Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Brain-related disorders include neuroinflammation, neurodegenerative disorders, and demyelination, which ultimately affect the quality of life of patients. Currently, brain-related disorders represent the most challenging health problem worldwide due to complex pathogenesis and limited availability of drugs for their management. Further, the available pharmacotherapy accompanies serious side effects, therefore, much attention has been directed toward the development of alternative therapy derived from natural sources to treat such disorders. Recently, flavonoids, natural phytochemicals, have been reported as a treatment option for preventing brain aging and disorders related to this. Among these flavonoids, dietary luteolin, a flavone, is found in many plant products such as broccoli, chamomile tea, and honeysuckle bloom having several pharmacological properties including neuroprotective activities. Therefore, the objective of this paper is to compile the available literature regarding the neuroprotective potential of luteolin and its mechanism of action. Luteolin exerts notable anti-inflammatory, antioxidant, and anti-apoptotic activity suggesting its therapeutic efficacy in different neurological disorders. Numerous and experiments have revealed that luteolin exhibits neuroprotective potential up-regulating the ER/ERK, PI3AKT, Nrf2 pathways and down-regulating the MAPK/JAK2STAT and NFκB pathways. Taking into account of available facts regarding the neuroprotective efficacy of luteolin, the current study highlights the beneficial effects of luteolin for the prevention, management, and treatment of different neurological disorders. Thus, luteolin can be considered an alternative for the development of new pharmacophores against various brain-related disorders.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073303342240409060918
2024-04-24
2025-04-02
Loading full text...

Full text loading...

References

  1. ZahiruddinS. BasistP. ParveenA. ParveenR. KhanW. Gaurav; Ahmad, S. Ashwagandha in brain disorders: A review of recent developments.J. Ethnopharmacol.202025711287610.1016/j.jep.2020.112876 32305638
    [Google Scholar]
  2. HarroJ. Neuropsychiatric Adverse Effects of Amphetamine and Methamphetamine.Int. Rev. Neurobiol.201512017920410.1016/bs.irn.2015.02.004 26070758
    [Google Scholar]
  3. KouY. ZhaoH. CuiD. HanH. TongZ. Formaldehyde toxicity in age-related neurological dementia.Ageing Res. Rev.20227310151210.1016/j.arr.2021.101512 34798299
    [Google Scholar]
  4. BalkrishnaA. MisraL. Chemo-botanical and neurological accounts of some ayurvedic plants useful in mental health.Nat. Prod. J.201881143110.2174/2210315507666170616082903
    [Google Scholar]
  5. SarrisJ. RavindranA. YathamL.N. MarxW. RucklidgeJ.J. McIntyreR.S. AkhondzadehS. BenedettiF. CaneoC. CramerH. CribbL. de ManincorM. DeanO. DeslandesA.C. FreemanM.P. GangadharB. HarveyB.H. KasperS. LakeJ. LoprestiA. LuL. MetriN.J. MischoulonD. NgC.H. NishiD. RahimiR. SeedatS. SinclairJ. SuK.P. ZhangZ.J. BerkM. Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT).Taskforce. World J. Biol. Psychiatry202223642445510.1080/15622975.2021.2013041 35311615
    [Google Scholar]
  6. DailyJ.W. KangS. ParkS. Protection against Alzheimer’s disease by luteolin: Role of brain glucose regulation, anti‐inflammatory activity, and the gut microbiota‐liver‐brain axis.Biofactors202147221823110.1002/biof.1703 33347668
    [Google Scholar]
  7. KempurajD. ThangavelR. KempurajD.D. AhmedM.E. SelvakumarG.P. RaikwarS.P. ZaheerS.A. IyerS.S. GovindarajanR. ChandrasekaranP.N. ZaheerA. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma.Biofactors202147219019710.1002/biof.1687 33098588
    [Google Scholar]
  8. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050 18991571
    [Google Scholar]
  9. ShaikY. CaraffaA. RonconiG. LessianiG. ContiP. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin.Cent. Eur. J. Immunol.201843447648110.5114/ceji.2018.81347 30799996
    [Google Scholar]
  10. NabaviS.F. BraidyN. GortziO. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res. Bull.201511911110.1016/j.brainresbull.2015.09.002
    [Google Scholar]
  11. TheoharidesT.C. StewartJ.M. HatziagelakiE. KolaitisG. Brain “fog,” inflammation and obesity: Key aspects of neuropsychiatric disorders improved by luteolin.Front. Neurosci.2015922510.3389/fnins.2015.00225 26190965
    [Google Scholar]
  12. TuorkeyM.J. Molecular targets of luteolin in cancer.Eur. J. Cancer Prev.2016251657610.1097/CEJ.0000000000000128 25714651
    [Google Scholar]
  13. LuoY. ShangP. LiD. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms.Front. Pharmacol.2017869210.3389/fphar.2017.00692 29056912
    [Google Scholar]
  14. Alekhya SitaG.J. GowthamiM. SrikanthG. KrishnaM.M. Rama SireeshaK. SajjaraoM. NagarjunaK. NagarjunaM. ChinnaboinaG.K. MishraA. SreeHarsha, N. Protective role of luteolin against bisphenol A‐induced renal toxicity through suppressing oxidative stress, inflammation, and upregulating Nrf2/ARE/HO‐1 pathway.IUBMB Life20197171041104710.1002/iub.2066 31091348
    [Google Scholar]
  15. ZimaV. RadilováK. KožíšekM. AlbiñanaC.B. KarlukovaE. BryndaJ. FanfrlíkJ. FliegerM. HodekJ. WeberJ. MajerP. KonvalinkaJ. MacharaA. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.Eur. J. Med. Chem.202020811275410.1016/j.ejmech.2020.112754 32883638
    [Google Scholar]
  16. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/138955709787001712 19149659
    [Google Scholar]
  17. HussainM.S. GuptaG. GoyalA. ThapaR. almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Fuloria, S.; Meenakshi, D.U.; Jakhmola, V.; Pandey, M.; Singh, S.K.; Dua, K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.23482 37530602
    [Google Scholar]
  18. JinU.H. ParkH. LiX. DavidsonL.A. AllredC. PatilB. JayaprakashaG. OrrA.A. MaoL. ChapkinR.S. JayaramanA. TamamisP. SafeS. Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids.Toxicol. Sci.2018164120521710.1093/toxsci/kfy075 29584932
    [Google Scholar]
  19. AliF. SiddiqueY.H. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming alzheimer’s disease.CNS Neurol. Disord. Drug Targets201918535236510.2174/1871527318666190319141835 30892166
    [Google Scholar]
  20. JuszczakA.M. Zovko-KončićM. TomczykM. Recent trends in the application of chromatographic techniques in the analysis of luteolin and its deriVATIVES.Biomolecules201991173110.3390/biom9110731 31726801
    [Google Scholar]
  21. CassidyA. MinihaneA.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids.Am. J. Clin. Nutr.20171051102210.3945/ajcn.116.136051 27881391
    [Google Scholar]
  22. EspínJ.C. González-SarríasA. Tomás-BarberánF.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols.Biochem. Pharmacol.2017139829310.1016/j.bcp.2017.04.033 28483461
    [Google Scholar]
  23. YasudaM.T. FujitaK. HosoyaT. ImaiS. ShimoiK. Absorption and metabolism of luteolin and its glycosides from the extract of Chrysanthemum morifolium flowers in rats and Caco-2 cells.J. Agric. Food Chem.201563357693769910.1021/acs.jafc.5b00232 25843231
    [Google Scholar]
  24. KureA. NakagawaK. KondoM. KatoS. KimuraF. WatanabeA. ShojiN. HatanakaS. TsushidaT. MiyazawaT. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect.J. Agric. Food Chem.201664214246425410.1021/acs.jafc.6b00964 27170112
    [Google Scholar]
  25. LiL.P. WuX.D. ChenZ.J. SunS.Y. YeJ.F. ZengS. JiangH.D. Interspecies difference of luteolin and apigenin after oral administration of chrysanthemum morifolium extract and prediction of human pharmacokinetics.Pharmazie20136831952002355633810.1691/ph.2013.2744
    [Google Scholar]
  26. ChenT. LiL.P. LuX.Y. JiangH.D. ZengS. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract.J. Agric. Food Chem.200755227327710.1021/jf062088r 17227053
    [Google Scholar]
  27. WilsherN.E. ArrooR.R. MatsoukasM.T. TsatsakisA.M. SpandidosD.A. AndroutsopoulosV.P. Cytochrome P450 CYP1 metabolism of hydroxylated flavones and flavonols: Selective bioactivation of luteolin in breast cancer cells.Food Chem. Toxicol.201711038339410.1016/j.fct.2017.10.051 29097115
    [Google Scholar]
  28. TaliouA. ZintzarasE. LykourasL. FrancisK. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders.Clin. Ther.201335559260210.1016/j.clinthera.2013.04.006 23688534
    [Google Scholar]
  29. NordeenS.K. BonaB.J. JonesD.N. LambertJ.R. JacksonT.A. Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin.Horm. Cancer20134529330010.1007/s12672‑013‑0150‑1 23836117
    [Google Scholar]
  30. LuD. YangL. WangF. ZhangG. Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19).J. Agric. Food Chem.201260348411841810.1021/jf3022817 22838964
    [Google Scholar]
  31. GaoH.L. YuX.J. FengY.Q. YangY. HuH.B. ZhaoY.Y. ZhangJ.H. LiuK.L. ZhangY. FuL.Y. LiY. QiJ. QiaoJ.A. KangY.M. Luteolin attenuates hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the hypothalamic paraventricular nucleus.Nutrients202315350210.3390/nu15030502 36771206
    [Google Scholar]
  32. JangC.H. MoonN. OhJ. KimJ.S. Adverse effect of luteolin on the anticancer ability of oxaliplatin in HCT116 human colorectal carcinoma cells.FASEB J.201933S1lb60210.1096/fasebj.2019.33.1_supplement.lb602
    [Google Scholar]
  33. ZhaoG. Yao-YueC. QinG.W. GuoL.H. Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons.Neurobiol. Aging201233117618610.1016/j.neurobiolaging.2010.02.013 20382451
    [Google Scholar]
  34. StuckeyS.M. OngL.K. Collins-PrainoL.E. TurnerR.J. Neuroinflammation as a key driver of secondary neurodegeneration following stroke?Int. J. Mol. Sci.202122231310110.3390/ijms222313101 34884906
    [Google Scholar]
  35. Kumar SinghN. BhushanB. Preclinical evidence-based neuroprotective potential of silibinin.Curr. Drug Res. Rev.2023141435610.2174/2589977515666230327154800 36974407
    [Google Scholar]
  36. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  37. LiuR. MengF. ZhangL. LiuA. QinH. LanX. LiL. DuG. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells.Molecules20111632084209610.3390/molecules16032084 21368720
    [Google Scholar]
  38. ArthurJ.S.C. LeyS.C. Mitogen-activated protein kinases in innate immunity.Nat. Rev. Immunol.201313967969210.1038/nri3495 23954936
    [Google Scholar]
  39. KhanA. IkramM. MuhammadT. ParkJ. KimM.O. Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro.J. Clin. Med.20198568010.3390/jcm8050680 31091792
    [Google Scholar]
  40. BurtonM.D. RytychJ.L. AminR. JohnsonR.W. Dietary luteolin reduces proinflammatory microglia in the brain of senescent mice.Rejuvenation Res.201619428629210.1089/rej.2015.1708 26918466
    [Google Scholar]
  41. BatyR.S. HassanK.E. AlsharifK.F. El-HennamyR.E. ElmahallawyE.K. HafezM.M. MoneimA.E.A. KassabR.B. Neuroprotective role of luteolin against lead acetate-induced cortical damage in rats.Hum. Exp. Toxicol.20203991200121210.1177/0960327120913094 32208856
    [Google Scholar]
  42. LiL. ZhouR. LvH. SongL. XueX. WuL. Inhibitive effect of luteolin on sevoflurane-induced neurotoxicity through activation of the autophagy pathway by HMOX1.ACS Chem. Neurosci.202112183314332210.1021/acschemneuro.1c00157 34445868
    [Google Scholar]
  43. ZhangZ.H. LiuJ.Q. HuC.D. ZhaoX.T. QinF.Y. ZhuangZ. ZhangX.S. Luteolin confers cerebroprotection after subarachnoid hemorrhage by suppression of NLPR3 inflammasome activation through Nrf2-dependent pathway.Oxid. Med. Cell. Longev.2021202111810.1155/2021/5838101 34777689
    [Google Scholar]
  44. YangY. TanX. XuJ. WangT. LiangT. XuX. MaC. XuZ. WangW. LiH. ShenH. LiX. DongW. ChenG. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage.Biomed. Pharmacother.202012611004410.1016/j.biopha.2020.110044 32114357
    [Google Scholar]
  45. GalvaniG. MottoleseN. GennaccaroL. LoiM. MediciG. TassinariM. FuchsC. CianiE. TrazziS. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder.J. Neuroinflammation202118115510.1186/s12974‑021‑02204‑0 34238328
    [Google Scholar]
  46. ZhuL. BiW. LuD. ZhangC. ShuX. LuD. Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells.Exp. Ther. Med.2014751065107010.3892/etm.2014.1564 24940388
    [Google Scholar]
  47. YaoZ.H. YaoX. ZhangY. ZhangS. HuJ. Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation.Neurochem. Res.201843480682010.1007/s11064‑018‑2482‑2 29392519
    [Google Scholar]
  48. LiuY. FuX. LanN. LiS. ZhangJ. WangS. LiC. ShangY. HuangT. ZhangL. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice.Behav. Brain Res.201426717818810.1016/j.bbr.2014.02.040 24667364
    [Google Scholar]
  49. AnnabiB. TahanianE. SanchezL.A. ShiaoT.C. RoyR. Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells.Drug Des. Devel. Ther.2011529930910.2147/DDDT.S19931 21625419
    [Google Scholar]
  50. JangS. KelleyK.W. JohnsonR.W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1.Proc. Natl. Acad. Sci. USA2008105217534753910.1073/pnas.0802865105 18490655
    [Google Scholar]
  51. ZhuL.H. BiW. QiR.B. WangH.D. WangZ.G. ZengQ. ZhaoY.R. LuD.X. Luteolin reduces primary hippocampal neurons death induced by neuroinflammation.Neurol. Res.201133992793410.1179/1743132811Y.0000000023 22080993
    [Google Scholar]
  52. KwonY. Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease.Exp. Gerontol.201795394310.1016/j.exger.2017.05.014 28528007
    [Google Scholar]
  53. CheD.N. ChoB.O. KimJ. ShinJ.Y. KangH.J. JangS.I. Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways.Inflammation20204351716172810.1007/s10753‑020‑01245‑6 32462548
    [Google Scholar]
  54. ZhuZ. YanJ. JiangW. YaoX. ChenJ. ChenL. LiC. HuL. JiangH. ShenX. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance.J. Neurosci.20133332131381314910.1523/JNEUROSCI.4790‑12.2013 23926267
    [Google Scholar]
  55. GoyalA. VermaA. DubeyN. RaghavJ. AgrawalA. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease.J. Food Biochem.20224612e1441510.1111/jfbc.14415 36106706
    [Google Scholar]
  56. YuT.X. ZhangP. GuanY. WangM. ZhenM.Q. Protective effects of luteolin against cognitive impairment induced by infusion of Aβ peptide in rats.Int. J. Clin. Exp. Pathol.20158667406747 26261557
    [Google Scholar]
  57. ZhangJ.X. XingJ.G. WangL.L. JiangH.L. GuoS.L. LiuR. Luteolin inhibits fibrillary β-Amyloid1–40-Induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-κB signaling pathways.Molecules201722333410.3390/molecules22030334 28245546
    [Google Scholar]
  58. SinghS. AgrawalN. GoyalA. Role of alpha-7-nicotinic acetylcholine receptor in alzheimer’s disease.CNS Neurol. Disord. Drug Targets202323338439410.2174/1871527322666230627123426 37366362
    [Google Scholar]
  59. ZhaoF. XuY. GaoS. QinL. AustriaQ. SiedlakS.L. PajdzikK. DaiQ. HeC. WangW. O’DonnellJ.M. TangB. ZhuX. METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events.Mol. Neurodegener.20211617010.1186/s13024‑021‑00484‑x 34593014
    [Google Scholar]
  60. ElnaggarY.S.R. ElsheikhM.A. AbdallahO.Y. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: In vitro appraisal and pharmacodynamics.Nanomedicine (Lond.)201813220923210.2217/nnm‑2017‑0220 29199881
    [Google Scholar]
  61. ZhangN. ZhangF. XuS. YunK. WuW. PanW. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability.J. Drug Deliv. Sci. Technol.20205810178310.1016/j.jddst.2020.101783
    [Google Scholar]
  62. FuX. ZhangJ. GuoL. XuY. SunL. WangS. FengY. GouL. ZhangL. LiuY. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats.Pharmacol. Biochem. Behav.201412612213010.1016/j.pbb.2014.09.005 25220684
    [Google Scholar]
  63. PinhoB.R. FerreresF. ValentãoP. AndradeP.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment.J. Pharm. Pharmacol.201365121681170010.1111/jphp.12081 24236980
    [Google Scholar]
  64. AliF. Rahul; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease.Neurosci. Lett.2019692909910.1016/j.neulet.2018.10.053 30420334
    [Google Scholar]
  65. FiruziO. MoosaviF. HosseiniR. SasoL. Modulation of neurotrophic signaling pathways by polyphenols.Drug Des. Devel. Ther.201510234210.2147/DDDT.S96936 26730179
    [Google Scholar]
  66. ZhaoS. ZhangL. YangC. LiZ. RongS. Procyanidins and Alzheimer’s Disease.Mol. Neurobiol.20195685556556710.1007/s12035‑019‑1469‑6 30649713
    [Google Scholar]
  67. ElsheikhM.A. El-FekyY.A. Al-SawahliM.M. AliM.E. FayezA.M. AbbasH. A Brain-targeted approach to ameliorate memory disorders in a sporadic alzheimer’s disease mouse model via intranasal luteolin-loaded nanobilosomes.Pharmaceutics202214357610.3390/pharmaceutics14030576 35335952
    [Google Scholar]
  68. WangH.R. PeiS.Y. FanD.X. LiuY.H. PanX.F. SongF.X. DengS.H. QiuH.B. ZhangN. Luteolin Protects Pheochromocytoma (PC-12) Cells against Aβ25-35-Induced Cell Apoptosis through the ER/ERK/MAPK Signalling Pathway.Evid. Based Complem. Alternat. Med.202020201810.1155/2020/2861978 33335556
    [Google Scholar]
  69. ZhengN. YuanP. LiC. WuJ. HuangJ. Luteolin Reduces BACE1 Expression through NF-κB and Estrogen Receptor Mediated Pathways in HEK293 and SH-SY5Y Cells.J. Alzheimers Dis.201545265967110.3233/JAD‑142517 25589732
    [Google Scholar]
  70. ZhouF. ChenS. XiongJ. LiY. QuL. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells.Biol. Trace Elem. Res.2012149227327910.1007/s12011‑012‑9411‑z 22528780
    [Google Scholar]
  71. XuB. LiX.X. HeG.R. HuJ.J. MuX. TianS. DuG.H. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats.Eur. J. Pharmacol.20106271-39910510.1016/j.ejphar.2009.10.038 19857483
    [Google Scholar]
  72. LiuF. XuK. XuZ. de las RivasM. WangC. LiX. LuJ. ZhouY. DelsoI. MerinoP. Hurtado-GuerreroR. ZhangY. WuF. The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein.J. Biol. Chem.201729252213042131910.1074/jbc.M117.814202 29061849
    [Google Scholar]
  73. FacchinettiR. ValenzaM. GomieroC. ManciniG.F. SteardoL. CampolongoP. ScuderiC. Co-ultramicronized palmitoylethanolamide/luteolin restores oligodendrocyte homeostasis via peroxisome proliferator-activated receptor-α in an in vitro model of alzheimer’s disease.Biomedicines2022106123610.3390/biomedicines10061236 35740258
    [Google Scholar]
  74. XuL. PuJ. Alpha-synuclein in parkinson’s disease: From pathogenetic dysfunction to potential clinical application.Parkinsons Dis.2016201611010.1155/2016/1720621 27610264
    [Google Scholar]
  75. GoyalA. VermaA. AgrawalA. DubeyN. KumarA. BehlT. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research.Chem. Biol. Drug Des.202310161229124010.1111/cbdd.14210 36752710
    [Google Scholar]
  76. KaliaL.V. KaliaS.K. LangA.E. Disease‐modifying strategies for Parkinson’s disease.Mov. Disord.201530111442145010.1002/mds.26354 26208210
    [Google Scholar]
  77. Fernández-MorianoC. González-BurgosE. Gómez-SerranillosM.P. Mitochondria-Targeted Protective Compounds in Parkinson’s and Alzheimer’s Diseases.Oxid. Med. Cell. Longev.2015201513010.1155/2015/408927 26064418
    [Google Scholar]
  78. ChangH. LiC. HuoK. WangQ. LuL. ZhangQ. WangY. WangW. Luteolin prevents H 2 O 2 -induced apoptosis in H9C2 cells through modulating Akt-P53/Mdm2 signaling pathway.BioMed Res. Int.201620161910.1155/2016/5125836 27525270
    [Google Scholar]
  79. YuB. ZhouW-B. MiaoZ-N. ZhangB. LongW. ZhengF-X. KongJ. Luteolin induces hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome.Neural Regen. Res.201914461362010.4103/1673‑5374.248519 30632501
    [Google Scholar]
  80. ReudhabibadhR. BinlatehT. ChonpathompikunlertP. NonpanyaN. PrommeenateP. ChanvorachoteP. HutamekalinP. Suppressing Cdk5 activity by Luteolin Inhibits MPP+-induced apoptotic of neuroblastoma through Erk/Drp1 and Fak/Akt/GSK3β pathways.Molecules2021265130710.3390/molecules26051307 33671094
    [Google Scholar]
  81. QinL. ChenZ. YangL. ShiH. WuH. ZhangB. ZhangW. XuQ. HuangF. WuX. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice.Toxicology201942615225610.1016/j.tox.2019.152256 31381935
    [Google Scholar]
  82. ElmazogluZ. Yar SaglamA.S. SonmezC. KarasuC. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways.Drug Chem. Toxicol.20204319610310.1080/01480545.2018.1504961 30207190
    [Google Scholar]
  83. WuY. JiangX. YangK. XiaY. ChengS. TangQ. BaiL. QiuJ. ChenC. Inhibition of α-Synuclein contributes to the ameliorative effects of dietary flavonoids luteolin on arsenite-induced apoptotic cell death in the dopaminergic PC12 cells.Toxicol. Mech. Methods201727859860810.1080/15376516.2017.1339155 28583009
    [Google Scholar]
  84. HuL.W. YenJ.H. ShenY.T. WuK.Y. WuM.J. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells.PLoS One201495e9788010.1371/journal.pone.0097880 24846311
    [Google Scholar]
  85. GuoD.J. LiF. YuP.H.F. ChanS.W. Neuroprotective effects of luteolin against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma PC12 cells.Pharm. Biol.201351219019610.3109/13880209.2012.716852 23035972
    [Google Scholar]
  86. ChenH.Q. JinZ.Y. WangX.J. XuX.M. DengL. ZhaoJ.W. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation.Neurosci. Lett.2008448217517910.1016/j.neulet.2008.10.046 18952146
    [Google Scholar]
  87. SiracusaR. PaternitiI. ImpellizzeriD. CordaroM. CrupiR. NavarraM. CuzzocreaS. EspositoE. The Association of Palmitoylethanolamide with Luteolin Decreases Neuroinflammation and Stimulates Autophagy in Parkinson’s Disease Model.CNS Neurol. Disord. Drug Targets201514101350136610.2174/1871527314666150821102823 26295827
    [Google Scholar]
  88. ReynoldsM. CulicanS.M. Visual Autism.Children (Basel)202310460610.3390/children10040606 37189855
    [Google Scholar]
  89. CasseusM. KimW.J. HortonD.B. Prevalence and treatment of mental, behavioral, and developmental disorders in children with co‐occurring autism spectrum disorder and attention‐deficit/hyperactivity disorder: A population‐based study.Autism Res.202316485586710.1002/aur.2894 36644987
    [Google Scholar]
  90. Deavenport-SamanA. VanderbiltD.L. HarstadE. ShultsJ. BarbaresiW. BaxA. CaciaJ. FriedmanS. LaRosaA. LoeI. MittalS. BlumN. Association of coexisting conditions, attention-deficit/hyperactivity disorder medication choice, and likelihood of improvement in preschool-age children: A developmental behavioral pediatrics research network study.J. Child Adolesc. Psychopharmacol.202232632833610.1089/cap.2022.0009 35787014
    [Google Scholar]
  91. TsilioniI. TaliouA. FrancisK. TheoharidesT.C. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6.Transl. Psychiatry201559e64710.1038/tp.2015.142 26418275
    [Google Scholar]
  92. BertolinoB. CrupiR. ImpellizzeriD. BruschettaG. CordaroM. SiracusaR. EspositoE. CuzzocreaS. Beneficial effects of co‐ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism.CNS Neurosci. Ther.2017231879810.1111/cns.12648 27701827
    [Google Scholar]
  93. AsadiS. TheoharidesT.C. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin.J. Neuroinflammation20129157110.1186/1742‑2094‑9‑85 22559745
    [Google Scholar]
  94. Parker-AthillE. LuoD. BaileyA. GiuntaB. TianJ. ShytleR.D. MurphyT. LegradiG. TanJ. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism.J. Neuroimmunol.20092171-2202710.1016/j.jneuroim.2009.08.012 19766327
    [Google Scholar]
  95. JangS.W. LiuX. YepesM. ShepherdK.R. MillerG.W. LiuY. WilsonW.D. XiaoG. BlanchiB. SunY.E. YeK. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone.Proc. Natl. Acad. Sci. USA201010762687269210.1073/pnas.0913572107 20133810
    [Google Scholar]
  96. JohnsonR.A. LamM. PunzoA.M. LiH. LinB.R. YeK. MitchellG.S. ChangQ. 7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome.J. Appl. Physiol.2012112570471010.1152/japplphysiol.01361.2011 22194327
    [Google Scholar]
  97. SzokD. TajtiJ. NyáriA. VécseiL. TrojanoL. Therapeutic approaches for peripheral and central neuropathic pain.Behav. Neurol.2019201911310.1155/2019/8685954 31871494
    [Google Scholar]
  98. BannisterK. SachauJ. BaronR. DickensonA.H. Neuropathic pain: Mechanism-based therapeutics.Annu. Rev. Pharmacol. Toxicol.202060125727410.1146/annurev‑pharmtox‑010818‑021524 31914896
    [Google Scholar]
  99. CavalliE. MammanaS. NicolettiF. BramantiP. MazzonE. The neuropathic pain: An overview of the current treatment and future therapeutic approaches.Int. J. Immunopathol. Pharmacol.20193310.1177/2058738419838383 30900486
    [Google Scholar]
  100. HaraK. HaranishiY. TeradaT. TakahashiY. NakamuraM. SataT. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model.Pharmacol. Biochem. Behav.2014125788410.1016/j.pbb.2014.08.011 25196931
    [Google Scholar]
  101. NegiG. KumarA. JoshiR.P. SharmaS.S. Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: Old perspective with a new angle.Biochem. Biophys. Res. Commun.201140811510.1016/j.bbrc.2011.03.087 21439933
    [Google Scholar]
  102. HosseiniA. AbdollahiM. Diabetic neuropathy and oxidative stress: Therapeutic perspectives.Oxid. Med. Cell. Longev.2013201311510.1155/2013/168039 23738033
    [Google Scholar]
  103. LiM. LiQ. ZhaoQ. ZhangJ. LinJ. Luteolin improves the impaired nerve functions in diabetic neuropathy: Behavioral and biochemical evidences.Int. J. Clin. Exp. Pathol.2015891011210120 26617718
    [Google Scholar]
  104. ParkC.M. SongY.S. Luteolin and luteolin-7- O -glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells.Nutr. Res. Pract.20137642342910.4162/nrp.2013.7.6.423 24353826
    [Google Scholar]
  105. HashemzaeiM. AbdollahzadehM. IranshahiM. GolmakaniE. RezaeeR. TabrizianK. Effects of luteolin and luteolin-morphine co-administration on acute and chronic pain and sciatic nerve ligated-induced neuropathy in mice.J. Complement. Integr. Med.20171412016006610.1515/jcim‑2016‑0066 28282295
    [Google Scholar]
  106. NegahS.S. HajinejadM. NematiS. RoudbaryS.M.J.M. ForouzanfarF. Stem cell therapy combined with luteolin alleviates experimental neuropathy.Metab. Brain Dis.20233861895190310.1007/s11011‑023‑01206‑6 37014525
    [Google Scholar]
  107. ZhongZ. HanJ. ZhangJ.Z. XiaoQ. ChenJ. ZhangK. HuJ. ChenL. Neuroprotective effects of salidroside on cerebral ischemia/reperfusion-induced behavioral impairment involves the dopaminergic system.Front. Pharmacol.201910143310.3389/fphar.2019.01433 31920641
    [Google Scholar]
  108. CaiY. YangE. YaoX. ZhangX. WangQ. WangY. LiuJ. FanW. YiK. KangC. WuJ. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury.Redox Biol.20213810179210.1016/j.redox.2020.101792 33212415
    [Google Scholar]
  109. HongX. JianY. DingS. ZhouJ. ZhengX. ZhangH. ZhouB. ZhuangC. WanJ. TongX. Kir4.1 channel activation in NG2 glia contributes to remyelination in ischemic stroke.EBioMedicine20238710440610.1016/j.ebiom.2022.104406 36527899
    [Google Scholar]
  110. LiL. PanG. FanR. LiD. GuoL. MaL. LiangH. QiuJ. Luteolin alleviates inflammation and autophagy of hippocampus induced by cerebral ischemia/reperfusion by activating PPAR gamma in rats.BMC Complement. Med. Ther.202222117610.1186/s12906‑022‑03652‑8 35778706
    [Google Scholar]
  111. LiuS. SuY. SunB. HaoR. PanS. GaoX. DongX. IsmailA.M. HanB. Luteolin protects against CIRI, potentially via regulation of the SIRT3/AMPK/mTOR signaling pathway.Neurochem. Res.202045102499251510.1007/s11064‑020‑03108‑w 32809175
    [Google Scholar]
  112. LuoS. LiH. MoZ. LeiJ. ZhuL. HuangY. FuR. LiC. HuangY. LiuK. ChenW. ZhangL. Connectivity map identifies luteolin as a treatment option of ischemic stroke by inhibiting MMP9 and activation of the PI3K/Akt signaling pathway.Exp. Mol. Med.201951311110.1038/s12276‑019‑0229‑z 30911000
    [Google Scholar]
  113. TanL. LiangC. WangY. JiangY. ZengS. TanR. Pharmacodynamic effect of luteolin micelles on alleviating cerebral ischemia reperfusion injury.Pharmaceutics201810424810.3390/pharmaceutics10040248 30501051
    [Google Scholar]
  114. CaltagironeC. CisariC. SchievanoC. Di PaolaR. CordaroM. BruschettaG. EspositoE. CuzzocreaS. Co-ultramicronized Palmitoylethanolamide/Luteolin in the Treatment of Cerebral Ischemia: From Rodent to Man.Transl. Stroke Res.201671546910.1007/s12975‑015‑0440‑8 26706245
    [Google Scholar]
  115. QiaoH. ZhangX. ZhuC. DongL. WangL. ZhangX. XingY. WangC. JiY. CaoX. Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia.Brain Res.20121448718110.1016/j.brainres.2012.02.003 22377454
    [Google Scholar]
  116. QiaoH. DongL. ZhangX. ZhuC. ZhangX. WangL. LiuZ. ChenL. XingY. WangC. LiY. Protective effect of luteolin in experimental ischemic stroke: Upregulated SOD1, CAT, Bcl-2 and claudin-5, down-regulated MDA and Bax expression.Neurochem. Res.20123792014202410.1007/s11064‑012‑0822‑1 22696246
    [Google Scholar]
  117. ZhaoG. ZangS.Y. JiangZ.H. ChenY.Y. JiX.H. LuB.F. WuJ.H. QinG.W. GuoL.H. Postischemic administration of liposome-encapsulated luteolin prevents against ischemia-reperfusion injury in a rat middle cerebral artery occlusion model.J. Nutr. Biochem.2011221092993610.1016/j.jnutbio.2010.07.014 21190830
    [Google Scholar]
  118. ZhangS. QiY. XuY. HanX. PengJ. LiuK. SunC.K. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia–reperfusion injury through suppression of apoptosis and inflammation.Neurochem. Int.201363552253210.1016/j.neuint.2013.08.008 24012531
    [Google Scholar]
  119. ZhangY.C. GanF.F. ShelarS.B. NgK.Y. ChewE.H. Antioxidant and Nrf2 inducing activities of luteolin, a flavonoid constituent in Ixeris sonchifolia Hance, provide neuroprotective effects against ischemia-induced cellular injury.Food Chem. Toxicol.20135927228010.1016/j.fct.2013.05.058 23770353
    [Google Scholar]
  120. ParrellaE. PorriniV. IorioR. PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia.Brain Res.2016164840941710.1016/j.brainres.2016.07.014
    [Google Scholar]
  121. GhoshR. TabriziS.J. Clinical features of huntington’s disease.Adv. Exp. Med. Biol.2018104912810.1007/978‑3‑319‑71779‑1_1 29427096
    [Google Scholar]
  122. ChongthamA. YooJ.H. ChinT.M. AkingbesoteN.D. HudaA. MarshJ.L. KhoshnanA. Gut bacteria regulate the pathogenesis of Huntington’s Disease in Drosophila Model.Front. Neurosci.20221690220510.3389/fnins.2022.902205 35757549
    [Google Scholar]
  123. ChoiS.M. KimB.C. ChoY.H. ChoiK.H. ChangJ. ParkM.S. KimM.K. ChoK.H. KimJ.K. Effects of flavonoid compounds on β-amyloid-peptide-induced Neuronal death in cultured mouse cortical neurons.Chonnam Med. J.2014502455110.4068/cmj.2014.50.2.45 25229015
    [Google Scholar]
  124. OliveiraA.M. CardosoS.M. RibeiroM. SeixasR.S.G.R. SilvaA.M.S. RegoA.C. Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington’s disease mouse striatal cells.Neurochem. Int.20159111210.1016/j.neuint.2015.10.004 26476055
    [Google Scholar]
  125. FisherR.S. AcevedoC. ArzimanoglouA. BogaczA. CrossJ.H. ElgerC.E. EngelJ.Jr ForsgrenL. FrenchJ.A. GlynnM. HesdorfferD.C. LeeB.I. MathernG.W. MoshéS.L. PeruccaE. SchefferI.E. TomsonT. WatanabeM. WiebeS. ILAE Official Report: A practical clinical definition of epilepsy.Epilepsia201455447548210.1111/epi.12550 24730690
    [Google Scholar]
  126. WittJ.A. ElgerC.E. HelmstaedterC. Which drug-induced side effects would be tolerated in the prospect of seizure control?Epilepsy Behav.201329114114310.1016/j.yebeh.2013.07.013 23969201
    [Google Scholar]
  127. DevinskyO. VezzaniA. O’BrienT.J. JetteN. SchefferI.E. de CurtisM. PeruccaP. Epilepsy.Nat. Rev. Dis. Primers2018411802410.1038/nrdp.2018.24 29722352
    [Google Scholar]
  128. ShaikhM.F. TanK.N. BorgesK. Anticonvulsant screening of luteolin in four mouse seizure models.Neurosci. Lett.201355019519910.1016/j.neulet.2013.06.065 23851253
    [Google Scholar]
  129. ZhenJ.L. ChangY.N. QuZ.Z. FuT. LiuJ.Q. WangW.P. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling.Epilepsy Behav.20165717718410.1016/j.yebeh.2016.02.001
    [Google Scholar]
  130. TambeR. PatilA. JainP. SanchetiJ. SomaniG. SathayeS. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy.Pharm. Biol.201755126426810.1080/13880209.2016.1260597 27927066
    [Google Scholar]
  131. Smilin Bell AseervathamG. AbbiramiE. SivasudhaT. RuckmaniK. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit and oxidative stress in pilocarpine-induced epileptic mice.Metab. Brain Dis.202035115917310.1007/s11011‑019‑00501‑5 31728889
    [Google Scholar]
  132. GarbinatoC. Lima-RezendeC.A. SchneiderS.E. PedrosoJ. dos SantosA.E. PetryF. AguiarG.P.S. MüllerL.G. LanzaM. PiatoA. Vladimir OliveiraJ. SiebelA.M. Investigation on the Anticonvulsant potential of luteolin and micronized luteolin in adult zebrafish (Danio rerio).Neurochem. Res.202146113025303410.1007/s11064‑021‑03409‑8 34309774
    [Google Scholar]
  133. XuS. ZhuK. BiC. ChoiR. MiernishaA. YanA. MaiwulanjiangM. MenS. DongT. TsimK. Flavonoids induce the expression of synaptic proteins, synaptotagmin, and postsynaptic density protein-95 in cultured rat cortical neuron.Planta Med.201379181710171410.1055/s‑0033‑1351023 24243544
    [Google Scholar]
  134. KozlovskayaE.P. PopovA.M. StyshovaO.N. VakhrushevA.I. RutckovaT.A. PodvolotskayaA.B. TekutyevaL.A. Comparative study of the pharmacological properties of luteolin and its 7,3′-disulfate.Mar. Drugs202220742610.3390/md20070426 35877719
    [Google Scholar]
  135. PouchieuC. AndreevaV.A. PéneauS. Kesse-GuyotE. LassaleC. HercbergS. TouvierM. Sociodemographic, lifestyle and dietary correlates of dietary supplement use in a large sample of French adults: Results from the NutriNet-Santé cohort study.Br. J. Nutr.201311081480149110.1017/S0007114513000615 23432948
    [Google Scholar]
  136. WangH. WangH. ChengH. CheZ. Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model.Mol. Med. Rep.20161354215422010.3892/mmr.2016.5052 27035793
    [Google Scholar]
  137. AbbasH. SayedN.S.E. YoussefN.A.H.A. M E GaafarP. Mousa, M.R.; Fayez, A.M.; Elsheikh, M.A. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a sporadic alzheimer’s disease mouse model: Focus on antioxidant, anti-inflammatory, and amyloidogenic pathways.Pharmaceutics2022145100310.3390/pharmaceutics14051003 35631589
    [Google Scholar]
  138. AhmadS. JoM.H. IkramM. KhanA. KimM.O. Deciphering the Potential Neuroprotective Effects of Luteolin against Aβ1–42-Induced Alzheimer’s Disease.Int. J. Mol. Sci.20212217958310.3390/ijms22179583 34502488
    [Google Scholar]
  139. KouJ. ShiJ. HeY. HaoJ. ZhangH. LuoD. SongJ. YanY. XieX. DuG. PangX. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation.Acta Pharmacol. Sin.202243484084910.1038/s41401‑021‑00702‑8 34267346
    [Google Scholar]
  140. FacchinettiR. ValenzaM. BronzuoliM.R. MenegoniG. RatanoP. SteardoL. CampolongoP. ScuderiC. Looking for a treatment for the early stage of alzheimer’s disease: Preclinical evidence with co-ultramicronized palmitoylethanolamide and luteolin.Int. J. Mol. Sci.20202111380210.3390/ijms21113802 32471239
    [Google Scholar]
  141. PaternitiI. CordaroM. CampoloM. SiracusaR. CorneliusC. NavarraM. CuzzocreaS. EspositoE. Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer’s disease models: The control of neuroinflammation.CNS Neurol. Disord. Drug Targets20141391530154110.2174/1871527313666140806124322 25106636
    [Google Scholar]
  142. ParkS. KimD.S. KangS. KimH.J. The combination of luteolin and l-theanine improved Alzheimer disease–like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β–infused rats.Nutr. Res.20186011613110.1016/j.nutres.2018.09.010 30527255
    [Google Scholar]
  143. Rezai-ZadehK. Douglas ShytleR. BaiY. TianJ. HouH. MoriT. ZengJ. ObregonD. TownT. TanJ. Flavonoid‐mediated presenilin‐1 phosphorylation reduces Alzheimer’s disease β‐amyloid production.J. Cell. Mol. Med.200913357458810.1111/j.1582‑4934.2008.00344.x 18410522
    [Google Scholar]
  144. SawmillerD. LiS. ShahaduzzamanM. SmithA. ObregonD. GiuntaB. BorlonganC. SanbergP. TanJ. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury.Int. J. Mol. Sci.201415189590410.3390/ijms15010895 24413756
    [Google Scholar]
  145. SiracusaR. ImpellizzeriD. CordaroM. CrupiR. EspositoE. PetrosinoS. CuzzocreaS. Anti-Inflammatory and neuroprotective effects of Co-UltraPEALut in a mouse model of vascular dementia.Front. Neurol.2017823310.3389/fneur.2017.00233 28634464
    [Google Scholar]
  146. TaoX. ZhangR. WangL. LiX. GongW. Luteolin and exercise combination therapy ameliorates Amyloid-β1-42 oligomers-induced cognitive impairment in AD mice by mediating neuroinflammation and autophagy.J. Alzheimers Dis.202392119520810.3233/JAD‑220904 36710678
    [Google Scholar]
  147. WruckC.J. ClaussenM. FuhrmannG. RömerL. SchulzA. PufeT. WaetzigV. PeippM. HerdegenT. GötzM.E. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway.J. Neural Transm. Suppl.200772576710.1007/978‑3‑211‑73574‑9_9 17982879
    [Google Scholar]
  148. ZhuL.H. BiW. QiR. WangH. LuD. Luteolin inhibits microglial inflammation and improves neuron survival against inflammation.Int. J. Neurosci.2011121632933610.3109/00207454.2011.569040 21631167
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073303342240409060918
Loading
/content/journals/cchts/10.2174/0113862073303342240409060918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test