Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Point of Care Diagnostics (POCD) is quintessential in hospitals and the healthcare sector as the secants uplift the quality of medical care and the life of a patient by facilitating quick identification of the underlying pathological condition. Nanotechnology can provide opportunities and has potential in the development of new-age sensing/diagnostic tools. Owing to extraordinary features (, higher density, effective catalysis, good conduction, biocompatibility, inertness, and greater surface-to-volume ratio), gold nanoparticles (AuNPs) are frequently employed in POCT (Point-of-Care-Testing).

Gold nanoparticles-based colorimetric methods are widely used in the rapid, sensitive, and selective detection of analytes/target molecules. AuNPs description is critical for their possible utility in prophylaxis, diagnostics, and treatment of an ailment. AuNPs interact with organic/inorganic target molecules to generate colorimetric shift that enables the accurate, precise, and subtle recognition of biologicals (, microorganisms, cellular components, and proteins) and metal ions.

This review focused on the need for AuNPs-based colorimetric application in prophylaxis, diagnostics, and treatment in healthcare and reviewed the future outlook of these AuNPs for biological applications. Different synthesis methods of AuNPs, their morphology, and characterization, including their surface functionalization, will be discussed in detail. AuNPs are very much preferable nanomaterials owing to exclusive optical, electrical, and photothermal features. AuNPs-based colorimetric biosensors are simple and possess great utility, yet these offer a robust technique to enable visual, quantitative analysis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073293557240320065128
2024-03-27
2025-04-02
Loading full text...

Full text loading...

References

  1. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.2014201411210.1155/2014/417305
    [Google Scholar]
  2. SinghM. ManikandanS. KumaraguruA.K. Nanoparticles: A new technology with wide applications.Res. J. Nanosci. Nanotechno.20111111110.3923/rjnn.2011.1.11 21446402
    [Google Scholar]
  3. ZhangJ. MouL. JiangX. Surface chemistry of gold nanoparticles for health-related applications.Chem. Sci. 202011492393610.1039/C9SC06497D 34084347
    [Google Scholar]
  4. ZhouW. GaoX. LiuD. ChenX. Gold nanoparticles for in vitro diagnostics.Chem. Rev.201511519105751063610.1021/acs.chemrev.5b00100 26114396
    [Google Scholar]
  5. YangX. WeiQ. ShaoH. JiangX. Multivalent aminosaccharide-based gold nanoparticles as narrow-spectrum antibiotics in vivo.ACS Appl. Mater. Interfaces20191187725773010.1021/acsami.8b19658 30714714
    [Google Scholar]
  6. ShawJ.L.V. Practical challenges related to point of care testing.Pract. Lab. Med.20164222910.1016/j.plabm.2015.12.002 28856189
    [Google Scholar]
  7. YangJ. WangK. XuH. YanW. JinQ. CuiD. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review.Talanta20192029611010.1016/j.talanta.2019.04.054 31171232
    [Google Scholar]
  8. PetryayevaE. AlgarW.R. Toward point-of-care diagnostics with consumer electronic devices: The expanding role of nanoparticles.RSC Advances2015528222562228210.1039/C4RA15036H
    [Google Scholar]
  9. YuZ. QiuC. HuangL. GaoY. TangD. Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin b1 in foodstuff.Anal. Chem.20239584212421910.1021/acs.analchem.2c05617 36780374
    [Google Scholar]
  10. WuG. ZamanM.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings.Bull. World Health Organ.2012901291492010.2471/BLT.12.102780 23284197
    [Google Scholar]
  11. ZengR. GongH. LiY. LiY. LinW. TangD. KnoppD. CRISPR-Cas12a-derived photoelectrochemical biosensor for point-of-care diagnosis of nucleic acid.Anal. Chem.202294207442744810.1021/acs.analchem.2c01373 35549163
    [Google Scholar]
  12. YuZ. GongH. XuJ. LiY. ZengY. LiuX. TangD. Exploiting photoelectric activities and piezoelectric properties of NaNbO 3 semiconductors for point-of-care immunoassay.Anal. Chem.20229473418342610.1021/acs.analchem.2c00066 35148076
    [Google Scholar]
  13. RoyM. RoyA. RustagiS. PandeyN. An overview of nanomaterial applications in pharmacology.BioMed Res. Int.2023202312310.1155/2023/4838043 37388336
    [Google Scholar]
  14. ChughH. SoodD. ChandraI. TomarV. DhawanG. ChandraR. Role of gold and silver nanoparticles in cancer nano-medicine.Artificial. Cells Nanomed. Biotechnol.20184611210122010.1080/21691401.2018.1449118
    [Google Scholar]
  15. Anu Mary EaliaS. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their application.IOP Conf. Series Mater. Sci. Eng.2017263303201910.1088/1757‑899X/263/3/032019
    [Google Scholar]
  16. GaoZ. QiuZ. LuM. ShuJ. TangD. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5′-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.Biosens. Bioelectron.201789Pt 21006101210.1016/j.bios.2016.10.043 27825528
    [Google Scholar]
  17. GaoZ. TangD. TangD. NiessnerR. KnoppD. Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide.Anal. Chem.20158719101531016010.1021/acs.analchem.5b03008 26327230
    [Google Scholar]
  18. MancusoM. JiangL. CesarmanE. EricksonD. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles.Nanoscale2013541678168610.1039/c3nr33492a 23340972
    [Google Scholar]
  19. SabelaM. BalmeS. BechelanyM. JanotJ.M. BisettyK. A review of gold and silver nanoparticle‐based colorimetric sensing assays.Adv. Eng. Mater.20171912170027010.1002/adem.201700270
    [Google Scholar]
  20. MondalP. SinhaA. SalamN. RoyA.S. JanaN.R. IslamS.M. Enhanced catalytic performance by copper nanoparticle–graphene based composite.RSC Advances20133165615562310.1039/c3ra23280h
    [Google Scholar]
  21. YuL. LiN. Noble metal nanoparticles-based colorimetric biosensor for visual quantification: A mini review.Chemosensors 2019745310.3390/chemosensors7040053
    [Google Scholar]
  22. LiY. ZaluzhnaO. XuB. GaoY. ModestJ.M. TongY.J. Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles.J. Am. Chem. Soc.201113372092209510.1021/ja1105078 21268580
    [Google Scholar]
  23. PeralaS.R.K. KumarS. On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method.Langmuir201329319863987310.1021/la401604q 23848382
    [Google Scholar]
  24. PatilT. GambhirR. VibhuteA. TiwariA.P. Gold nanoparticles: Synthesis methods, functionalization and biological applications.J. Cluster Sci.202334270572510.1007/s10876‑022‑02287‑6
    [Google Scholar]
  25. NiuW. ZhangL. XuG. Seed-mediated growth method for high-quality noble metal nanocrystals.Sci. China Chem.201255112311231710.1007/s11426‑012‑4681‑z
    [Google Scholar]
  26. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms17091534 27649147
    [Google Scholar]
  27. CuiP. HeH. ChenD. LiuH. ZhangS. YangJ. Phase transfer of noble metal nanoparticles from ionic liquids to an organic/aqueous medium.Ind. Eng. Chem. Res.20145341159091591610.1021/ie5033638
    [Google Scholar]
  28. HusanuE. ChiappeC. BernardiniA. CappelloV. GemmiM. Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents.Colloids Surf. A Physicochem. Eng. Asp.201853850651210.1016/j.colsurfa.2017.11.033
    [Google Scholar]
  29. KestensV. RoebbenG. HerrmannJ. JämtingÅ. ColemanV. MinelliC. CliffordC. De TemmermanP.J. MastJ. JunjieL. BabickF. CölfenH. EmonsH. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material.J. Nanopart. Res.201618617110.1007/s11051‑016‑3474‑2 27441027
    [Google Scholar]
  30. AlizadehS. NazariZ. A review on gold nanoparticles aggregation and its applications.J. Chem. Rev.20202422824210.22034/jcr.2020.108561
    [Google Scholar]
  31. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  32. PriyadarshiniE. PradhanN. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review.Sens. Actuators B Chem.201723888890210.1016/j.snb.2016.06.081
    [Google Scholar]
  33. WangC. YuC. Detection of chemical pollutants in water using gold nanoparticles as sensors: A review.Rev. Anal. Chem.201332111410.1515/revac‑2012‑0023
    [Google Scholar]
  34. MirkinC.A. LetsingerR.L. MucicR.C. StorhoffJ.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.In: Spherical Nucleic Acids.Jenny Stanford Publishing2020311
    [Google Scholar]
  35. ZhaoL. JinY. YanZ. LiuY. ZhuH. Novel, highly selective detection of Cr(III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr(VI).Anal. Chim. Acta2012731758110.1016/j.aca.2012.04.022 22652267
    [Google Scholar]
  36. RatnarathornN. ChailapakulO. DungchaiW. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.Talanta201513261361810.1016/j.talanta.2014.10.024 25476352
    [Google Scholar]
  37. Cordray etal. Gold nanoparticle aggregation for quantification of oligonucleotides: Optimization and increased dynamic range.Anal. Biochem.201243129910510.1016/j.ab.2012.09.013 23000603
    [Google Scholar]
  38. ChangC.C. ChenC.P. WuT.H. YangC.H. LinC.W. ChenC.Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications.Nanomaterials20199686110.3390/nano9060861 31174348
    [Google Scholar]
  39. SunJ. XianyuY. JiangX. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics.Chem. Soc. Rev.201443176239625310.1039/C4CS00125G 24882068
    [Google Scholar]
  40. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H 22109657
    [Google Scholar]
  41. GiljohannD. SeferosD. DanielW. MassichM. PatelP. MirkinC. National institute of health public access.Angew. Chem. Int. Ed.2014493280329410.1002/anie.200904359
    [Google Scholar]
  42. RaiM.K. DeshmukhS.D. IngleA.P. GadeA.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria.J. Appl. Microbiol.2012112584185210.1111/j.1365‑2672.2012.05253.x 22324439
    [Google Scholar]
  43. WeiL. LuJ. XuH. PatelA. ChenZ.S. ChenG. Silver nanoparticles: Synthesis, properties, and therapeutic applications.Drug Discov. Today201520559560110.1016/j.drudis.2014.11.014 25543008
    [Google Scholar]
  44. ZhangZ. WangH. ChenZ. WangX. ChooJ. ChenL. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.Biosens. Bioelectron.2018114526510.1016/j.bios.2018.05.015 29778002
    [Google Scholar]
  45. VilelaD. GonzálezM.C. EscarpaA. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review.Anal. Chim. Acta2012751244310.1016/j.aca.2012.08.043 23084049
    [Google Scholar]
  46. YuL. LiN. Binding strength of nucleobases and nucleosides on silver nanoparticles probed by a colorimetric method.Langmuir201632225510551810.1021/acs.langmuir.6b01192 27191896
    [Google Scholar]
  47. TakashimaA. OishiM. Kinetic study of DNA hybridization on DNA-modified gold nanoparticles with engineered nano-interfaces.RSC Advances2015593760147601810.1039/C5RA13116B
    [Google Scholar]
  48. PengJ. ZhouN. ZhongY. SuY. ZhaoL. ChangY.T. Gold nanoparticle-based detection of dopamine based on fluorescence resonance energy transfer between a 4-(4-dialkylaminostyryl)pyridinium derived fluorophore and citrate-capped gold nanoparticles.Mikrochim. Acta2019186961810.1007/s00604‑019‑3727‑8 31410617
    [Google Scholar]
  49. LiX. RobinsonS.M. GuptaA. SahaK. JiangZ. MoyanoD.F. SaharA. RileyM.A. RotelloV.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria.ACS Nano2014810106821068610.1021/nn5042625 25232643
    [Google Scholar]
  50. YuL. Van TranT. ZouJ. LiN. In Probing the mechanism of melamine-induced gold nanoparticle aggregation. 2012 IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED),2012212610.1109/NANOMED.2012.6509137
    [Google Scholar]
  51. WangY. LuoG. YanZ. WangJ. TangC. LiuF. ZhuM. Silicon ultraviolet high-Q plasmon induced transparency for slow light and ultrahigh sensitivity sensing.J. Lightwave Technol.202442140641310.1109/JLT.2023.3305875
    [Google Scholar]
  52. VermaM.S. RogowskiJ.L. JonesL. GuF.X. Colorimetric biosensing of pathogens using gold nanoparticles.Biotechnol. Adv.201533666668010.1016/j.biotechadv.2015.03.003 25792228
    [Google Scholar]
  53. MirandaO.R. LiX. Garcia-GonzalezL. ZhuZ.J. YanB. BunzU.H.F. RotelloV.M. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor.J. Am. Chem. Soc.2011133259650965310.1021/ja2021729 21627131
    [Google Scholar]
  54. ScroccarelloA. Della PelleF. NeriL. PittiaP. CompagnoneD. Silver and gold nanoparticles based colorimetric assays for the determination of sugars and polyphenols in apples.Food Res. Int.201911935936810.1016/j.foodres.2019.02.006 30884666
    [Google Scholar]
  55. XiaN. DengD. WangY. FangC. LiS.J. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen.Int. J. Nanomedicine2018132521253010.2147/IJN.S154046 29731627
    [Google Scholar]
  56. CaoC. GontardL.C. Thuy TramL.L. WolffA. BangD.D. Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria.Small20117121701170810.1002/smll.201100294 21557470
    [Google Scholar]
  57. LiuY. BalachandranY.L. LiD. ShaoY. JiangX. Polyvinylpyrrolidone–Poly(ethylene glycol) modified silver nanorods can be a safe, noncarrier adjuvant for HIV vaccine.ACS Nano20161033589359610.1021/acsnano.5b08025 26844372
    [Google Scholar]
  58. LiuY. XuY. TianY. ChenC. WangC. JiangX. Functional nanomaterials can optimize the efficacy of vaccines.Small201410224505452010.1002/smll.201401707 25238620
    [Google Scholar]
  59. SapparapuG. FernandezE. KoseN. BinCao; Fox, J.M.; Bombardi, R.G.; Zhao, H.; Nelson, C.A.; Bryan, A.L.; Barnes, T.; Davidson, E.; Mysorekar, I.U.; Fremont, D.H.; Doranz, B.J.; Diamond, M.S.; Crowe, J.E. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.Nature2016540763344344710.1038/nature20564 27819683
    [Google Scholar]
  60. MeyerM. YoshidaA. RamanathanP. SaphireE.O. CollinsP.L. CroweJ.E.Jr SamalS. BukreyevA. Antibody repertoires to the same ebola vaccine antigen are differentially affected by vaccine vectors.Cell Rep.20182471816182910.1016/j.celrep.2018.07.044 30110638
    [Google Scholar]
  61. DykmanL.A. KhlebtsovN.G. Immunological properties of gold nanoparticles.Chem. Sci. 2017831719173510.1039/C6SC03631G 28451297
    [Google Scholar]
  62. NiikuraK. MatsunagaT. SuzukiT. KobayashiS. YamaguchiH. OrbaY. KawaguchiA. HasegawaH. KajinoK. NinomiyaT. IjiroK. SawaH. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo.ACS Nano2013753926393810.1021/nn3057005 23631767
    [Google Scholar]
  63. CarabineiroS. Applications of gold nanoparticles in nanomedicine: Recent advances in vaccines.Molecules201722585710.3390/molecules22050857 28531163
    [Google Scholar]
  64. Rosales-MendozaS. González-OrtegaO. Nanovaccines.An Innovative Technology to Fight Human and Animal Diseases.Springer201910.1007/978‑3‑030‑31668‑6
    [Google Scholar]
  65. ChangT.Z. DengL. WangB.Z. ChampionJ.A. H7 Hemagglutinin nanoparticles retain immunogenicity after >3 months of 25°C storage.PLoS One2018138e020230010.1371/journal.pone.0202300 30092060
    [Google Scholar]
  66. da CâmaraP.C.F. BalabanR.C. HedayatiM. PopatK.C. MartinsA.F. KipperM.J. Novel cationic tannin/glycosaminoglycan-based polyelectrolyte multilayers promote stem cells adhesion and proliferation.RSC Advances2019944258362584610.1039/C9RA03903A 35530064
    [Google Scholar]
  67. KumarR. RayP.C. DattaD. BansalG.P. AngovE. KumarN. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles.Vaccine201533395064507110.1016/j.vaccine.2015.08.025 26299750
    [Google Scholar]
  68. ZhengX. LiuQ. JingC. LiY. LiD. LuoW. WenY. HeY. HuangQ. LongY.T. FanC. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization.Angew. Chem. Int. Ed.20115050119941199810.1002/anie.201105121 21998071
    [Google Scholar]
  69. YuX. FeizpourA. RamirezN.G.P. WuL. AkiyamaH. XuF. GummuluruS. ReinhardB.M. Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells.Nat. Commun.201451413610.1038/ncomms5136 24947940
    [Google Scholar]
  70. ParryA.L. ClemsonN.A. EllisJ. BernhardS.S.R. DavisB.G. CameronN.R. ‘Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines.J. Am. Chem. Soc.2013135259362936510.1021/ja4046857 23763610
    [Google Scholar]
  71. LiuD. QuW. ChenW. ZhangW. WangZ. JiangX. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature.Anal. Chem.201082239606961010.1021/ac1021503 21069969
    [Google Scholar]
  72. XuX. DanielW.L. WeiW. MirkinC.A. Colorimetric Cu(2+) detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry.Small20106562362610.1002/smll.200901691 20108231
    [Google Scholar]
  73. LinY.W. HuangC.C. ChangH.T. Gold nanoparticle probes for the detection of mercury, lead and copper ions.Analyst 2011136586387110.1039/C0AN00652A 21157604
    [Google Scholar]
  74. WangC.I. HuangC.C. LinY.W. ChenW.T. ChangH.T. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions.Anal. Chim. Acta201274512413010.1016/j.aca.2012.07.041 22938616
    [Google Scholar]
  75. LienC.W. ChenY.C. ChangH.T. HuangC.C. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.Nanoscale20135178227823410.1039/c3nr01836a 23860719
    [Google Scholar]
  76. LienC.W. TsengY.T. HuangC.C. ChangH.T. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions.Anal. Chem.20148642065207210.1021/ac4036789 24451013
    [Google Scholar]
  77. QuW. LiuY. LiuD. WangZ. JiangX. Copper-mediated amplification allows readout of immunoassays by the naked eye.Angew. Chem. Int. Ed.201150153442344510.1002/anie.201006025 21387505
    [Google Scholar]
  78. XianyuY. ChenY. JiangX. Horseradish peroxidase-mediated, iodide-catalyzed cascade reaction for plasmonic immunoassays.Anal. Chem.20158721106881069210.1021/acs.analchem.5b03522 26460152
    [Google Scholar]
  79. ChenJ. JacksonA.A. RotelloV.M. NugenS.R. Colorimetric detection of escherichia coli based on the enzyme-induced metallization of gold nanorods.Small201612182469247510.1002/smll.201503682 26997252
    [Google Scholar]
  80. DengJ. YangM. WuJ. ZhangW. JiangX. A self-contained chemiluminescent lateral flow assay for point-of-care testing.Anal. Chem.201890159132913710.1021/acs.analchem.8b01543 30004664
    [Google Scholar]
  81. ChenY. SunJ. XianyuY. YinB. NiuY. WangS. CaoF. ZhangX. WangY. JiangX. A dual-readout chemiluminescent-gold lateral flow test for multiplex and ultrasensitive detection of disease biomarkers in real samples.Nanoscale2016833152051521210.1039/C6NR04017A 27375054
    [Google Scholar]
  82. GuptaA. MumtazS. LiC.H. HussainI. RotelloV.M. Combatting antibiotic-resistant bacteria using nanomaterials.Chem. Soc. Rev.201948241542710.1039/C7CS00748E 30462112
    [Google Scholar]
  83. MillerK.P. WangL. BenicewiczB.C. DechoA.W. Inorganic nanoparticles engineered to attack bacteria.Chem. Soc. Rev.201544217787780710.1039/C5CS00041F 26190826
    [Google Scholar]
  84. ZhaoY. TianY. CuiY. LiuW. MaW. JiangX. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria.J. Am. Chem. Soc.201013235123491235610.1021/ja1028843 20707350
    [Google Scholar]
  85. WeiS.C. ChangL. HuangC.C. ChangH.T. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice.Biomater. Sci.20197114482449010.1039/C9BM00772E 31531425
    [Google Scholar]
  86. HuoS. JiangY. GuptaA. JiangZ. LandisR.F. HouS. LiangX.J. RotelloV.M. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure.ACS Nano20161098732873710.1021/acsnano.6b04207 27622756
    [Google Scholar]
  87. YangX. YangJ. WangL. RanB. JiaY. ZhangL. YangG. ShaoH. JiangX. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold.ACS Nano20171165737574510.1021/acsnano.7b01240 28531351
    [Google Scholar]
  88. WangY. SunS. ZhangZ. ShiD. Nanomaterials for cancer precision medicine.Adv. Mater.20183017170566010.1002/adma.201705660 29504159
    [Google Scholar]
  89. LiY. TianY. ZhengW. FengY. HuangR. ShaoJ. TangR. WangP. JiaY. ZhangJ. ZhengW. YangG. JiangX. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds.Small20171327170013010.1002/smll.201700130 28544761
    [Google Scholar]
  90. ZhengW. JiaY. ChenW. WangG. GuoX. JiangX. Universal coating from electrostatic self-assembly to prevent multidrug-resistant bacterial colonization on medical devices and solid surfaces.ACS Appl. Mater. Interfaces2017925211812118910.1021/acsami.7b05230 28581702
    [Google Scholar]
  91. HuB. KongF. GaoX. JiangL. LiX. GaoW. XuK. TangB. Avoiding thiol compound interference: A nanoplatform based on high‐fidelity Au–Se bonds for biological applications.Angew. Chem. Int. Ed.201857195306530910.1002/anie.201712921 29527792
    [Google Scholar]
  92. SmithC.A. NarouzM.R. LummisP.A. SinghI. NazemiA. LiC.H. CruddenC.M. N heterocyclic carbenes in materials chemistry.Chem. Rev.201911984986505610.1021/acs.chemrev.8b00514 30938514
    [Google Scholar]
  93. NarouzM.R. OstenK.M. UnsworthP.J. ManR.W.Y. SalorinneK. TakanoS. TomiharaR. KaappaS. MalolaS. DinhC.T. PadmosJ.D. AyooK. GarrettP.J. NamboM. HortonJ.H. SargentE.H. HäkkinenH. TsukudaT. CruddenC.M. N-heterocyclic carbene-functionalized magic-number gold nanoclusters.Nat. Chem.201911541942510.1038/s41557‑019‑0246‑5 30988416
    [Google Scholar]
  94. SalorinneK. ManR.W.Y. LiC.H. TakiM. NamboM. CruddenC.M. Water‐soluble n‐heterocyclic carbene‐protected gold nanoparticles: Size‐controlled synthesis, stability, and optical properties.Angew. Chem. Int. Ed.201756226198620210.1002/anie.201701605 28407403
    [Google Scholar]
  95. MitragotriS. AndersonD.G. ChenX. ChowE.K. HoD. KabanovA.V. KarpJ.M. KataokaK. MirkinC.A. PetroskoS.H. ShiJ. StevensM.M. SunS. TeohS. VenkatramanS.S. XiaY. WangS. GuZ. XuC. Accelerating the translation of nanomaterials in biomedicine.ACS Nano2015976644665410.1021/acsnano.5b03569 26115196
    [Google Scholar]
  96. AbadeerN.S. MurphyC.J. Recent progress in cancer thermal therapy using gold nanoparticles.J. Phys. Chem.201612094691471610.1021/acs.jpcc.5b11232
    [Google Scholar]
  97. SharifiM. AttarF. SabouryA.A. AkhtariK. HooshmandN. HasanA. El-SayedM.A. FalahatiM. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy.J. Control. Release2019311-31217018910.1016/j.jconrel.2019.08.032 31472191
    [Google Scholar]
  98. YangX. YangM. PangB. VaraM. XiaY. Gold nanomaterials at work in biomedicine.Chem. Rev.201511519104101048810.1021/acs.chemrev.5b00193 26293344
    [Google Scholar]
  99. DreadenE.C. AustinL.A. MackeyM.A. El-SayedM.A. Size matters: Gold nanoparticles in targeted cancer drug delivery.Ther. Deliv.20123445747810.4155/tde.12.21 22834077
    [Google Scholar]
  100. MosqueraJ. GarcíaI. Liz-MarzánL.M. Cellular uptake of nanoparticles versus small molecules: A matter of size.Acc. Chem. Res.20185192305231310.1021/acs.accounts.8b00292 30156826
    [Google Scholar]
  101. MizuharaT. SahaK. MoyanoD.F. KimC.S. YanB. KimY.K. RotelloV.M. Acylsulfonamide‐functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH.Angew. Chem. Int. Ed.201554226567657010.1002/anie.201411615 25873209
    [Google Scholar]
  102. ZhangX.D. ChenJ. LuoZ. WuD. ShenX. SongS.S. SunY.M. LiuP.X. ZhaoJ. HuoS. FanS. FanF. LiangX.J. XieJ. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy.Adv. Healthc. Mater.20143113314110.1002/adhm.201300189 23873780
    [Google Scholar]
  103. MolloyN. ReadD. GormanA. Nerve growth factor in cancer cell death and survival.Cancers20113151053010.3390/cancers3010510 24212627
    [Google Scholar]
  104. JensenS.A. DayE.S. KoC.H. HurleyL.A. LucianoJ.P. KouriF.M. MerkelT.J. LuthiA.J. PatelP.C. CutlerJ.I. DanielW.L. ScottA.W. RotzM.W. MeadeT.J. GiljohannD.A. MirkinC.A. SteghA.H. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.Sci. Transl. Med.20135209209ra15210.1126/scitranslmed.3006839 24174328
    [Google Scholar]
  105. SinghR. KumarS. Cancer targeting and diagnosis: Recent trends with carbon nanotubes.Nanomaterials 20221213228310.3390/nano12132283 35808119
    [Google Scholar]
  106. GavrilovK. SaltzmanW.M. Therapeutic siRNA: Principles, challenges, and strategies.Yale J. Biol. Med.2012852187200 22737048
    [Google Scholar]
  107. KimS.T. ChompoosorA. YehY.C. AgastiS.S. SolfiellD.J. RotelloV.M. Dendronized gold nanoparticles for siRNA delivery.Small20128213253325610.1002/smll.201201141 22887809
    [Google Scholar]
  108. LeiY. TangL. XieY. XianyuY. ZhangL. WangP. HamadaY. JiangK. ZhengW. JiangX. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer.Nat. Commun.2017811513010.1038/ncomms15130 28440296
    [Google Scholar]
  109. HuschkaR. BarhoumiA. LiuQ. RothJ.A. JiL. HalasN.J. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA.ACS Nano2012697681769110.1021/nn301135w 22862291
    [Google Scholar]
  110. AntónioM. NogueiraJ. VitorinoR. Daniel-da-SilvaA. Functionalized gold nanoparticles for the detection of c-reactive protein.Nanomaterials 20188420010.3390/nano8040200 29597295
    [Google Scholar]
  111. MoutR. RayM. LeeY.W. ScalettiF. RotelloV.M. In Vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges.Bioconjug. Chem.201728488088410.1021/acs.bioconjchem.7b00057 28263568
    [Google Scholar]
  112. NaultJ.C. DattaS. ImbeaudS. FranconiA. MalletM. CouchyG. LetouzéE. PilatiC. VerretB. BlancJ.F. BalabaudC. CalderaroJ. LaurentA. LetexierM. Bioulac-SageP. CalvoF. Zucman-RossiJ. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas.Nat. Genet.201547101187119310.1038/ng.3389 26301494
    [Google Scholar]
  113. ScalettiF. HardieJ. LeeY.W. LutherD.C. RayM. RotelloV.M. Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies.Chem. Soc. Rev.201847103421343210.1039/C8CS00008E 29537040
    [Google Scholar]
  114. WangP. ZhangL. XieY. WangN. TangR. ZhengW. JiangX. Genome editing for cancer therapy: delivery of cas9 protein/sgrna plasmid via a gold nanocluster/lipid core–shell nanocarrier.Adv. Sci.2017411170017510.1002/advs.201700175 29201613
    [Google Scholar]
  115. LoynachanC.N. SoleimanyA.P. DudaniJ.S. LinY. NajerA. BekdemirA. ChenQ. BhatiaS.N. StevensM.M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring.Nat. Nanotechnol.201914988389010.1038/s41565‑019‑0527‑6 31477801
    [Google Scholar]
  116. HuoS. GongN. JiangY. ChenF. GuoH. GanY. WangZ. HerrmannA. LiangX.J. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation.Sci. Adv.2019510eaaw626410.1126/sciadv.aaw6264 31616782
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073293557240320065128
Loading
/content/journals/cchts/10.2174/0113862073293557240320065128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test