Skip to content
2000
Volume 9, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Virtual filtering and screening of combinatorial libraries have recently gained attention as methods complementing the high-throughput screening and combinatorial chemistry. These chemoinformatic techniques rely heavily on quantitative structure-activity relationship (QSAR) analysis, a field with established methodology and successful history. In this review, we discuss the computational methods for building QSAR models. We start with outlining their usefulness in high-throughput screening and identifying the general scheme of a QSAR model. Following, we focus on the methodologies in constructing three main components of QSAR model, namely the methods for describing the molecular structure of compounds, for selection of informative descriptors and for activity prediction. We present both the well-established methods as well as techniques recently introduced into the QSAR domain.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/138620706776055539
2006-03-01
2025-01-19
Loading full text...

Full text loading...

/content/journals/cchts/10.2174/138620706776055539
Loading

  • Article Type:
    Research Article
Keyword(s): feature selection; machine learning; molecular descriptors; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test