Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Research regarding post-operative brain protection after deep hypothermic circulatory arrest (DHCA) has gained attracted significant attention. We previously demonstrated that hydrogen can significantly reverse DHCA-induced brain damage.

Methods

In the current research, we have established the DHCA model successfully using a modified four-vessel occlusion method and injected miR-29s compounds into the hippocampal tissue of rats.

Results

We were surprised to find hydrogen increased miR-29s expression in the hippocampal tissue of a DHCA rat model. The administration of agomiR-29s counteracted DHCA-induced hippocampal tissue injury, while the antamiR-29s had the opposite effects.

Conclusion

Based on the above facts, the brain protection mechanism of hydrogen in DHCA-treated rats may be related to the upregulation of miR-29s, which can exert its beneficial effects by alleviating apoptosis, inflammation, and oxidation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073281209231227044205
2024-01-30
2025-04-02
Loading full text...

Full text loading...

References

  1. GreeleyW.J. KernF.H. UngerleiderR.M. BoydJ.L.III QuillT. SmithL.R. BaldwinB. RevesJ.G. SabistonD.C.Jr The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.J. Thorac. Cardiovasc. Surg.1991101578379410.1016/S0022‑5223(19)36647‑4 2023435
    [Google Scholar]
  2. CefarelliM. MuranaG. SuraceG.G. CastrovinciS. JafrancescoG. KelderJ.C. KleinP. SonkerU. MorshuisW.J. HeijmenR.H. Elective aortic arch repair: Factors influencing neurologic outcome in 791 patients.Ann. Thorac. Surg.201710462016202310.1016/j.athoracsur.2017.05.009 28760465
    [Google Scholar]
  3. SamanidisG. KatselisC. ContrafourisC. GeorgiopoulosG. KriarasI. AntoniouT. PerreasK. Predictors of outcomes after correction of acute type A aortic dissection under moderate hypothermic circulatory arrest and antegrade cerebral perfusion.Rev. Bras. Cir. Cardiovasc.201833214315010.21470/1678‑9741‑2017‑0123 29898143
    [Google Scholar]
  4. DoleM. WilsonF.R. FifeW.P. Hyperbaric hydrogen therapy: A possible treatment for cancer.Science1975190421015215410.1126/science.1166304 1166304
    [Google Scholar]
  5. OhsawaI. IshikawaM. TakahashiK. WatanabeM. NishimakiK. YamagataK. KatsuraK. KatayamaY. AsohS. OhtaS. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.Nat. Med.200713668869410.1038/nm1577 17486089
    [Google Scholar]
  6. LiuB. XueJ. ZhangM. WangM. MaT. ZhaoM. GuQ. QinS. Hydrogen inhalation alleviates nonalcoholic fatty liver disease in metabolic syndrome rats.Mol. Med. Rep.20202242860286810.3892/mmr.2020.11364 32945408
    [Google Scholar]
  7. NishidaT. HayashiT. InamotoT. KatoR. IbukiN. TakaharaK. TakaiT. YoshikawaY. UchimotoT. SaitoK. TandaN. KounoJ. MinamiK. UeharaH. HiranoH. NomiH. OkadaY. AzumaH. Dual gas treatment with hydrogen and carbon monoxide attenuates oxidative stress and protects from renal ischemia-reperfusion injury.Transplant. Proc.201850125025810.1016/j.transproceed.2017.12.014 29407319
    [Google Scholar]
  8. JiangB. LiY. DaiW. WuA. WuH. MaoD. Hydrogen-rich saline alleviates early brain injury through regulating of ER stress and autophagy after experimental subarachnoid hemorrhage.Acta Cir. Bras.2021368e36080410.1590/acb360804 34644772
    [Google Scholar]
  9. YangL. GuoY. FanX. ChenY. YangB. LiuK.X. ZhouJ. Amelioration of coagulation disorders and inflammation by hydrogen-rich solution reduces intestinal ischemia/reperfusion injury in rats through NF- κ B/NLRP3 pathway.Mediators Inflamm.20202020Pt.311210.1155/2020/4359305 32587471
    [Google Scholar]
  10. NieC. DingX. Rong, A Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats.Life Sci.2021272119248
    [Google Scholar]
  11. LiR. LiuY. XieJ. Sirt3 mediates the protective effect of hydrogen in inhibiting ROS-induced retinal senescence.Free Radic. Biol. Med.2019135116124
    [Google Scholar]
  12. KajiyamaS. HasegawaG. AsanoM. HosodaH. FukuiM. NakamuraN. KitawakiJ. ImaiS. NakanoK. OhtaM. AdachiT. ObayashiH. YoshikawaT. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance.Nutr. Res.200828313714310.1016/j.nutres.2008.01.008 19083400
    [Google Scholar]
  13. ShenL. WangJ. LiuK. WangC. WangC. WuH. SunQ. SunX. JingH. Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest.Neurochem. Res.20113681501151110.1007/s11064‑011‑0476‑4 21512745
    [Google Scholar]
  14. LiH.M. ShenL. GeJ.W. ZhangR.F. The transfer of hydrogen from inert gas to therapeutic gas.Med. Gas Res.201874265272 29497488
    [Google Scholar]
  15. WeiR. ZhangR. XieY. ShenL. ChenF. Hydrogen suppresses hypoxia/reoxygenation-induced cell death in hippocampal neurons through reducing oxidative stress.Cell. Physiol. Biochem.201536258559810.1159/000430122 25997722
    [Google Scholar]
  16. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y 8252621
    [Google Scholar]
  17. LuT.X. RothenbergM.E. MicroRNA.J. Allergy Clin. Immunol.201814141202120710.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  18. SunH. ChenL. ZhouW. HuL. LiL. TuQ. ChangY. LiuQ. SunX. WuM. WangH. The protective role of hydrogen-rich saline in experimental liver injury in mice.J. Hepatol.201154347148010.1016/j.jhep.2010.08.011 21145612
    [Google Scholar]
  19. HoritaM. FarquharsonC. StephenL.A. The role of miR‐29 family in disease.J. Cell. Biochem.2021122769671510.1002/jcb.29896 33529442
    [Google Scholar]
  20. KriegelA.J. LiuY. FangY. DingX. LiangM. The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury.Physiol. Genomics201244423724410.1152/physiolgenomics.00141.2011 22214600
    [Google Scholar]
  21. KwonJ.J. FactoraT.D. DeyS. A Systematic Review of miR-29 in Cancer.Mol. Ther. Oncol.201912173194
    [Google Scholar]
  22. LiuM.N. LuoG. GaoW.J. miR-29 family: A potential therapeutic target for cardiovascular disease.Pharmacol. Res.2021166105510
    [Google Scholar]
  23. HouK. LiG. ZhaoJ. XuB. ZhangY. YuJ. XuK. RETRACTED ARTICLE:Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway.J. Neuroinflammation20201714610.1186/s12974‑020‑1725‑8 32014002
    [Google Scholar]
  24. SunW. ChenY. ZhangY. A modified four vessel occlusion model of global cerebral ischemia in rats.J. Neurosci. Methods2021352109090
    [Google Scholar]
  25. LuD. WuY. QuY. ShiF. HuJ. GaoB. WangB. GaoG. HeS. ZhaoT. A modified method to reduce variable outcomes in a rat model of four-vessel arterial occlusion.Neurol. Res.201638121102111010.1080/01616412.2016.1249996 27796195
    [Google Scholar]
  26. MavroudisC.D. KarlssonM. KoT. HeftiM. GentileJ.I. MorganR.W. PlylerR. Mensah-BrownK.G. BooradyT.W. MelchiorR.W. RosenthalT.M. ShadeB.C. SchiavoK.L. NicolsonS.C. SprayT.L. SuttonR.M. BergR.A. LichtD.J. GaynorJ.W. KilbaughT.J. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine.Eur. J. Cardiothorac. Surg.201854116216810.1093/ejcts/ezx467 29346537
    [Google Scholar]
  27. YangY. LiuP.Y. BaoW. ChenS.J. WuF.S. ZhuP.Y. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway.BMC Cancer20202012810.1186/s12885‑019‑6491‑6 31924176
    [Google Scholar]
  28. WangX. WangJ. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3.Biol. Chem.2018399439740610.1515/hsz‑2017‑0303 29261513
    [Google Scholar]
  29. TumanengK. SchlegelmilchK. RussellR.C. YimlamaiD. BasnetH. MahadevanN. FitamantJ. BardeesyN. CamargoF.D. GuanK.L. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29.Nat. Cell Biol.201214121322132910.1038/ncb2615 23143395
    [Google Scholar]
  30. YeY. Perez-PoloJ.R. QianJ. BirnbaumY. The role of microRNA in modulating myocardial ischemia-reperfusion injury.Physiol. Genomics2011431053454210.1152/physiolgenomics.00130.2010 20959496
    [Google Scholar]
  31. KoleA.J. SwahariV. HammondS.M. DeshmukhM. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis.Genes Dev.201125212513010.1101/gad.1975411 21245165
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073281209231227044205
Loading
/content/journals/cchts/10.2174/0113862073281209231227044205
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): brain protection; cytokines; hippocampal tissue; inflammation; miR-29s
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test