Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Amines are important and valuable compounds widely used in the chemical industry to produce various products such as dyes, detergents, solvents, additives, pharmaceutical products, and anti-foam agents. A property that distinguishes primary amines from other compounds is their straightforward functionalization. Therefore, the synthesis of different amine compounds has been considered by many researchers in recent years. Usually, primary amines are produced amination of alcohols, reductive amination, and reduction of nitro and amide compounds. Furthermore, a useful and atom-economical method for producing primary amines is reducing nitrile compounds using catalytic systems. Traditionally, nitriles are reduced using metal hydrides such as LiAlH or NaBH. These methods have important restrictions in terms of selectivity and waste generation. Hence, the heterogeneous and homogeneous catalysts were investigated for the hydrogenation of nitriles to diverse amines. This review describes the performance of different catalytic systems for reducing nitrile compounds to their corresponding amines.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073284975240324091848
2024-04-04
2025-04-02
Loading full text...

Full text loading...

References

  1. WittcoffH.A. ReubenB.G. PlotkinJ.S. Industrial organic chemicals.John Wiley & Sons201210.1002/9781118229996
    [Google Scholar]
  2. RooseP. EllerK. HenkesE. RossbacherR. HökeH. Amines, Aliphatic.Ullmann’s Encyclopedia of Industrial Chemistry201510.1002/14356007.a02_001.pub2
    [Google Scholar]
  3. WeissermelK. ArpeH-J. Industrial organic chemistry.John Wiley & Sons2008
    [Google Scholar]
  4. LiangY. ZhangX. MacMillanD.W.C. Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis.Nature20185597712838810.1038/s41586‑018‑0234‑8 29925943
    [Google Scholar]
  5. TianC. YangL.M. TianH.T. AnG.H. LiG.M. C5-selective trifluoromethylation of 8-amino quinolines via photoredox catalysis.J. Fluor. Chem.2019219232810.1016/j.jfluchem.2018.12.011
    [Google Scholar]
  6. YangH. TianC. QiuD. TianH. AnG. LiG. Organic photoredox catalytic decarboxylative cross-coupling of gem -difluoroalkenes with unactivated carboxylic acids.Org. Chem. Front.20196142365237010.1039/C9QO00495E
    [Google Scholar]
  7. YuanC. ZhuL. ChenC. ChenX. YangY. LanY. ZhaoY. Ruthenium(II)-enabled para-selective C–H difluoromethylation of anilides and their derivatives.Nat. Commun.201891118910.1038/s41467‑018‑03341‑6 29567953
    [Google Scholar]
  8. TianC. YaoX. JiW. WangQ. AnG. LiG. A para ‐C–H Functionalization of Aniline Derivatives via In situ Generated Bulky Hypervalent Iodinium Reagents.Eur. J. Org. Chem.20182018435972597910.1002/ejoc.201801058
    [Google Scholar]
  9. GunanathanC. MilsteinD. Selective synthesis of primary amines directly from alcohols and ammonia.Angew. Chem. Int. Ed.200847458661866410.1002/anie.200803229 18846519
    [Google Scholar]
  10. BalaramanE. SrimaniD. Diskin-PosnerY. MilsteinD. Direct synthesis of secondary amines from alcohols and ammonia catalyzed by a ruthenium pincer complex.Catal. Lett.2015145113914410.1007/s10562‑014‑1422‑2
    [Google Scholar]
  11. YeX. PlessowP.N. BrinksM.K. SchelwiesM. SchaubT. RomingerF. PacielloR. LimbachM. HofmannP. Alcohol amination with ammonia catalyzed by an acridine-based ruthenium pincer complex: A mechanistic study.J. Am. Chem. Soc.2014136165923592910.1021/ja409368a 24684701
    [Google Scholar]
  12. CamurluP. ErenE. GültekinC.A. Solution‐processible, n‐dopable polypyrrole derivative.J. Polym. Sci. A Polym. Chem.201250234847485310.1002/pola.26321
    [Google Scholar]
  13. Seyden-PenneJ. Reductions by the alumino-and borohydrides in organic synthesis.John Wiley & Sons1997
    [Google Scholar]
  14. LiuS. YangY. ZhenX. LiJ. HeH. FengJ. WhitingA. Enhanced reduction of C–N multiple bonds using sodium borohydride and an amorphous nickel catalyst.Org. Biomol. Chem.201210366367010.1039/C1OB06471A 22101975
    [Google Scholar]
  15. LavalS. DayoubW. Favre-ReguillonA. BerthodM. DemonchauxP. MignaniG. LemaireM. A mild and efficient method for the reduction of nitriles.Tetrahedron Lett.200950507005700710.1016/j.tetlet.2009.09.164
    [Google Scholar]
  16. CorriuR.J.P. MoreauJ.J.E. Pataud-SatM. Reactions de l’ortho-bis(dimethylsilyl)benzene avec les nitriles catalysees par des complexes du rhodium.J. Organomet. Chem.1982228330130810.1016/S0022‑328X(00)84331‑4
    [Google Scholar]
  17. DasS. WendtB. MöllerK. JungeK. BellerM. Two iron catalysts are better than one: A general and convenient reduction of aromatic and aliphatic primary amides.Angew. Chem. Int. Ed.20125171662166610.1002/anie.201108155 22246789
    [Google Scholar]
  18. BornscheinC. WerkmeisterS. JungeK. BellerM. TBAF-catalyzed hydrosilylation for the reduction of aromatic nitriles.New J. Chem.20133772061206510.1039/c3nj00171g
    [Google Scholar]
  19. DasS. MaityJ. PandaT.K. Metal/non‐metal catalyzed activation of organic nitriles.Chem. Rec.20222212e20220019210.1002/tcr.202200192 36126180
    [Google Scholar]
  20. NishimuraS. Handbook of heterogeneous catalytic hydrogenation for organic synthesis.Wiley New York2001
    [Google Scholar]
  21. BlaserH.U. MalanC. PuginB. SpindlerF. SteinerH. StuderM. Selective hydrogenation for fine chemicals: Recent trends and new developments.Adv. Synth. Catal.20033451-210315110.1002/adsc.200390000
    [Google Scholar]
  22. HegedűsL. MáthéT. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines in liquid phase.Appl. Catal. A Gen.2005296220921510.1016/j.apcata.2005.08.024
    [Google Scholar]
  23. BraunJ. BlessingG. ZobelF. Catalytic hydrogenations under pressure in the presence of nickel salts.VI Nitriles Ber19233619882001
    [Google Scholar]
  24. GreenfieldH. Catalytic hydrogenation of butyronitrile.Ind. Eng. Chem. Prod. Res. Dev.19676142144
    [Google Scholar]
  25. GomezS. PetersJ.A. MaschmeyerT. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control.Adv. Synth. Catal.2002344101037105710.1002/1615‑4169(200212)344:10<1037:AID‑ADSC1037>3.0.CO;2‑3
    [Google Scholar]
  26. DegischerO.G. RoesslerF. RysP. Catalytic hydrogenation of benzonitrile over raney nickel: Influence of reaction parameters on reaction rates and selectivities.Chemical Industries-New York-Marcel Dekker2001241254
    [Google Scholar]
  27. BawaneS.P. SawantS.B. Reaction kinetics of the liquid-phase hydrogenation of benzonitrile to benzylamine using Raney nickel catalyst.Chem. Eng. J.20041031-3131910.1016/j.cej.2004.07.002
    [Google Scholar]
  28. KukulaP. StuderM. BlaserH.U. Chemoselective hydrogenation of α,β‐unsaturated nitriles.Adv. Synth. Catal.2004346121487149310.1002/adsc.200404128
    [Google Scholar]
  29. Cárdenas-LizanaF. KeaneM.A. The development of gold catalysts for use in hydrogenation reactions.J. Mater. Sci.201348254356410.1007/s10853‑012‑6766‑7
    [Google Scholar]
  30. BlanitaG. LazarM.D. Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalysts.Micro Nanosyst.20135213814610.2174/1876402911305020009
    [Google Scholar]
  31. KukulaP. GabovaV. KoprivovaK. TrtikP. Selective hydrogenation of unsaturated nitriles to unsaturated amines over amorphous CoB and NiB alloys doped with chromium.Catal. Today20071211-2273810.1016/j.cattod.2006.11.009
    [Google Scholar]
  32. SegobiaD.J. TrasartiA.F. ApesteguíaC.R. Hydrogenation of nitriles to primary amines on metal-supported catalysts: Highly selective conversion of butyronitrile to n-butylamine.Appl. Catal. A Gen.2012445-446697510.1016/j.apcata.2012.08.006
    [Google Scholar]
  33. LiY. GongY. XuX. ZhangP. LiH. WangY. A practical and benign synthesis of amines through Pd@mpg-C3N4 catalyzed reduction of nitriles.Catal. Commun.20122891210.1016/j.catcom.2012.08.005
    [Google Scholar]
  34. ChatterjeeM. SatoM. KawanamiH. YokoyamaT. SuzukiT. IshizakaT. An efficient hydrogenation of dinitrile to aminonitrile in supercritical carbon dioxide.Adv. Synth. Catal.201035214-152394239810.1002/adsc.201000514
    [Google Scholar]
  35. ChinC.S. LeeB. Hydrogenation of nitriles with iridium-triphenylphosphine complexes.Catal. Lett.199214113514010.1007/BF00764228
    [Google Scholar]
  36. YoshidaT. OkanoT. OtsukaS. Catalytic hydrogenation of nitriles and dehydrogenation of amines with the rhodium(I) hydrido compounds [RhH(PPri3)3] and [Rh2H2(μ-N2)P(cyclohexyl)34].J. Chem. Soc. Chem. Commun.197919870871[Rh 2 H 2 (μ-N2){P (cyclohexyl) 3} 4].10.1039/C39790000870
    [Google Scholar]
  37. RajeshK. DudleB. BlacqueO. BerkeH. Homogeneous hydrogenations of nitriles catalyzed by rhenium complexes.Adv. Synth. Catal.201135391479148410.1002/adsc.201000867
    [Google Scholar]
  38. LiT. BergnerI. HaqueF.N. Zimmer-De IuliisM. SongD. MorrisR.H. Hydrogenation of benzonitrile to benzylamine catalyzed by ruthenium hydride complexes with P− NH− NH− P tetradentate ligands: Evidence for a hydridic− protonic outer sphere mechanism.Organometallics200726245940594910.1021/om700783e
    [Google Scholar]
  39. GunanathanC. HölscherM. LeitnerW. Reduction of nitriles to amines with H 2 catalyzed by nonclassical ruthenium hydrides – water‐promoted selectivity for primary amines and mechanistic investigations.Eur. J. Inorg. Chem.20112011223381338610.1002/ejic.201100392
    [Google Scholar]
  40. MiaoX. BidangeJ. DixneufP.H. FischmeisterC. BruneauC. DuboisJ.L. CouturierJ.L. Ruthenium–benzylidenes and ruthenium–indenylidenes as efficient catalysts for the hydrogenation of aliphatic nitriles into primary amines.ChemCatChem20124121911191610.1002/cctc.201200511
    [Google Scholar]
  41. EnthalerS. AddisD. JungeK. ErreG. BellerM. A general and environmentally benign catalytic reduction of nitriles to primary amines.Chemistry200814319491949410.1002/chem.200801600 18816551
    [Google Scholar]
  42. ReguilloR. GrellierM. VautraversN. VendierL. Sabo-EtienneS. Ruthenium-catalyzed hydrogenation of nitriles: Insights into the mechanism.J. Am. Chem. Soc.2010132237854785510.1021/ja102759z 20481582
    [Google Scholar]
  43. WerkmeisterS. JungeK. WendtB. SpannenbergA. JiaoH. BornscheinC. BellerM. Ruthenium/Imidazolylphosphine catalysis: Hydrogenation of aliphatic and aromatic nitriles to form amines.Chemistry201420154227423110.1002/chem.201303989 24615766
    [Google Scholar]
  44. GreyR.A. PezG.P. WalloA. CorsiJ. Homogeneous catalytic hydrogenation of carboxylic acid esters to alcohols.J. Chem. Soc. Chem. Commun.19801678378410.1039/c39800000783
    [Google Scholar]
  45. GreyR.A. PezG.P. WalloA. Anionic metal hydride catalysts. 2. Application to the hydrogenation of ketones, aldehydes, carboxylic acid esters, and nitriles.J. Am. Chem. Soc.1981103257536754210.1021/ja00415a022
    [Google Scholar]
  46. AllgeierA.M. SenguptaS.K. 5. Nitrile hydrogenation; Hydrogenation.De Gruyter201810715410.1515/9783110545210‑005
    [Google Scholar]
  47. LévayK. HegedűsL. Selective heterogeneous catalytic hydrogenation of nitriles to primary amines.Period. Polytech. Chem. Eng.201862447648810.3311/PPch.12787
    [Google Scholar]
  48. KrupkaJ. PasekJ. Nitrile hydrogenation on solid catalysts–New insights into the reaction mechanism.Curr. Org. Chem.2012168988100410.2174/138527212800194692
    [Google Scholar]
  49. HuberW. Hydrogenation of basic nitriles with Raney nickel.J. Am. Chem. Soc.194466687687910.1021/ja01234a009
    [Google Scholar]
  50. de BellefonC. FouillouxP. Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: Chemical, mechanistic, and catalytic aspects.Catal. Rev., Sci. Eng.199436345950610.1080/01614949408009469
    [Google Scholar]
  51. ChojeckiA. VeprekheijmanM. MüllerT. SchärringerP. VeprekS. LercherJ. Tailoring Raney-catalysts for the selective hydrogenation of butyronitrile to n-butylamine.J. Catal.2007245123724810.1016/j.jcat.2006.10.012
    [Google Scholar]
  52. JohnsonT.A. FreybergerD.P. Lithium hydroxide modified sponge catalysts for control of primary amine selectivity in nitrile hydrogenations.CHEMICAL INDUSTRIES-NEW YORK-MARCEL DEKKER2001201228
    [Google Scholar]
  53. GouldF. JohnsonG. FerrisA. The hydrogenation of nitriles to primary amines.J. Org. Chem.19602591658166010.1021/jo01079a600
    [Google Scholar]
  54. HofferB.W. MoulijnJ.A. Hydrogenation of dinitriles on Raney-type Ni catalysts: Kinetic and mechanistic aspects.Appl. Catal. A Gen.20093521-219320110.1016/j.apcata.2008.10.004
    [Google Scholar]
  55. ZhangP. ZhangQ. LiX. Preparation of m-xylylenediamine by hydrogenation of isophtalonitrile on Ni-Ru/SiO2 catalysts.Industrial Catalysis201277175
    [Google Scholar]
  56. SegobiaD.J. TrasartiA.F. ApesteguíaC.R. Synthesis of n-butylamine from butyronitrile on Ni/SiO2: Effect of solvent.J. Braz. Chem. Soc.2014252272227910.5935/0103‑5053.20140215
    [Google Scholar]
  57. JiaZ. ZhenB. HanM. WangC. Liquid phase hydrogenation of adiponitrile over directly reduced Ni/SiO2 catalyst.Catal. Commun.201673808310.1016/j.catcom.2015.10.021
    [Google Scholar]
  58. SegobiaD.J. TrasartiA.F. ApesteguíaC.R. Chemoselective hydrogenation of unsaturated nitriles to unsaturated primary amines: Conversion of cinnamonitrile on metal-supported catalysts.Appl. Catal. A Gen.2015494414710.1016/j.apcata.2015.01.028
    [Google Scholar]
  59. LiuC. WangT. Isophthalonitrile (IPN) hydrogenation over K modified Ni–Co supported catalysts: Catalyst characterization and performance evaluation.RSC Advances20144109637256373310.1039/C4RA09607J
    [Google Scholar]
  60. LiuC. LiX. WangT. Catalytic hydrogenation of isophthalonitrile (IPN) over supported monometallic and bimetallic catalysts.RSC Advances2015571572775728510.1039/C5RA10231F
    [Google Scholar]
  61. ChengH. MengX. WuC. ShanX. YuY. ZhaoF. Selective hydrogenation of benzonitrile in multiphase reaction systems including compressed carbon dioxide over Ni/Al2O3 catalyst.J. Mol. Catal. Chem.2013379727910.1016/j.molcata.2013.07.017
    [Google Scholar]
  62. LvY. HaoF. LiuP. XiongS. LuoH. Liquid phase hydrogenation of adiponitrile over acid-activated sepiolite supported K–La–Ni trimetallic catalysts.React. Kinet. Mech. Catal.2016119255556810.1007/s11144‑016‑1061‑2
    [Google Scholar]
  63. PengZ. WenqiangD. ZemingR. YueW. LianhaiL. Mild hydrogenation of benzonitrile to benzylamine over amorphous NiAl alloy catalyst.Pet. Technol.20073610371041
    [Google Scholar]
  64. CaoY. NiuL. WenX. FengW. HuoL. BaiG. Novel layered double hydroxide/oxide-coated nickel-based core–shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch.J. Catal.201633991310.1016/j.jcat.2016.03.015
    [Google Scholar]
  65. MokhovV.M. PopovY.V. ShcherbakovaK.V. Colloid and nanosized catalysts in organic synthesis: XII. Hydrogenation of carbonitriles catalyzed by nickel nanoparticles.Russ. J. Gen. Chem.201686227328010.1134/S1070363216020110
    [Google Scholar]
  66. KonnerthH. PrechtlM.H.G. Nitrile hydrogenation using nickel nanocatalysts in ionic liquids.New J. Chem.201741189594959710.1039/C7NJ02210G
    [Google Scholar]
  67. ZenY.F. FuZ.C. LiangF. XuY. YangD.D. YangZ. GanX. LinZ.S. ChenY. FuW.F. Robust hydrogenation of nitrile and nitro groups to primary amines using Ni2P as a catalyst and ammonia borane under ambient conditions.Asian J. Org. Chem.20176111589159310.1002/ajoc.201700383
    [Google Scholar]
  68. ShiD. ZhuH. HanY. ZhangY. ZhaoJ. Hydrogenation of aliphatic nitriles to primary amines over a bimetallic catalyst Ni 25.38 Co 18.21/MgO–0.75 Al2O3 under atmospheric pressure.Catal. Lett.20211111
    [Google Scholar]
  69. GowdaS. GowdaD.C. Application of hydrazinium monoformate as new hydrogen donor with Raney nickel: A facile reduction of nitro and nitrile moieties.Tetrahedron200258112211221310.1016/S0040‑4020(02)00093‑5
    [Google Scholar]
  70. NabidM.R. BideY. NiknezhadM. Fe3O4–SiO2–P4VP pH‐sensitive microgel for immobilization of nickel nanoparticles: An efficient heterogeneous catalyst for nitrile reduction in water.ChemCatChem20146253854610.1002/cctc.201300984
    [Google Scholar]
  71. YuC. FuJ. MuzzioM. ShenT. SuD. ZhuJ. SunS. CuNi nanoparticles assembled on graphene for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds.Chem. Mater.20172931413141810.1021/acs.chemmater.6b05364
    [Google Scholar]
  72. WangJ. TangQ. JinS. WangY. YuanZ. ChiQ. ZhangZ. Mild and selective hydrogenation of nitriles into primary amines over a supported Ni catalyst.New J. Chem.202044254955510.1039/C9NJ05307G
    [Google Scholar]
  73. FujitaS. YamaguchiS. YamasakiJ. NakajimaK. YamazoeS. MizugakiT. MitsudomeT. Ni 2 P Nanoalloy as an air‐stable and versatile hydrogenation catalyst in water: P‐alloying strategy for designing smart catalysts.Chemistry 202127134439444610.1002/chem.202005037 33283374
    [Google Scholar]
  74. YamaguchiS. KiyohiraD. TadaK. KawakamiT. MiuraA. MitsudomeT. MizugakiT. Nickel carbide nanoparticle catalyst for selective hydrogenation of nitriles to primary amines.Chemistry 20243013e20230357310.1002/chem.202303573 38179895
    [Google Scholar]
  75. ZhaoH. HeY. WangX. HeJ. LiuA. ZhangZ. Room-temperature synthesis of primary amines by selective hydrogenation of nitriles over ZnAlOx supported Ni catalysts.Appl. Catal. A Gen.202365511911510.1016/j.apcata.2023.119115
    [Google Scholar]
  76. MarellaR.K. KoppadiK.S. JyothiY. Rama RaoK.S. BurriD.R. Selective gas-phase hydrogenation of benzonitrile into benzylamine over Cu–MgO catalysts without using any additives.New J. Chem.201337103229323510.1039/c3nj00453h
    [Google Scholar]
  77. LinC. LiJ. GuoH. WuX. WangB. YanX. Controllable synthesis of bis[3-(dimethylamino)propyl]amine over Cr and Co double-doped Cu/γ-Al2O3.Catal. Commun.2018111646910.1016/j.catcom.2018.03.031
    [Google Scholar]
  78. GuoR. ZhangX. LiX. NiuD. SunH. Porphyrin-MOF-derived carbon-encapsulated copper as a selective and leaching resistant catalyst for the hydrogenation of nitriles.J. Taiwan Inst. Chem. Eng.202214010456110.1016/j.jtice.2022.104561
    [Google Scholar]
  79. BrancoJ.B. Ballivet-TkatchenkoD. de MatosA.P. Gas-phase hydrogenation of propionitrile on copper-lanthanide oxides.J. Mol. Catal. Chem.20093071-2374210.1016/j.molcata.2009.03.007
    [Google Scholar]
  80. ZeynizadehB. Mohammad AminzadehF. MousaviH. Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles.Res. Chem. Intermed.20194563329335710.1007/s11164‑019‑03794‑4
    [Google Scholar]
  81. GuoR. HeG. LiuL. AiY. HuZ. ZhangX. TianH. SunH. NiuD. LiangQ. Selective synthesis of symmetrical secondary amines from nitriles with a Pt−CuFe/Fe3O4 catalyst and ammonia borane as hydrogen donor.ChemPlusChem20208581783178810.1002/cplu.202000028 32808467
    [Google Scholar]
  82. GuoR. ZhangX. HuZ.N. LiH. GaoJ. WangJ. LiangQ. LiX. NiuD. SunH. A hollow in hollow nanoreactor of H-PtCu@SiO2 for the selective transfer hydrogenation.Chem. Eng. J.202142513141710.1016/j.cej.2021.131417
    [Google Scholar]
  83. YangW. ZhuW. LiuH. NiuH. LuoJ. LiangC. Regulating the coordination environment of Co@C catalysts for selective hydrogenation of adiponitrile to hexamethylenediamine.J. Catal.202443011531210.1016/j.jcat.2024.115312
    [Google Scholar]
  84. FormentiD. MocciR. AtiaH. DastgirS. AnwarM. BachmannS. ScaloneM. JungeK. BellerM. A state‐of‐the‐art heterogeneous catalyst for efficient and general nitrile hydrogenation.Chemistry 20202667155891559510.1002/chem.202001866 32337746
    [Google Scholar]
  85. MullangiD. ChakrabortyD. PradeepA. KoshtiV. VinodC.P. PanjaS. NairS. VaidhyanathanR. Highly stable cof‐supported Co/Co(OH) 2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions.Small20181437180123310.1002/smll.201801233 30062759
    [Google Scholar]
  86. AnsmannA. BenischC. Supported cobalt catalysts for nitrile hydrogenations, United States Patent, Assignee: BASF Aktiengesellschaft, Ludwigshafen, GermanyU.S. Patent 6790996B2,2004
    [Google Scholar]
  87. LongJ. ShenK. ChenL. LiY. Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions.J. Mater. Chem. A Mater. Energy Sustain.2016426102541026210.1039/C6TA00157B
    [Google Scholar]
  88. LongJ. ShenK. LiY. Bifunctional N-doped Co@ C catalysts for base-free transfer hydrogenations of nitriles: controllable selectivity to primary amines vs. imines.ACS Catal.20177127528410.1021/acscatal.6b02327
    [Google Scholar]
  89. JiP. MannaK. LinZ. FengX. UrbanA. SongY. LinW. Single-site cobalt catalysts at new Zr12 (μ3-O) 8 (μ3-OH) 8 (μ2-OH) 6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides.J. Am. Chem. Soc.2017139207004701110.1021/jacs.7b02394 28478673
    [Google Scholar]
  90. ChenF. TopfC. RadnikJ. KreyenschulteC. LundH. SchneiderM. SurkusA.E. HeL. JungeK. BellerM. Stable and inert cobalt catalysts for highly selective and practical hydrogenation of C≡N and C═O bonds.J. Am. Chem. Soc.2016138288781878810.1021/jacs.6b03439 27320777
    [Google Scholar]
  91. FerraccioliR. BorovikaD. SurkusA.E. KreyenschulteC. TopfC. BellerM. Synthesis of cobalt nanoparticles by pyrolysis of vitamin B12: A non-noble-metal catalyst for efficient hydrogenation of nitriles.Catal. Sci. Technol.20188249950710.1039/C7CY01577A
    [Google Scholar]
  92. MurugesanK. SenthamaraiT. SohailM. AlshammariA.S. PohlM.M. BellerM. JagadeeshR.V. Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts.Chem. Sci. 20189458553856010.1039/C8SC02807A 30568779
    [Google Scholar]
  93. GöksuH. CanH. ŞendilK. GültekinM.S. MetinÖ. CoPd alloy nanoparticles catalyzed tandem ammonia borane dehydrogenation and reduction of aromatic nitro, nitrile and carbonyl compounds.Appl. Catal. A Gen.201448817618210.1016/j.apcata.2014.09.043
    [Google Scholar]
  94. MitsudomeT. ShengM. NakataA. YamasakiJ. MizugakiT. JitsukawaK. A cobalt phosphide catalyst for the hydrogenation of nitriles.Chem. Sci. 202011266682668910.1039/D0SC00247J 32953029
    [Google Scholar]
  95. HaoY. WangX. PerretN. Cárdenas-LizanaF. KeaneM.A. Support effects in the gas phase hydrogenation of butyronitrile over palladium.Catal. Struct. React.20151141010.1179/2055075814Y.0000000002
    [Google Scholar]
  96. HaoY. LiM. Cárdenas-LizanaF. KeaneM.A. Selective production of benzylamine via gas phase hydrogenation of benzonitrile over supported Pd catalysts.Catal. Lett.2016146110911610.1007/s10562‑015‑1655‑8
    [Google Scholar]
  97. McAllisterM.I. BoulhoC. GilpinL.F. McMillanL. BrennanC. LennonD. Hydrogenation of benzonitrile over supported pd catalysts: Kinetic and mechanistic insight.Org. Process Res. Dev.201923597798910.1021/acs.oprd.9b00058
    [Google Scholar]
  98. BakkerJ.J.W. NeutA.G. KreutzerM.T. MoulijnJ.A. KapteijnF. Catalyst performance changes induced by palladium phase transformation in the hydrogenation of benzonitrile.J. Catal.2010274217619110.1016/j.jcat.2010.06.013
    [Google Scholar]
  99. BhosaleA. YoshidaH. FujitaS. AraiM. Selective hydrogenation of benzyl cyanide to 2-phenylethylamine over a Pd/Al 2 O 3 catalyst promoted by synergistic effects of CO 2 and water.Green Chem.20151721299130710.1039/C4GC02118E
    [Google Scholar]
  100. BhosaleA. YoshidaH. FujitaS. AraiM. Carbon dioxide and water: An effective multiphase medium for selective hydrogenation of nitriles with a Pd/Al2O3catalyst. J. CO2 Util.,201616371374
    [Google Scholar]
  101. DaiC. LiuF. ZhangW. LiY. NingC. WangX. ZhangC. Deactivation study of Pd/Al2O3 catalyst for hydrogenation of benzonitrile in fixed-bed reactor.Appl. Catal. A Gen.201753819920610.1016/j.apcata.2017.03.030
    [Google Scholar]
  102. DaiC. LiY. NingC. ZhangW. WangX. ZhangC. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine.Appl. Catal. A Gen.20175459710310.1016/j.apcata.2017.07.032
    [Google Scholar]
  103. LinC. WangB. GuoH. ChenL. YanX. Selective synthesis of N, N ‐Bis(3‐dimethylaminopropyl)amine over Pd/γ‐Al2O3.Bull. Korean Chem. Soc.201839339139610.1002/bkcs.11401
    [Google Scholar]
  104. YoshimuraM. KomatsuA. NiimuraM. TakagiY. TakahashiT. UedaS. IchikawaT. KobayashiY. OkamiH. HattoriT. SawamaY. MonguchiY. SajikiH. Selective synthesis of primary amines from nitriles under hydrogenation conditions.Adv. Synth. Catal.201836081726173210.1002/adsc.201800102
    [Google Scholar]
  105. ChatterjeeM. KawanamiH. SatoM. IshizakaT. YokoyamaT. SuzukiT. Hydrogenation of nitrile in supercritical carbon dioxide: A tunable approach to amine selectivity.Green Chem.2010121879310.1039/B913828E
    [Google Scholar]
  106. SegobiaD.J. TrasartiA.F. ApesteguíaC.R. Conversion of butyronitrile to butylamines on noble metals: Effect of the solvent on catalyst activity and selectivity.Catal. Sci. Technol.20144114075408310.1039/C4CY00741G
    [Google Scholar]
  107. HaoY. LiM. Cárdenas-LizanaF. KeaneM.A. Production of butylamine in the gas phase hydrogenation of butyronitrile over Pd/SiO2 and Ba-Pd/SiO2. Catalysis.Catal. Struct. React.20151313213910.1179/2055075815Y.0000000007
    [Google Scholar]
  108. SaitoY. IshitaniH. UenoM. KobayashiS. Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO 2 ‐supported palladium catalyst under continuous‐flow conditions.ChemistryOpen20176221121510.1002/open.201600166 28413753
    [Google Scholar]
  109. Nait AjjouA. RobichaudA. Chemoselective hydrogenation of nitriles to secondary or tertiary amines catalyzed by aqueous‐phase catalysts supported on hexagonal mesoporous silica.Appl. Organomet. Chem.20183212e454710.1002/aoc.4547
    [Google Scholar]
  110. JiaoZ.F. ZhaoJ.X. GuoX.N. TongX.L. ZhangB. JinG.Q. QinY. GuoX.Y. Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots.Catal. Sci. Technol.2019992266227210.1039/C9CY00353C
    [Google Scholar]
  111. LuQ. WeiX.Z. WangH. zhang, Q.; Zhang, X.; Chen, L.; Liu, J.; Ma, L. Green and efficient synthesis of primary amine from nitrile catalyzed by Pd-Ni oxide nanocluster.Chem. Eng. Sci.202327911892910.1016/j.ces.2023.118929
    [Google Scholar]
  112. WangH. LuoQ. LiuW. LinY. GuanQ. ZhengX. PanH. ZhuJ. SunZ. WeiS. YangJ. LuJ. Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines.Nat. Commun.2019101499810.1038/s41467‑019‑12993‑x 31676812
    [Google Scholar]
  113. LiuZ. HuangF. PengM. ChenY. CaiX. WangL. HuZ. WenX. WangN. XiaoD. JiangH. SunH. LiuH. MaD. Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts.Nat. Commun.2021121619410.1038/s41467‑021‑26542‑y 34702832
    [Google Scholar]
  114. LuY. WangJ. FengX. LiY. ZhangW. YamamotoY. BaoM. Hydrogenation of nitriles to primary amines catalyzed by an unsupported nanoporous palladium catalyst: understanding the essential reason for the high activity and selectivity of the catalyst.Nanoscale202214269341934810.1039/D2NR01722A 35704927
    [Google Scholar]
  115. YapA.J. ChanB. YuenA.K.L. WardA.J. MastersA.F. MaschmeyerT. A palladium‐catalyzed multicascade reaction: facile low‐temperature hydrogenolysis of activated nitriles and related functional groups.ChemCatChem2011391496150210.1002/cctc.201100076
    [Google Scholar]
  116. McAllisterM.I. BoulhoC. McMillanL. GilpinL.F. BrennanC. LennonD. The hydrogenation of mandelonitrile over a Pd/C catalyst: Towards a mechanistic understanding.RSC Advances2019945261162612510.1039/C9RA04618F 35531026
    [Google Scholar]
  117. LiuY. HeS. QuanZ. CaiH. ZhaoY. WangB. Mild palladium-catalysed highly efficient hydrogenation of C [triple bond, length as m-dash] N, C–NO2, and C [double bond, length as m-dash] O bonds using H2 of 1 atm in H2O.Green Chem.20192183083810.1039/C8GC03285H
    [Google Scholar]
  118. ObertK. RothD. EhrigM. SchönweizA. AssenbaumD. LangeH. WasserscheidP. Selectivity enhancement in the catalytic hydrogenation of propionitrile using ionic liquid multiphase reaction systems.Appl. Catal. A Gen.20093561435110.1016/j.apcata.2008.12.016
    [Google Scholar]
  119. MuratsuguS. KityakarnS. WangF. IshiguroN. KamachiT. YoshizawaK. SekizawaO. UrugaT. TadaM. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.Phys. Chem. Chem. Phys.20151738247912480210.1039/C5CP03456F 26344789
    [Google Scholar]
  120. Ortiz-CervantesC. IyañezI. GarcíaJ.J. Facile preparation of ruthenium nanoparticles with activity in hydrogenation of aliphatic and aromatic nitriles to amines.J. Phys. Org. Chem.2012251190290710.1002/poc.2962
    [Google Scholar]
  121. LiuL. LiJ. AiY. LiuY. XiongJ. WangH. QiaoY. LiuW. TanS. FengS. WangK. SunH. LiangQ. A ppm level Rh-based composite as an ecofriendly catalyst for transfer hydrogenation of nitriles: Triple guarantee of selectivity for primary amines.Green Chem.20192161390139510.1039/C8GC03595D
    [Google Scholar]
  122. YamadaT. ParkK. FurugenC. JiangJ. ShimizuE. ItoN. SajikiH. Highly selective hydrogenative conversion of nitriles into tertiary, secondary, and primary amines under flow reaction conditions.ChemSusChem2022152e20210213810.1002/cssc.202102138 34779573
    [Google Scholar]
  123. LiuL. AiY. LiD. QiL. ZhouJ. TangZ. ShaoZ. LiangQ. SunH.B. Recyclable acid–base bifunctional core–shell–shell nanosphere catalyzed synthesis of 5‐Aryl‐1 H ‐1,2,3‐triazoles through the “one‐pot” cyclization of aldehydes, nitromethane, and sodium azide.ChemCatChem20179163131313710.1002/cctc.201700401
    [Google Scholar]
  124. SharmaS.K. LynchJ. SobolewskaA.M. PlucinskiP. WatsonR.J. WilliamsJ.M.J. Pt/C catalysed direct reductive amination of nitriles with primary amines in a continuous flow multichannel microreactor.Catal. Sci. Technol.201331858810.1039/C2CY20431B
    [Google Scholar]
  125. AguirreA. CollinsS.E. Insight into the mechanism of acetonitrile hydrogenation in liquid phase on Pt/Al2O3 by ATR-FTIR.Catal. Today2019336223210.1016/j.cattod.2019.04.027
    [Google Scholar]
  126. LuS. XuP. CaoX. GuH. A highly active worm-like PtMo nanowire for the selective synthesis of dibenzylamines.RSC Advances20188168755876010.1039/C8RA00787J 35539856
    [Google Scholar]
  127. LuS. WangJ. CaoX. LiX. GuH. Selective synthesis of secondary amines from nitriles using Pt nanowires as a catalyst.Chem. Commun. 201450263512351510.1039/C3CC48596J 24558646
    [Google Scholar]
  128. PoupinC. MaacheR. Pirault-RoyL. BrahmiR. WilliamsC.T. Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO–Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy.Appl. Catal. A Gen.201447536337010.1016/j.apcata.2014.01.041
    [Google Scholar]
  129. SaadF. ComparotJ.D. BrahmiR. BensitelM. Pirault-RoyL. Influence of acid-base properties of the support on the catalytic performances of Pt-based catalysts in a gas-phase hydrogenation of acetonitrile.Appl. Catal. A Gen.20175441910.1016/j.apcata.2017.06.038
    [Google Scholar]
  130. AguirreA. BerliC.L.A. CollinsS.E. ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface.Catal. Today201728312713310.1016/j.cattod.2016.03.042
    [Google Scholar]
  131. AguirreA. KlerP.A. BerliC.L.A. CollinsS.E. Design and operational limits of an ATR-FTIR spectroscopic microreactor for investigating reactions at liquid–solid interface.Chem. Eng. J.201424319720610.1016/j.cej.2014.01.001
    [Google Scholar]
  132. LévayK. KárpátiT. HegedűsL. Selective hydrogenation of benzonitrile and its homologues to primary amines over platinum.J. Ind. Eng. Chem.202110127929210.1016/j.jiec.2021.06.002
    [Google Scholar]
  133. NishidaY. SatoK. ChaudhariC. YamadaH. ToriyamaT. YamamotoT. MatsumuraS. AsperaS.M. NakanishiH. HanedaM. NagaokaK. Nitrile hydrogenation to secondary amines under ambient conditions over palladium–platinum random alloy nanoparticles.Catal. Sci. Technol.202212134128413710.1039/D1CY02302K
    [Google Scholar]
  134. López-De JesúsY.M. JohnsonC.E. MonnierJ.R. WilliamsC.T. WilliamsC.T. Selective hydrogenation of benzonitrile by alumina-supported Ir–Pd Catalysts.Top. Catal.20105315-181132113710.1007/s11244‑010‑9546‑0
    [Google Scholar]
  135. AnsariS. KhorshidiA. ShariatiS. Chemoselective reduction of nitro and nitrile compounds using an Fe3O4 -MWCNTs@PEI-Ag nanocomposite as a reusable catalyst.RSC Advances20201063554356510.1039/C9RA09561F 35497750
    [Google Scholar]
  136. MaZ. MaL. ChenX. WangX. TanY. YangW. WangS. YanL. ZhuK. DingY. Highly efficient and stable rhenium modified nickel catalyst for hydrogenation of nitriles to primary amines.Chem. Eng. J.202346614323810.1016/j.cej.2023.143238
    [Google Scholar]
  137. MukherjeeA. SrimaniD. ChakrabortyS. Ben-DavidY. MilsteinD. Selective hydrogenation of nitriles to primary amines catalyzed by a cobalt pincer complex.J. Am. Chem. Soc.2015137288888889110.1021/jacs.5b04879 26131688
    [Google Scholar]
  138. TokmicK. JacksonB.J. SalazarA. WoodsT.J. FoutA.R. Cobalt-catalyzed and Lewis acid-assisted nitrile hydrogenation to primary amines: A combined effort.J. Am. Chem. Soc.201713938135541356110.1021/jacs.7b07368 28906106
    [Google Scholar]
  139. SharmaD.M. PunjiB. Selective synthesis of secondary amines from nitriles by a user‐friendly cobalt catalyst.Adv. Synth. Catal.2019361173930393610.1002/adsc.201900586
    [Google Scholar]
  140. EnthalerS. JungeK. AddisD. ErreG. BellerM. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles.ChemSusChem20081121006101010.1002/cssc.200800185 19034895
    [Google Scholar]
  141. AddisD. EnthalerS. JungeK. WendtB. BellerM. Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines.Tetrahedron Lett.200950263654365610.1016/j.tetlet.2009.03.108
    [Google Scholar]
  142. WerkmeisterS. BornscheinC. JungeK. BellerM. Ruthenium‐catalyzed transfer hydrogenation of nitriles: reduction and subsequent N ‐monoalkylation to secondary amines.Eur. J. Org. Chem.20132013183671367410.1002/ejoc.201300151
    [Google Scholar]
  143. LuZ. WilliamsT.J. A dual site catalyst for mild, selective nitrile reduction.Chem. Commun. 201450405391539310.1039/C3CC47384H 24409456
    [Google Scholar]
  144. NeumannJ. BornscheinC. JiaoH. JungeK. BellerM. Hydrogenation of aliphatic and aromatic nitriles using a defined ruthenium PNP pincer catalyst.Eur. J. Org. Chem.20152015275944594810.1002/ejoc.201501007
    [Google Scholar]
  145. AdamR. BheeterC.B. JackstellR. BellerM. A mild and base‐free protocol for the ruthenium‐catalyzed hydrogenation of aliphatic and aromatic nitriles with tridentate phosphine ligands.ChemCatChem2016871329133410.1002/cctc.201501367
    [Google Scholar]
  146. AlshakovaI.D. GabidullinB. NikonovG.I. Ru‐catalyzed transfer hydrogenation of nitriles, aromatics, olefins, alkynes and esters.ChemCatChem201810214860486910.1002/cctc.201801039
    [Google Scholar]
  147. DasS. ZhouS. AddisD. EnthalerS. JungeK. BellerM. Selective catalytic reductions of amides and nitriles to amines.Top. Catal.20105315-1897998410.1007/s11244‑010‑9526‑4
    [Google Scholar]
  148. ChoiJ.H. SchloererN.E. BergerJ. PrechtlM.H.G. Synthesis and characterisation of ruthenium dihydrogen complexes and their reactivity towards B–H bonds.Dalton Trans.201443129029910.1039/C3DT52037D 24104855
    [Google Scholar]
  149. ChoiJ.H. HeimL.E. AhrensM. PrechtlM.H.G. Selective conversion of alcohols in water to carboxylic acids by in situ generated ruthenium trans dihydrido carbonyl PNP complexes.Dalton Trans.20144346172481725410.1039/C4DT01634C 25019331
    [Google Scholar]
  150. MukherjeeA. SrimaniD. Ben-DavidY. MilsteinD. Low‐pressure hydrogenation of nitriles to primary amines catalyzed by ruthenium pincer complexes. Scope and mechanism.ChemCatChem20179455956310.1002/cctc.201601416
    [Google Scholar]
  151. AdamR. AlbericoE. BaumannW. DrexlerH.J. JackstellR. JungeH. BellerM. NNP‐type pincer imidazolylphosphine ruthenium complexes: efficient base‐free hydrogenation of aromatic and aliphatic nitriles under mild conditions.Chemistry201622144991500210.1002/chem.201504709 26895460
    [Google Scholar]
  152. BornscheinC. WerkmeisterS. WendtB. JiaoH. AlbericoE. BaumannW. JungeH. JungeK. BellerM. Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex.Nat. Commun.201451411110.1038/ncomms5111 24969371
    [Google Scholar]
  153. LangeS. ElangovanS. CordesC. SpannenbergA. JiaoH. JungeH. BachmannS. ScaloneM. TopfC. JungeK. BellerM. Selective catalytic hydrogenation of nitriles to primary amines using iron pincer complexes.Catal. Sci. Technol.20166134768477210.1039/C6CY00834H
    [Google Scholar]
  154. ChakrabortyS. LeitusG. MilsteinD. Selective hydrogenation of nitriles to primary amines catalyzed by a novel iron complex.Chem. Commun. 20165291812181510.1039/C5CC08204H 26667062
    [Google Scholar]
  155. ChakrabortyS. MilsteinD. Selective hydrogenation of nitriles to secondary imines catalyzed by an iron pincer complex.ACS Catal.2017763968397210.1021/acscatal.7b00906
    [Google Scholar]
  156. BagalD.B. BhanageB.M. Recent advances in transition metal‐catalyzed hydrogenation of nitriles.Adv. Synth. Catal.2015357588390010.1002/adsc.201400940
    [Google Scholar]
  157. XieX. LiottaC.L. EckertC.A. CO2-protected amine formation from nitrile and imine hydrogenation in gas-expanded liquids.Ind. Eng. Chem. Res.200443247907791110.1021/ie0498201
    [Google Scholar]
  158. Nait AjjouA. RobichaudA. Chemoselective hydrogenation of nitriles to primary amines catalyzed by water‐soluble transition metal catalysts.Appl. Organomet. Chem.2018329e448110.1002/aoc.4481
    [Google Scholar]
  159. GarduñoJ.A. GarcíaJ.J. Non-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary amines.ACS Catal.20199139240110.1021/acscatal.8b03899
    [Google Scholar]
  160. WeberS. StögerB. KirchnerK. Hydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn (I) complex.Org. Lett.201820227212721510.1021/acs.orglett.8b03132 30398883
    [Google Scholar]
  161. SarkarK. DasK. KunduA. AdhikariD. MajiB. Phosphine-free manganese catalyst enables selective transfer hydrogenation of nitriles to primary and secondary amines using ammonia–borane.ACS Catal.20211152786279410.1021/acscatal.0c05406
    [Google Scholar]
  162. CabritaI. FernandesA.C. A novel efficient and chemoselective method for the reduction of nitriles using the system silane/oxo-rhenium complexes.Tetrahedron201167428183818610.1016/j.tet.2011.08.015
    [Google Scholar]
  163. Zerecero-SilvaP. Jimenez-SolarI. CrestaniM.G. ArévaloA. Barrios-FranciscoR. GarcíaJ.J. Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds.Appl. Catal. A Gen.20093631-223023410.1016/j.apcata.2009.05.027
    [Google Scholar]
  164. GarduñoJ.A. GarcíaJ.J. Nickel-catalyzed transfer hydrogenation of benzonitriles with 2-propanol and 1, 4-butanediol as the hydrogen Source.ACS Omega2017252337234310.1021/acsomega.7b00545 31457582
    [Google Scholar]
  165. IslasR.E. GarcíaJ.J. Nickel‐catalyzed hydrophosphonylation and hydrogenation of aromatic nitriles assisted by lewis acid.ChemCatChem20191141337134510.1002/cctc.201801989
    [Google Scholar]
  166. VermaakV. VoslooH.C.M. SwartsA.J. Chemoselective transfer hydrogenation of nitriles to secondary amines with nickel(II) catalysts.Molecular Catalysis202151111173810.1016/j.mcat.2021.111738
    [Google Scholar]
  167. SantanaD.S. MeloG.O. LimaM.V.F. DanielJ.R.R. AreiasM.C.C. NavarroM. Electrocatalytic hydrogenation of organic compounds using a nickel sacrificial anode.J. Electroanal. Chem.20045691717810.1016/j.jelechem.2004.02.015
    [Google Scholar]
  168. Lopez-RuizJ.A. SanyalU. EgbertJ. GutiérrezO.Y. HolladayJ. Kinetic investigation of the sustainable electrocatalytic hydrogenation of benzaldehyde on Pd/C: Effect of electrolyte composition and half-cell potentials.ACS Sustain. Chem.& Eng.2018612160731608510.1021/acssuschemeng.8b02637
    [Google Scholar]
  169. ZhangD. ChenJ. HaoZ. JiaoL. GeQ. FuW.F. LvX.J. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage.Chem Catalysis.20211239340610.1016/j.checat.2021.03.012
    [Google Scholar]
  170. BlancoD.E. DookhithA.Z. ModestinoM.A. Controlling selectivity in the electrocatalytic hydrogenation of adiponitrile through electrolyte design.ACS Sustain. Chem.& Eng.20208249027903410.1021/acssuschemeng.0c01789
    [Google Scholar]
  171. XiaR. TianD. KattelS. HasaB. ShinH. MaX. ChenJ.G. JiaoF. Electrochemical reduction of acetonitrile to ethylamine.Nat. Commun.2021121194910.1038/s41467‑021‑22291‑0 33782400
    [Google Scholar]
  172. GautamN. LogdiR. SreejyothiP. RajendranN.M. TiwariA.K. MandalS.K. Bicyclic (alkyl)(amino)carbene (BICAAC) as a metal-free catalyst for reduction of nitriles to amines.Chem. Commun. (Camb.)202258183047305010.1039/D1CC06962D 35156960
    [Google Scholar]
  173. ClarkeJ.A. van der EstA. NikonovG.I. Base‐catalyzed hydrosilylation of nitriles to amines and esters to alcohols.Eur. J. Org. Chem.20212021314434443910.1002/ejoc.202100834
    [Google Scholar]
  174. CrainD. ArmstrongS. BruntonJ. RobbenT. SchmidtS.E. In situ generation of borane for the reduction of nitriles to primary amines.Trans. Kans. Acad. Sci.20131153-413914410.1660/062.115.0307
    [Google Scholar]
  175. JuhászK. LévayK. HegedűsL. Balogh-WeiserD. Pirault-RoyL. HellZ. Application of supported lanthanum catalysts in the hydrogenation of nitriles.React. Kinet. Mech. Catal.2021133268769810.1007/s11144‑021‑02028‑2
    [Google Scholar]
  176. LiuL. LiuY. AiY. LiJ. ZhouJ. FanZ. BaoH. JiangR. HuZ. WangJ. JingK. WangY. LiangQ. SunH. Pd-CuFe catalyst for transfer hydrogenation of nitriles: controllable selectivity to primary amines and secondary amines.iScience20188617310.1016/j.isci.2018.09.010 30286395
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073284975240324091848
Loading
/content/journals/cchts/10.2174/0113862073284975240324091848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test