Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

Traditional Chinese medicine (TCM) can modulate the immune function of tumor patients in various ways. Zuojin Wan (ZJW, a 6:1 ratio of Huang Lian and Wu Zhu Yu) can modulate the microenvironment of ulcerative colitis, but its role in regulating the colorectal cancer (CRC) microenvironment remains unclear. Exploring the role of ZJW in CRC immunomodulation may improve the antitumor effect of existing immunotherapeutic strategies.

Material and Methods

The active compounds of each herb in ZJW were obtained from the HIT2.0 database with literature evidence. Single-cell RNA sequencing data of CRC were obtained from published studies (PMID: 32451460, 32103181, and 32561858). Pathway enrichment was analyzed using the reactome database, and intergenic correlation analysis was performed using the corrplot R software package. ZJW-regulated gene expression was verified by RT-qPCR.

Results

Huang Lian and Wu Zhu Yu contain 19 and 4 compounds, respectively. Huang Lian targets 146 proteins, and Wu Zhu Yu targets 28 proteins based on evidence from the literature. ZJW regulates a range of biological processes associated with immune function, including cytokine signaling and Toll-Like Receptor 4 (TLR4) cascade. ZJW regulates malignant CRC cells, immune cells (including T-cells, B-cells, mast cells, NK/NKT cells, and myeloid cells), and other non-immune cells (including endothelial cells, enteric glial cells, and pericytes). We confirmed that ZJW significantly downregulated the expression of TIMP1 and MTDHin CRC cell lines.

Conclusions

ZJW regulates a range of cells in the CRC microenvironment, including malignant CRC, immune cells, and stromal cells. In CRC cell lines, downregulation of TIMP1 and MTDH by ZJW may play an important role in the immunomodulation in CRC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073281374231228041841
2024-01-25
2025-04-02
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  3. Villariba-TolentinoC. CariñoA.M. NotarteK.I. MacaranasI. FellizarA. TomasR.C. AngelesL.M. AbanillaL. LimA. AguilarM.K.C. AlbanoP.M. pks+ Escherichia coli more prevalent in benign than malignant colorectal tumors.Mol. Biol. Rep.20214875451545810.1007/s11033‑021‑06552‑1 34297324
    [Google Scholar]
  4. AdashekJ.J. DesaiA.P. Andreev-DrakhlinA.Y. RoszikJ. CoteG.J. SubbiahV. Hallmarks of ret and co-occuring genomic alterations in ret -aberrant cancers.Mol. Cancer Ther.202120101769177610.1158/1535‑7163.MCT‑21‑0329 34493590
    [Google Scholar]
  5. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  6. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047012613310.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  7. AlkasaliasT. Moyano-GalceranL. Arsenian-HenrikssonM. LehtiK. Fibroblasts in the tumor microenvironment: Shield or spear?Int. J. Mol. Sci.2018195153210.3390/ijms19051532 29883428
    [Google Scholar]
  8. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.Mol. Cancer202120113110.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  9. Gonzalez-MolinaJ. GramolelliS. LiaoZ. CarlsonJ.W. OjalaP.M. LehtiK. MMP14 in sarcoma: A regulator of tumor microenvironment communication in connective tissues.Cells20198999110.3390/cells8090991 31466240
    [Google Scholar]
  10. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  11. HeR. LaoY. YuW. ZhangX. JiangM. ZhuC. Progress in the application of immune checkpoint inhibitor-based immunotherapy for targeting different types of colorectal cancer.Front. Oncol.20211176461810.3389/fonc.2021.764618 34888243
    [Google Scholar]
  12. WengJ. LiS. ZhuZ. LiuQ. ZhangR. YangY. LiX. Exploring immunotherapy in colorectal cancer.J. Hematol. Oncol.20221519510.1186/s13045‑022‑01294‑4 35842707
    [Google Scholar]
  13. EverestL. ShahM. ChanK.K.W. Comparison of long-term survival benefits in trials of immune checkpoint inhibitor vs non–immune checkpoint inhibitor anticancer agents using ASCO Value Framework and ESMO magnitude of clinical benefit scale.JAMA Netw. Open201927e19680310.1001/jamanetworkopen.2019.6803 31290990
    [Google Scholar]
  14. HuX.Q. SunY. LauE. ZhaoM. SuS.B. Advances in synergistic combinations of chinese herbal medicine for the treatment of cancer.Curr. Cancer Drug Targets201616434635610.2174/1568009616666151207105851 26638885
    [Google Scholar]
  15. WangY. ZhangQ. ChenY. LiangC.L. LiuH. QiuF. DaiZ. Antitumor effects of immunity-enhancing traditional Chinese medicine.Biomed. Pharmacother.202012110957010.1016/j.biopha.2019.109570 31710893
    [Google Scholar]
  16. LiL. WangH. QianJ. WeiG. DingR. HuC. FangD. JiangZ. BiL. SongJ. MaJ. QinF. HuangX. CaoM. HuoJ. FuFangchangtai decoction activates macrophages via inducing autophagy.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/5657035 31308853
    [Google Scholar]
  17. QueZ.J. YaoJ.L. ZhouZ.Y. YuP. LuoB. LiH.G. LiuJ.X. XuH.X. TianJ.H. Jinfukang inhibits lung cancer metastasis by upregulating CX3CL1 to recruit NK cells to kill CTCs.J. Ethnopharmacol.202127511417510.1016/j.jep.2021.114175 33933571
    [Google Scholar]
  18. JiaW. WangL. Using traditional chinese medicine to treat hepatocellular carcinoma by targeting tumor immunity.Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/9843486 32595757
    [Google Scholar]
  19. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the nf-κb pathway and the increased nrf2 level by a flavonol-enriched n -butanol fraction from uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  20. ChenH. HeY. ChenS. QiS. ShenJ. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology.Pharmacol. Res.202015810487710.1016/j.phrs.2020.104877 32407958
    [Google Scholar]
  21. DuyaP.A. ChenY. BaiL. LiZ. LiJ. ChaiR. BianY. ZhaoS. Nature products of traditional chinese medicine provide new ideas in γδt cell for tumor immunotherapy.Acupunct. Herb. Med.202222788310.1097/HM9.0000000000000032
    [Google Scholar]
  22. ShaoY. SuR. WangY. YinS. PuW. KooS. YuH. Drug co-administration in the tumor immune microenvironment of hepatocellular carcinoma.Acupunct. Herb. Med.20233318919910.1097/HM9.0000000000000074
    [Google Scholar]
  23. SunM.Y. WangD.D. SunJ. ZhaoX.H. CaiS. WuQ.X. JieT. NiZ.H. SunJ.Y. TangQ.F. The Zuo Jin Wan Formula increases chemosensitivity of human primary gastric cancer cells by AKT mediated mitochondrial translocation of cofilin-1.Chin. J. Nat. Med.201917319820810.1016/S1875‑5364(19)30022‑6 30910056
    [Google Scholar]
  24. ChouS.T. HsiangC.Y. LoH.Y. HuangH.F. LaiM.T. HsiehC.L. ChiangS.Y. HoT.Y. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice.BMC Complement. Altern. Med.201717112110.1186/s12906‑017‑1586‑6 28219365
    [Google Scholar]
  25. ChaoD.C. LinL.J. KaoS.T. HuangH.C. ChangC.S. LiangJ.A. WuS.L. HsiangC.Y. HoT.Y. Inhibitory effects of Zuo-Jin-Wan and its alkaloidal ingredients on activator protein 1, nuclear factor-κB, and cellular transformation in HepG2 cells.Fitoterapia201182469670310.1016/j.fitote.2011.02.009 21356280
    [Google Scholar]
  26. JiangQ. ZhongY. LiuF. Regulatory effect of zuo jin pill on the level of folicular helper T cells.Lishizhen Med. Materia Medica Res.2021322257267
    [Google Scholar]
  27. LiuM. ZhaoH. LiuF. Effects of Zuojin Pills on dendritic cells and their inflammatory differentiation inulcerative colitis mice.Chin. J. Trad. Chin. Med.2022372714718
    [Google Scholar]
  28. AnwerS.T. MobashirM. FantoukhO.I. KhanB. ImtiyazK. NaqviI.H. RizviM.M.A. Synthesis of silver nano particles using myricetin and the in-vitro assessment of anti-colorectal cancer activity: In-silico integration.Int. J. Mol. Sci.202223191102410.3390/ijms231911024 36232319
    [Google Scholar]
  29. KhoujaH.I. AshankytyI.M. BajraiL.H. KumarP.K.P. KamalM.A. FirozA. MobashirM. Multi-staged gene expression profiling reveals potential genes and the critical pathways in kidney cancer.Sci. Rep.2022121724010.1038/s41598‑022‑11143‑6 35508649
    [Google Scholar]
  30. MobashirM. TurunenS.P. IzhariM.A. AshankytyI.M. HelledayT. LehtiK. An approach for systems-level understanding of prostate cancer from high-throughput data integration to pathway modeling and simulation.Cells20221124412110.3390/cells11244121 36552885
    [Google Scholar]
  31. BajraiL.H. SohrabS.S. AlandijanyT.A. MobashirM. ReyazM. KamalM.A. FirozA. ParveenS. AzharE.I. Gene expression profiling of early acute febrile stage of dengue infection and its comparative analysis with streptococcus pneumoniae infection.Front. Cell. Infect. Microbiol.20211170790510.3389/fcimb.2021.707905 34778101
    [Google Scholar]
  32. LeeH.O. HongY. EtliogluH.E. ChoY.B. PomellaV. Van den BoschB. VanheckeJ. VerbandtS. HongH. MinJ.W. KimN. EumH.H. QianJ. BoeckxB. LambrechtsD. TsantoulisP. De HertoghG. ChungW. LeeT. AnM. ShinH.T. JoungJ.G. JungM.H. KoG. WirapatiP. KimS.H. KimH.C. YunS.H. TanI.B.H. RanjanB. LeeW.Y. KimT.Y. ChoiJ.K. KimY.J. PrabhakarS. TejparS. ParkW.Y. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer.Nat. Genet.202052659460310.1038/s41588‑020‑0636‑z 32451460
    [Google Scholar]
  33. WuT.D. MadireddiS. de AlmeidaP.E. BanchereauR. ChenY.J.J. ChitreA.S. ChiangE.Y. IftikharH. O’GormanW.E. Au-YeungA. TakahashiC. GoldsteinL.D. PoonC. KeerthivasanS. de Almeida NagataD.E. DuX. LeeH.M. BantaK.L. MariathasanS. Das ThakurM. HuseniM.A. BallingerM. EstayI. CaplaziP. ModrusanZ. DelamarreL. MellmanI. BourgonR. GroganJ.L. Peripheral T cell expansion predicts tumour infiltration and clinical response.Nature2020579779827427810.1038/s41586‑020‑2056‑8 32103181
    [Google Scholar]
  34. QianJ. OlbrechtS. BoeckxB. VosH. LaouiD. EtliogluE. WautersE. PomellaV. VerbandtS. BusschaertP. BassezA. FrankenA. BemptM.V. XiongJ. WeynandB. van HerckY. AntoranzA. BosisioF.M. ThienpontB. FlorisG. VergoteI. SmeetsA. TejparS. LambrechtsD. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling.Cell Res.202030974576210.1038/s41422‑020‑0355‑0 32561858
    [Google Scholar]
  35. RanjbaryA.G. BagherzadehA. SabbaghiS.S. FaghihiA. KarimiD.N. NajiS. kardani, M. Chlorogenic acid induces apoptosis and cell-cycle arrest in colorectal cancer cells.Mol. Biol. Rep.202350129845985710.1007/s11033‑023‑08854‑y 37847443
    [Google Scholar]
  36. IshakN.I.M. MohamedS. MadzukiI.N. MustaphaN.M. EsaN.M. Limonin modulated immune and inflammatory responses to suppress colorectal adenocarcinoma in mice model.Naunyn Schmiedebergs Arch. Pharmacol.202139491907191510.1007/s00210‑021‑02101‑6 34009457
    [Google Scholar]
  37. YouW. DiA. ZhangL. ZhaoG. Effects of wogonin on the growth and metastasis of colon cancer through the Hippo signaling pathway.Bioengineered20221322586259710.1080/21655979.2021.2019173 35037825
    [Google Scholar]
  38. CuiK. WuH. FanJ. ZhangL. LiH. GuoH. YangR. LiZ. The mixture of ferulic acid and P-Coumaric acid suppresses colorectal cancer through lncRNA 495810/PKM2 mediated aerobic glycolysis.Int. J. Mol. Sci.202223201210610.3390/ijms232012106 36292959
    [Google Scholar]
  39. YanS. ChangJ. HaoX. LiuJ. TanX. GengZ. WangZ. Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora.Phytomedicine202210215421710.1016/j.phymed.2022.154217 35660350
    [Google Scholar]
  40. WijewanthaN. SaneS. EikangerM. AntonyR.M. PottsR.A. LangL. RezvaniK. SeredaG. Enhancing anti-tumorigenic efficacy of eugenol in human colon cancer cells using enzyme-responsive nanoparticles.Cancers 2023154114510.3390/cancers15041145 36831488
    [Google Scholar]
  41. GongJ. ZhouS. YangS. Vanillic acid suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells.Int. J. Mol. Sci.201920346510.3390/ijms20030465 30678221
    [Google Scholar]
  42. WangP. GaoX. YangS. SunZ. DianL. QasimM. Thu PhyoA. LiangZ. SunY. Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/β-catenin signaling pathway and epithelial–mesenchymal transition.Drug Des. Devel. Ther.2019132235224710.2147/DDDT.S207315 31371920
    [Google Scholar]
  43. LanL. WangY. PanZ. WangB. YueZ. JiangZ. LiL. WangC. TangH. Rhamnetin induces apoptosis in human breast cancer cells via the miR-34a/Notch-1 signaling pathway.Oncol. Lett.2019171676682 30655816
    [Google Scholar]
  44. MandalD. SahuB.R. ParijaT. Combination of tamoxifen and D-limonene enhances therapeutic efficacy in breast cancer cells.Med. Oncol.202340821610.1007/s12032‑023‑02081‑y 37391551
    [Google Scholar]
  45. ChungD.J. WangC.J. YehC.W. TsengT.H. Inhibition of the proliferation and invasion of C6 Glioma cells by tricin via the upregulation of focal-adhesion-kinase-targeting microRNA-7.J. Agric. Food Chem.201866266708671610.1021/acs.jafc.8b00604 29877083
    [Google Scholar]
  46. PanZ. LinH. FuY. ZengF. GuF. NiuG. FangJ. GuB. Identification of gene signatures associated with ulcerative colitis and the association with immune infiltrates in colon cancer.Front. Immunol.202314108689810.3389/fimmu.2023.1086898 36742294
    [Google Scholar]
  47. WanJ.L. WangB. WuM.L. LiJ. GongR.M. SongL.N. ZhangH.S. ZhuG.Q. ChenS.P. CaiJ.L. XingX.X. WangY.D. YangY. CaiC.Z. HuangR. LiuH. DaiZ. MTDH antisense oligonucleotides reshape the immunosuppressive tumor microenvironment to sensitize Hepatocellular Carcinoma to immune checkpoint blockade therapy.Cancer Lett.202254121575010.1016/j.canlet.2022.215750 35609735
    [Google Scholar]
  48. WangS. LongS. DengZ. WuW. Positive role of chinese herbal medicine in cancer immune regulation.Am. J. Chin. Med.20204871577159210.1142/S0192415X20500780 33202152
    [Google Scholar]
  49. YuY. WangS. LiuZ. ZhangX. HuZ. DongH. LuX. ZhengJ. CuiH. Traditional Chinese medicine in the era of immune checkpoint inhibitor: Theory, development, and future directions.Chin. Med.20231815910.1186/s13020‑023‑00751‑7 37210537
    [Google Scholar]
  50. PanJ. XuY. SongH. ZhouX. YaoZ. JiG. Extracts of Zuo Jin Wan, a traditional Chinese medicine, phenocopies 5-HTR1D antagonist in attenuating Wnt/β-catenin signaling in colorectal cancer cells.BMC Complement. Altern. Med.201717150610.1186/s12906‑017‑2006‑7 29183322
    [Google Scholar]
  51. WeiZ. ZhouJ. YuH. PuY. ChengY. ZhangY. JiQ. ZhuH. Zuo jin wan reverses the resistance of colorectal cancer to oxaliplatin by regulating the MALAT1/miR-200s/JNK signaling pathway.Evid. Based Complement. Alternat. Med.2022202211310.1155/2022/3032407 36248422
    [Google Scholar]
  52. SuiH. PanS.F. FengY. JinB.H. LiuX. ZhouL.H. HouF.G. WangW.H. FuX.L. HanZ.F. RenJ.L. ShiX.L. ZhuH.R. LiQ. Zuo Jin Wan reverses P-gp-mediated drug-resistance by inhibiting activation of the PI3K/Akt/NF-κB pathway.BMC Complement. Altern. Med.201414127910.1186/1472‑6882‑14‑279 25085593
    [Google Scholar]
  53. WuT. LiuX. LiuF. Regulatory Effect of Zuojin Pill on the Level of Memory T Cells in DSS- induced ulcerative colitis mice.Zhongyao Xinyao Yu Linchuang Yaoli2020311011581164
    [Google Scholar]
  54. YueG. GaoS. LeeJ. ChanY.Y. WongE. ZhengT. LiX.X. ShawP.C. SimmondsM. LauC. A natural flavone tricin from grains can alleviate tumor growth and lung metastasis in colorectal tumor mice.Molecules20202516373010.3390/molecules25163730 32824166
    [Google Scholar]
  55. CaoH. GaoY. WangR. GuoQ. HuiH. Wogonin reverses the drug resistance of chronic myelogenous leukemia cells to imatinib through CXCL12-CXCR4/7 axis in bone marrow microenvironment.Ann. Transl. Med.2020817104610.21037/atm‑20‑1166 33145265
    [Google Scholar]
  56. ZhaoY. YaoJ. WuX.P. ZhaoL. ZhouY.X. ZhangY. YouQ.D. GuoQ.L. LuN. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL‐6/STAT3 signaling pathway.Mol. Carcinog.201554S1E81E9310.1002/mc.22182 24976450
    [Google Scholar]
  57. WagleS. SimH.J. BhattaraiG. ChoiK.C. KookS.H. LeeJ.C. JeonY.M. Supplemental ferulic acid inhibits total body irradiation-mediated bone marrow damage, bone mass loss, stem cell senescence, and hematopoietic defect in mice by enhancing antioxidant defense systems.Antioxidants2021108120910.3390/antiox10081209 34439457
    [Google Scholar]
  58. ShahD. ChallagundlaN. DaveV. PatidarA. SahaB. NivsarkarM. TrivediV.B. Agrawal-RajputR. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages.Phytomedicine20229915390410.1016/j.phymed.2021.153904 35231825
    [Google Scholar]
  59. YangZ. BianM. MaJ. DongY. YangD. QiuM. GaoZ. Berberine regulates pulmonary inflammatory microenvironment and decreases collagen deposition in response to bleomycin‐induced pulmonary fibrosis in mice.Basic Clin. Pharmacol. Toxicol.2023132215417010.1111/bcpt.13818 36433932
    [Google Scholar]
  60. JiangZ.B. HuangJ.M. XieY.J. ZhangY.Z. ChangC. LaiH.L. WangW. YaoX.J. FanX.X. WuQ.B. XieC. WangM.F. LeungE.L.H. Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis.J. Exp. Clin. Cancer Res.202039124910.1186/s13046‑020‑01741‑5 33208183
    [Google Scholar]
  61. YangW. GongX. WangX. HuangC. A mediator of phosphorylated Smad2/3, evodiamine, in the reversion of TAF-induced EMT in normal colonic epithelial cells.Invest. New Drugs201937586587510.1007/s10637‑018‑0702‑x 30488243
    [Google Scholar]
  62. ZhangF. HuangH. QinY. ChenC. SheL. WangJ. HuangD. TangQ. LiuY. ZhuG. ZhangX. MTDH associates with m6A RNA methylation and predicts cancer response for immune checkpoint treatment.iScience2021241010310210.1016/j.isci.2021.103102 34622157
    [Google Scholar]
  63. SongG. XuS. ZhangH. WangY. XiaoC. JiangT. WuL. ZhangT. SunX. ZhongL. ZhouC. WangZ. PengZ. ChenJ. WangX. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway.J. Exp. Clin. Cancer Res.201635114810.1186/s13046‑016‑0427‑7 27644693
    [Google Scholar]
  64. LiuL. YangS. LinK. YuX. MengJ. MaC. WuZ. HaoY. ChenN. GeQ. GaoW. WangX. LamE.W.F. ZhangL. LiF. JinB. JinD. Sp1 induced gene TIMP1 is related to immune cell infiltration in glioblastoma.Sci. Rep.20221211118110.1038/s41598‑022‑14751‑4 35778451
    [Google Scholar]
  65. El-AshmawyN.E. El-ZamaranyE.A. KhedrE.G. Abo-SaifM.A. Effect of modification of MTDH gene expression on colorectal cancer aggressiveness.Gene2019698929910.1016/j.gene.2019.02.069 30836117
    [Google Scholar]
  66. ShenM. SmithH.A. WeiY. JiangY.Z. ZhaoS. WangN. RowickiM. TangY. HangX. WuS. WanL. ShaoZ.M. KangY. Pharmacological disruption of the MTDH–SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer.Nat. Can.202131607410.1038/s43018‑021‑00280‑y 35121988
    [Google Scholar]
  67. WangL. ZhangN. HanD. SuP. ChenB. ZhaoW. LiuY. ZhangH. HuG. YangQ. MTDH promotes intestinal inflammation by positively regulating tlr signalling.J. Crohn’s Colitis202115122103211710.1093/ecco‑jcc/jjab086 33987665
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073281374231228041841
Loading
/content/journals/cchts/10.2174/0113862073281374231228041841
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test