AbidL. AtarI. SychovO. BatesM.G.D. ZakirovN.U. ESC Scientific Document Group 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).Eur. Heart J.202142537349810.1093/eurheartj/ehaa61232860505
    [Google Scholar]
  14. AnanthapanyasutW. NapanS. RudolphE.H. HarindhanavudhiT. AyashH. GuglielmiK.E. LermaE.V. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease.Clin. J. Am. Soc. Nephrol.20105217318110.2215/CJN.0317050920007681
    [Google Scholar]
  15. MuscoliS. AndreadiA. TamburroC. RussoM. RosenfeldR. OroP. IfrimM. PorzioF. BaroneL. BarillàF. LauroD. Prevalence of Cardiovascular Risk Factors and Coronary Angiographic Findings in High-Risk Immigrant Communities in Italy.J. Pers. Med.202313688210.3390/jpm1306088237373871
    [Google Scholar]
  16. VisserenF.L.J. MachF. SmuldersY.M. CarballoD. KoskinasK.C. BäckM. BenetosA. BiffiA. BoavidaJ.M. CapodannoD. CosynsB. CrawfordC. DavosC.H. DesormaisI. Di AngelantonioE. FrancoO.H. HalvorsenS. HobbsF.D.R. HollanderM. JankowskaE.A. MichalM. SaccoS. SattarN. TokgozogluL. TonstadS. TsioufisK.P. van DisI. van GelderI.C. WannerC. WilliamsB. De BackerG. Regitz-ZagrosekV. AamodtA.H. AbdelhamidM. AboyansV. AlbusC. AsteggianoR. BäckM. BorgerM.A. BrotonsC. ČelutkienėJ. CifkovaR. CikesM. CosentinoF. DagresN. De BackerT. De BacquerD. DelgadoV. Den RuijterH. DendaleP. DrexelH. FalkV. FauchierL. FerenceB.A. FerrièresJ. FerriniM. FisherM. FliserD. FrasZ. GaitaD. GiampaoliS. GielenS. GrahamI. JenningsC. JorgensenT. Kautzky-WillerA. KavousiM. KoenigW. KonradiA. KotechaD. LandmesserU. LettinoM. LewisB.S. LinhartA. LøchenM-L. MakrilakisK. ManciaG. Marques-VidalP. McEvoyJ.W. McGreavyP. MerkelyB. NeubeckL. NielsenJ.C. PerkJ. PetersenS.E. PetronioA.S. PiepoliM. PogosovaN.G. PrescottE.I.B. RayK.K. ReinerZ. RichterD.J. RydénL. ShlyakhtoE. SitgesM. Sousa-UvaM. SudanoI. TiberiM. TouyzR.M. UngarA. VerschurenW.M.M. WiklundO. WoodD. ZamoranoJ.L. SmuldersY.M. CarballoD. KoskinasK.C. BäckM. BenetosA. BiffiA. BoavidaJ-M. CapodannoD. CosynsB. CrawfordC.A. DavosC.H. DesormaisI. Di AngelantonioE. Franco DuranO.H. HalvorsenS. Richard HobbsF.D. HollanderM. JankowskaE.A. MichalM. SaccoS. SattarN. TokgozogluL. TonstadS. TsioufisK.P. DisI. van GelderI.C. WannerC. WilliamsB. ESC National Cardiac Societies ESC Scientific Document Group 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice.Eur. Heart J.202142343227333710.1093/eurheartj/ehab48434458905
    [Google Scholar]
  17. Articles by Sara Brown.Available from:https://mitsloan.mit.edu/ideas-made-to-matter/sara-brown(accessed on 13-6-2024)
  18. SagliettoA. GaitaF. Blomstrom-LundqvistC. ArbeloE. DagresN. BrugadaJ. MaggioniA. P. TavazziL. KautznerJ. De FerrariG. M. AnselminoM. AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation.Euro. Euro. pacing arrhyth. cardiac electrophysiol.20232519210010.1093/europace/euac145
    [Google Scholar]
  19. VinterN. FrederiksenA.S. AlbertsenA.E. LipG.Y.H. Fenger-GrønM. TrinquartL. FrostL. MøllerD.S. Role for machine learning in sex-specific prediction of successful electrical cardioversion in atrial fibrillation?Open Heart202071e00129710.1136/openhrt‑2020‑00129732565431
    [Google Scholar]
  20. WillemsS. DrewitzI. StevenD. HoffmannB.A. MeinertzT. RostockT. Interventional therapy of atrial fibrillation: possibilities and limitations.Deutsche medizinische Wochenschrift20101352S48S5410.1055/s‑0030‑1249209
    [Google Scholar]
  21. ŞaylıkF. ÇınarT. AkbulutT. HayıroğluM. İ. Comparison of catheter ablation and medical therapy for atrial fibrillation in heart failure patients: A meta-analysis of randomized controlled trials.Heart lung. j. critical care202357697410.1016/j.hrtlng.2022.08.012
    [Google Scholar]
  22. WilliamsB.A. ChamberlainA.M. BlankenshipJ.C. HylekE.M. VoyceS. Trends in Atrial Fibrillation Incidence Rates Within an Integrated Health Care Delivery System, 2006 to 2018.JAMA Netw. Open202038e201487410.1001/jamanetworkopen.2020.1487432857147
    [Google Scholar]
  23. GregoryY.H. Comparative Validation of a Novel Risk Score for Predicting Bleeding Risk in Anticoagulated Patients With Atrial Fibrillation: The HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) Score.J. Am. Coll.Cardiol.201157217318010.1016/j.jacc.2010.09.024
    [Google Scholar]
  24. NesapiragasanV. HayıroğluM.İ. SciaccaV. SommerP. SohnsC. FinkT. Catheter Ablation Approaches for the Treatment of Arrhythmia Recurrence in Patients with a Durable Pulmonary Vein Isolation.Balkan Med. J.202340638639410.4274/balkanmedj.galenos.2023.2023‑9‑4837817408
    [Google Scholar]
  25. RolfS. KircherS. AryaA. EitelC. SommerP. RichterS. GasparT. BollmannA. AltmannD. PiedraC. HindricksG. PiorkowskiC. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation.Circ. Arrhythm. Electrophysiol.20147582583310.1161/CIRCEP.113.00125125151631
    [Google Scholar]
  26. Modern Ablation Therapies for Atrial Fibrillation. The “Staged” Hybrid App3roach.Available from:https://www.hmpgloballearningnetwork.com/site/eplab/case-study/modern-ablation-therapies-atrial-fibrillation-staged-hybrid-approach(accessed on 25-6-2024)
  27. RamlawiB. Abu SalehW.K. Surgical Ablation of Atrial Fibrillation.Methodist DeBakey Cardiovasc. J.201511210410810.14797/mdcj‑11‑2‑10426306128
    [Google Scholar]
  28. Atrial fibrillation treatment and management.Available from:https://emedicine.medscape.com/article/151066-treatment#d12(accessed on 25-6-2024)
  29. GrubbNR FurnissS Science, medicine, and the future: Radiofrequency ablation for atrial fibrillation.BMJ.200132277778010.1136/bmj.322.7289.777
    [Google Scholar]
  30. JiangJ. DengH. LiaoH. FangX. ZhanX. WeiW. WuS. XueY. An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation.J. Clin. Med.2023125193310.3390/jcm1205193336902719
    [Google Scholar]
  31. BudzianowskiJ. Kaczmarek-MajerK. RzeźniczakJ. SłomczyńskiM. WichrowskiF. HiczkiewiczD. MusielakB. GrydzŁ. HiczkiewiczJ. BurchardtP. Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation.Sci. Rep.20231311521310.1038/s41598‑023‑42542‑y37709859
    [Google Scholar]
  32. TilzR.R. DagresN. ArbeloE. Which patients with atrial fibrillation undergo an ablation procedure today in Europe? A report from the ESC-EHRA-EORP atrial fibrillation ablation long-term and atrial fibrillation general pilot registries.Euro. Euro. pacing arrhyth. cardiac electrophysiol.202022225025810.1093/europace/euz291
    [Google Scholar]
  33. TrayanovaN.A. PopescuD.M. ShadeJ.K. Machine Learning in Arrhythmia and Electrophysiology.Circ. Res.2021128454456610.1161/CIRCRESAHA.120.31787233600229
    [Google Scholar]
  34. KashouA.H. AdedinsewoD.A. NoseworthyP.A. Subclinical atrial fibrillation: a silent threat with uncertain implications.Annu. Rev. Med.202273135536210.1146/annurev‑med‑042420‑10590634788544
    [Google Scholar]
  35. BahitM.C. SaccoR.L. EastonJ.D. MeyerhoffJ. CroninL. KleineE. GrauerC. BrueckmannM. DienerH.C. LopesR.D. BraininM. LyrerP. WachterR. SeguraT. GrangerC.B. Predictors of atrial fibrillation development in patients with embolic stroke of undetermined source: an analysis of the RE-SPECT ESUS trial.Circulation2021144221738174610.1161/CIRCULATIONAHA.121.05517634649459
    [Google Scholar]
  36. FeenyA.K. ChungM.K. MadabhushiA. AttiaZ.I. CikesM. FirouzniaM. FriedmanP.A. KalscheurM.M. KapaS. NarayanS.M. NoseworthyP.A. PassmanR.S. PerezM.V. PetersN.S. PicciniJ.P. TarakjiK.G. ThomasS.A. TrayanovaN.A. TurakhiaM.P. WangP.J. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology.Circ. Arrhythm. Electrophysiol.2020138e00795210.1161/CIRCEP.119.00795232628863
    [Google Scholar]
  37. NielsH. 2024Available from:https://mitsloan.mit.edu/ideas-made-to- matter/machine-learning-explained
  38. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  39. HolstH. OhlssonM. PetersonC. EdenbrandtL. A confident decision support system for interpreting electrocardiograms.Clin. Physiol.199919541041810.1046/j.1365‑2281.1999.00195.x10516892
    [Google Scholar]
  40. KrittanawongC. JohnsonK.W. RosensonR.S. WangZ. AydarM. BaberU. MinJ.K. TangW.H.W. HalperinJ.L. NarayanS.M. Deep learning for cardiovascular medicine: a practical primer.Eur. Heart J.201940252058207310.1093/eurheartj/ehz05630815669
    [Google Scholar]
  41. BollepalliS.C. SevakulaR.K. Au-YeungW.T.M. KassabM.B. MerchantF.M. BazoukisG. BoyerR. IsselbacherE.M. ArmoundasA.A. Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks.J. Am. Heart Assoc.20211023e02322210.1161/JAHA.121.02322234854319
    [Google Scholar]
  42. HannunA.Y. RajpurkarP. HaghpanahiM. TisonG.H. BournC. TurakhiaM.P. NgA.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat. Med.2019251656910.1038/s41591‑018‑0268‑330617320
    [Google Scholar]
  43. SanamdikarS.T. HamdeS.T. AsutkarV.G. Analysis and classification of cardiac arrhythmia based on general sparsed neural network of ECG signals.SN Appl. Sci.20202124410.1007/s42452‑020‑3058‑8
    [Google Scholar]
  44. AnthonyH. An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’?Cardiovasc. Digit. Heal. J.202123164170
    [Google Scholar]
  45. SposatoL.A. CiprianoL.E. SaposnikG. VargasE.R. RiccioP.M. HachinskiV. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis.Lancet Neurol.201514437738710.1016/S1474‑4422(15)70027‑X25748102
    [Google Scholar]
  46. BahitMC. SaccoRL. EastonJD. RE-SPECT ESUS Steering Committee and Investigators. Predictors of Atrial Fibrillation Development in Patients With Embolic Stroke of Undetermined.Circulation.2021144221738174610.1161/CIRCULATIONAHA.121.055176
    [Google Scholar]
  47. KamelH. FarrantM. EastonJD. Newly diagnosed atrial fibrillation after transient ischemic attack versus minor ischemic stroke in the POINT trial.J Am Heart Assoc.202110601936210.1161/JAHA.120.019362
    [Google Scholar]
  48. KędzierskiK. RadziejewskaJ. SławutaA. WawrzyńskaM. ArkowskiJ. Telemedicine in cardiology: modern technologies to improve cardiovascular patients’ outcomes—a narrative review.Medicina (Kaunas)202258221010.3390/medicina5802021035208535
    [Google Scholar]
  49. ZaprutkoT. ZaprutkoJ. BaszkoA. SawickaD. SzałekA. DymeckaM. TelecW. KopciuchD. RatajczakP. MichalakM. RafałD. SzyszkaA. NowakowskaE. Feasibility of atrial fibrillation screening with mobile health technologies at pharmacies.J. Cardiovasc. Pharmacol. Ther.202025214215110.1177/107424841987908931578088
    [Google Scholar]
  50. WyseD.G. WaldoA.L. DiMarcoJ.P. DomanskiM.J. RosenbergY. SchronE.B. KellenJ.C. GreeneH.L. MickelM.C. DalquistJ.E. CorleyS.D. A comparison of rate control and rhythm control in patients with atrial fibrillation.England j. med.200234723825183310.1056/NEJMoa021328
    [Google Scholar]
  51. SchlapferJ. Computer-interpreted electrocardiograms: Benefits and limitations.J. American Coll. Cardiol.20177091183119210.1016/j.jacc.2017.07.723
    [Google Scholar]
  52. WongE. XieJ. RajakariarK. MasmanK. MekelJ. NadurataV. The use of telemedicine and remote monitoring for managing patients with implantable cardiac devices at risk of significant cardiac arrhythmias is a safe alternative to face-to-face reviews during the COVID-19 era.Heart Lung Circ.202130S17010.1016/j.hlc.2021.06.174
    [Google Scholar]
  53. BarriosV. Cinza-SanjurjoS. García-AlegríaJ. Freixa-PamiasR. Llordachs-MarquesF. MolinaC.A. SantamaríaA. VivasD. Suárez FernandezC. Role of telemedicine in the management of oral anticoagulation in atrial fibrillation: a practical clinical approach.Future Cardiol.202218974375410.2217/fca‑2022‑004435822847
    [Google Scholar]
  54. KathleenA. AngelaC. Telemedicine practices in adult patients with atrial fibrillation.J. Am. Assoc. Nurse Pract.202234895796210.1097/JXX.0000000000000743
    [Google Scholar]
  55. HayıroğluM.İ. ÇınarT. SelçukM. ÇinierG. AlexanderB. DoğanS. ÇiçekV. KılıçŞ. AtmacaM.M. OrhanA.L. BaranchukA. The significance of the morphology-voltage-P-wave duration (MVP) ECG score for prediction of in-hospital and long-term atrial fibrillation in ischemic stroke.J. Electrocardiol.202169445010.1016/j.jelectrocard.2021.09.00634555558
    [Google Scholar]
  56. AliamiriA. ShenY. Deep learning based atrial fibrillation detection using wearable photoplethysmography sensor.2018 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)04-07 March 2018, Las Vegas, NV, USA, pp. 442-445.10.1109/BHI.2018.8333463
    [Google Scholar]
  57. TajiB. ShirmohammadS. Classifying measured electrocardiogram signal quality using deep belief networks.2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)22-25 May 2017, Turin, Italy, pp. 1-6.
    [Google Scholar]
  58. DingE.Y. MarcusG.M. McManusD.D. Emerging technologies for identifying atrial fibrillation.Circ. Res.2020127112814210.1161/CIRCRESAHA.119.31634232716695
    [Google Scholar]
  59. FaustO. CiaccioE.J. AcharyaU.R. A review of atrial fibrillation detection methods as a service.Int. J. Environ. Res. Public Health2020179309310.3390/ijerph1709309332365521
    [Google Scholar]
  60. OlierI. Ortega-MartorellS. PieroniM. LipG.Y.H. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management.Cardiovasc. Res.202111771700171710.1093/cvr/cvab16933982064
    [Google Scholar]
  61. ChungC.T. LeeS. KingE. LiuT. ArmoundasA.A. BazoukisG. TseG. Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis.Int. J. Arrhythmia20222312410.1186/s42444‑022‑00075‑x36212507
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X293703240715104503
Loading
/content/journals/ccr/10.2174/011573403X293703240715104503
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test