Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Esophageal cancer (EC) is one of the deadliest malignancies worldwide. Gynostemma pentaphyllum Thunb. Makino (GpM) has been used in traditional Chinese medicine as a treatment for tumors and hyperlipidemia. Nevertheless, the active components and underlying mechanisms of anti-EC effects of GpM remain elusive.

Objective

This study aims to determine the major active ingredients of GpM in the treatment of EC and to explore their molecular mechanisms by using network pharmacology, molecular docking, and experiments.

Methods

Firstly, active ingredients and potential targets of GpM, as well as targets of EC, were screened in relevant databases to construct a compound-target network and a protein-protein interaction (PPI) network that narrowed down the pool of ingredients and targets. This was followed by gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, molecular docking, ADME and toxicity risk prediction, cell viability assays, scratch assays, Transwell cell invasion assays, and Western blotting analysis were subsequently applied to validate the results of the network analysis.

Results

The screening produced a total of 21 active ingredients and 167 ingredient-related targets for GpM, along with 2653 targets for EC. The PPI network analysis highlighted three targets of interest, namely AKT1, TP53, and VEGFA, and the compound-target network identified three possible active ingredients: quercetin, rhamnazin, and isofucosterol. GO and EKGG indicated that the mechanism of action might be related to the PI3K/AKT signaling pathway as well as the regulation of cell motility and cell migration. Molecular docking and pharmacokinetic analyses suggest that quercetin and isoprostanoid sterols may have therapeutic value and safety for EC. The experiments confirmed that GpM can inhibit EC cell proliferation, migration, and invasion and suppress PI3K and AKT phosphorylation.

Conclusion

Our findings indicate that GpM exerts its anti-tumor effect on EC by inhibiting EC cell migration and invasion downregulation of the PI3K/AKT signaling pathway. Hence, we have reason to believe that GpM could be a promising candidate for the treatment of EC.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073280183240108113853
2024-01-12
2025-04-02
The full text of this item is not currently available.

References

  1. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. EnzingerP.C. MayerR.J. Esophageal cancer.N. Engl. J. Med.2003349232241225210.1056/NEJMra035010 14657432
    [Google Scholar]
  4. HaradaK. RogersJ.E. IwatsukiM. YamashitaK. BabaH. AjaniJ.A. Recent advances in treating oesophageal cancer.F1000 Res.20209118910.12688/f1000research.22926.1 33042518
    [Google Scholar]
  5. OhashiS. MiyamotoS. KikuchiO. GotoT. AmanumaY. MutoM. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma.Gastroenterology201514971700171510.1053/j.gastro.2015.08.054 26376349
    [Google Scholar]
  6. WangY. YangW. WangQ. ZhouY. Mechanisms of esophageal cancer metastasis and treatment progress.Front. Immunol.202314120650410.3389/fimmu.2023.1206504 37359527
    [Google Scholar]
  7. LiQ. LiuT. DingZ. Neoadjuvant immunotherapy for resectable esophageal cancer: A review.Front. Immunol.202213105184110.3389/fimmu.2022.1051841 36569908
    [Google Scholar]
  8. ShahM.A. AltorkiN. PatelP. HarrisonS. BassA. AbramsJ.A. Improving outcomes in patients with oesophageal cancer.Nat. Rev. Clin. Oncol.202320639040710.1038/s41571‑023‑00757‑y 37085570
    [Google Scholar]
  9. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  10. XiangY. GuoZ. ZhuP. ChenJ. HuangY. Traditional chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science.Cancer Med.2019851958197510.1002/cam4.2108 30945475
    [Google Scholar]
  11. YingJ. ZhangM. QiuX. LuY. The potential of herb medicines in the treatment of esophageal cancer.Biomed. Pharmacother.201810338139010.1016/j.biopha.2018.04.088 29674273
    [Google Scholar]
  12. LiuH. LiX. DuanY. XieJ.B. PiaoX.L. Mechanism of gypenosides of Gynostemma pentaphyllum inducing apoptosis of renal cell carcinoma by PI3K/AKT/mTOR pathway.J. Ethnopharmacol.202127111390710.1016/j.jep.2021.113907 33556477
    [Google Scholar]
  13. LiaoW. KhanI. HuangG. ChenS. LiuL. LeongW.K. LiX.A. WuJ. Wendy HsiaoW.L. Bifidobacterium animalis: The missing link for the cancer-preventive effect of Gynostemma pentaphyllum.Gut Microbes2021131184762910.1080/19490976.2020.1847629 33228450
    [Google Scholar]
  14. LiuJ. ZhangL. RenY. GaoY. KangL. QiaoQ. Anticancer and immunoregulatory activity of Gynostemma pentaphyllum polysaccharides in H22 tumor-bearing mice.Int. J. Biol. Macromol.2014691410.1016/j.ijbiomac.2014.05.014 24832985
    [Google Scholar]
  15. XingS.F. LiuL.H. ZuM.L. LinM. ZhaiX.F. PiaoX.L. Inhibitory effect of damulin B from gynostemma pentaphyllum on human lung cancer cells.Planta Med.201985539440510.1055/a‑0810‑7738 30562828
    [Google Scholar]
  16. MaJ. HuX. LiaoC. XiaoH. ZhuQ. LiY. LiuZ. TaoA. HeZ. XuC. ZhengK. Gypenoside L inhibits proliferation of liver and esophageal cancer cells by inducing senescence.Molecules2019246105410.3390/molecules24061054 30889805
    [Google Scholar]
  17. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  18. FotisC. AntoranzA. HatziavramidisD. SakellaropoulosT. AlexopoulosL.G. Network-based technologies for early drug discovery.Drug Discov. Today201823362663510.1016/j.drudis.2017.12.001 29294361
    [Google Scholar]
  19. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  20. DengY. YeX. ChenY. RenH. XiaL. LiuY. LiuM. LiuH. ZhangH. WangK. ZhangJ. ZhangZ. Chemical Characteristics of Platycodon grandiflorum and its mechanism in lung cancer treatment.Front. Pharmacol.20211160982510.3389/fphar.2020.609825 33643040
    [Google Scholar]
  21. ShangL WangY LiJ Mechanism of sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol.2023302Pt A115876.
    [Google Scholar]
  22. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  23. BhatiaA.S. SaggiM.K. KaisS. Quantum machine learning predicting ADME-Tox properties in drug discovery.J. Chem. Inf. Model.202363216476648610.1021/acs.jcim.3c01079 37603536
    [Google Scholar]
  24. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  25. WuY. ZhangF. YangK. FangS. BuD. LiH. SunL. HuH. GaoK. WangW. ZhouX. ZhaoY. ChenJ. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping.Nucleic Acids Res.201947D1D1110D111710.1093/nar/gky1021 30380087
    [Google Scholar]
  26. GuL. LuJ. LiQ. WuN. ZhangL. LiH. XingW. ZhangX. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation.J. Ethnopharmacol.202025111248810.1016/j.jep.2019.112488 31866509
    [Google Scholar]
  27. BatemanA. MartinM-J. OrchardS. MagraneM. AgivetovaR. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. BursteinasB. Bye-A-JeeH. CoetzeeR. CukuraA. Da SilvaA. DennyP. DoganT. EbenezerT.G. FanJ. CastroL.G. GarmiriP. GeorghiouG. GonzalesL. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JokinenP. JoshiV. JyothiD. LockA. LopezR. LucianiA. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MenchiM. MishraA. MoulangK. NightingaleA. OliveiraC.S. PundirS. QiG. RajS. RiceD. LopezM.R. SaidiR. SampsonJ. SawfordT. SperettaE. TurnerE. TyagiN. VasudevP. VolynkinV. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA. PouxS. RedaschiN. AimoL. Argoud-PuyG. AuchinclossA. AxelsenK. BansalP. BaratinD. BlatterM-C. BollemanJ. BoutetE. BreuzaL. Casals-CasasC. de CastroE. EchioukhK.C. CoudertE. CucheB. DocheM. DornevilD. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GehantS. GerritsenV. GosA. Gruaz-GumowskiN. HinzU. HuloC. Hyka-NouspikelN. JungoF. KellerG. KerhornouA. LaraV. Le MercierP. LieberherrD. LombardotT. MartinX. MassonP. MorgatA. NetoT.B. PaesanoS. PedruzziI. PilboutS. PourcelL. PozzatoM. PruessM. RivoireC. SigristC. SonessonK. StutzA. SundaramS. TognolliM. VerbregueL. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. GaravelliJ.S. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. YehL-S. ZhangJ. RuchP. TeodoroD. UniProt: The universal protein knowledgebase in 2021.Nucleic Acids Res.202149D1D480D48910.1093/nar/gkaa1100 33237286
    [Google Scholar]
  28. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855[J] 31680165
    [Google Scholar]
  29. WishartD.S. KnoxC. GuoA.C. ShrivastavaS. HassanaliM. StothardP. ChangZ. WoolseyJ. DrugBank: A comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res.20063490001D668D67210.1093/nar/gkj067 16381955
    [Google Scholar]
  30. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards version 3: The human gene integrator.Database 201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  31. Whirl-CarrilloM. HuddartR. GongL. SangkuhlK. ThornC.F. WhaleyR. KleinT.E. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine.Clin. Pharmacol. Ther.2021110356357210.1002/cpt.2350 34216021
    [Google Scholar]
  32. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  33. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433Database issueD514D51710.1093/nar/gki033 15608251
    [Google Scholar]
  34. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  35. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  36. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  37. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  38. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  39. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  40. SrivastavaR. Theoretical studies on the molecular properties, toxicity, and biological efficacy of 21 new chemical entities.ACS Omega2021638248912490110.1021/acsomega.1c03736 34604670
    [Google Scholar]
  41. RosalesP.F. MarinhoF.F. GowerA. ChiarelloM. CanciB. Roesch-ElyM. PaulaF.R. MouraS. Bio-guided search of active indole alkaloids from Tabernaemontana catharinensis: Antitumour activity, toxicity in silico and molecular modelling studies.Bioorg. Chem.201985667410.1016/j.bioorg.2018.12.016 30599414
    [Google Scholar]
  42. EssaA.F. El-HawaryS.S. EmamS.E. KubacyT.M. El-KhrisyE.E.D.A.M. YounisI.Y. ElshamyA.I. Characterization of undescribed melanoma inhibitors from Euphorbia mauritanica L. cultivated in Egypt targeting BRAFV600E and MEK 1 kinases via in-silico study and ADME prediction.Phytochemistry202219811315410.1016/j.phytochem.2022.113154 35245525
    [Google Scholar]
  43. SegallM.D. BarberC. Addressing toxicity risk when designing and selecting compounds in early drug discovery.Drug Discov. Today201419568869310.1016/j.drudis.2014.01.006 24451294
    [Google Scholar]
  44. MaslarinouA. ManolopoulosV.G. RagiaG. Pharmacogenomic-guided dosing of fluoropyrimidines beyond DPYD: Time for a polygenic algorithm?Front. Pharmacol.202314118452310.3389/fphar.2023.1184523 37256234
    [Google Scholar]
  45. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  46. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  47. YuanZ. XieM. HuangH. Advances in the chemical constituents and pharmacological studies of gynostemma pentaphyllum. Asia-Pac.Tradit. Med.201915190197
    [Google Scholar]
  48. BergerS.I. IyengarR. Network analyses in systems pharmacology.Bioinformatics200925192466247210.1093/bioinformatics/btp465 19648136
    [Google Scholar]
  49. ChanS.T. YangN.C. HuangC.S. LiaoJ.W. YehS.L. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo.PLoS One201381e5425510.1371/journal.pone.0054255 23342112
    [Google Scholar]
  50. KimG.T. LeeS.H. KimJ. KimY.M. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.Int. J. Mol. Med.201433486386910.3892/ijmm.2014.1658 24535669
    [Google Scholar]
  51. KeeJ.Y. HanY.H. KimD.S. MunJ.G. ParkJ. JeongM.Y. UmJ.Y. HongS.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability.Phytomedicine201623131680169010.1016/j.phymed.2016.09.011 27823633
    [Google Scholar]
  52. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  53. SongY. HanM. ZhangX. Quercetin suppresses the migration and invasion in human colon cancer Caco-2 cells through regulating toll-like receptor 4/Nuclear Factor-kappa B pathway.Pharmacogn. Mag.20161246Suppl. 223710.4103/0973‑1296.182154 27279714
    [Google Scholar]
  54. MukherjeeS. PatraR. BehzadiP. MasottiA. PaoliniA. SarsharM. Toll-like receptor-guided therapeutic intervention of human cancers: Molecular and immunological perspectives.Front. Immunol.202314124434510.3389/fimmu.2023.1244345 37822929
    [Google Scholar]
  55. PadmaS. PatraR. Sen GuptaP.S. PandaS.K. RanaM.K. MukherjeeS. Cell surface fibroblast activation protein-2 (Fap2) of Fusobacterium nucleatum as a vaccine candidate for therapeutic intervention of human colorectal cancer: An immunoinformatics approach.Vaccines 202311352510.3390/vaccines11030525 36992108
    [Google Scholar]
  56. PatraR. DeyA.K. MukherjeeS. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma.PLoS One2023188e028906410.1371/journal.pone.0289064 37535606
    [Google Scholar]
  57. BehzadiP. García-PerdomoH.A. KarpińskiT.M. Toll-like receptors: General molecular and structural biology.J. Immunol. Res.2021202112110.1155/2021/9914854 34195298
    [Google Scholar]
  58. HabibaY.H. OmranG.A. HelmyM.W. HoussenM.E. Antitumor effects of rhamnazinon sorafenib-treated human hepatocellular carcinoma cell lines via modulation of VEGF signaling and PI3K/NF-κB p38/caspase-3 axes cross talk.Life Sci.202229712044310.1016/j.lfs.2022.120443 35245519
    [Google Scholar]
  59. WangS.S. LiuY. ZhangX.T. YuD.Q. Rhamnazin enhanced anti-tumor efficacy of anti-PD-1 therapy for lung cancer in mice through inhibition of PD-L1 expression.Tohoku J. Exp. Med.20232601637310.1620/tjem.2023.J014 36823182
    [Google Scholar]
  60. PatraR. DasN.C. MukherjeeS. Exploring the differential expression and prognostic significance of the COL11A1 gene in human colorectal carcinoma: An integrated bioinformatics approach.Front. Genet.20211260831310.3389/fgene.2021.608313 33597969
    [Google Scholar]
  61. PatraR. ChakrabortyJ. DasN.C. An integrated omics study on the role of HDAC9 gene in the oncogenic events of human gastrointestinal-tract associated cancers.Human Gene2023201189
    [Google Scholar]
  62. RevathideviS. MunirajanA.K. Akt in cancer: Mediator and more.Semin. Cancer Biol.201959809110.1016/j.semcancer.2019.06.002 31173856
    [Google Scholar]
  63. BalasuriyaN. McKennaM. LiuX. LiS. O’DonoghueP. Phosphorylation-dependent inhibition of Akt1.Genes 20189945010.3390/genes9090450 30205513
    [Google Scholar]
  64. SinghM. AggarwalS. MohantyA.K. MukhopadhyayT. Isolation, characterization and functional analysis of full length p53 cDNA from Bubalus bubalis.Gene2015568214615410.1016/j.gene.2015.05.047 26003295
    [Google Scholar]
  65. DuffyM.J. SynnottN.C. CrownJ. Mutant p53 as a target for cancer treatment.Eur. J. Cancer20178325826510.1016/j.ejca.2017.06.023 28756138
    [Google Scholar]
  66. ApteR.S. ChenD.S. FerraraN. VEGF in signaling and disease: Beyond discovery and development.Cell201917661248126410.1016/j.cell.2019.01.021 30849371
    [Google Scholar]
  67. MaS. LuC.C. YangL.Y. WangJ.J. WangB.S. CaiH.Q. HaoJ.J. XuX. CaiY. ZhangY. WangM.R. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis.J. Exp. Clin. Cancer Res.201837118310.1186/s13046‑018‑0851‑y 30081903
    [Google Scholar]
  68. PengY. WangY. ZhouC. MeiW. ZengC. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?Front. Oncol.20221281912810.3389/fonc.2022.819128 35402264
    [Google Scholar]
  69. Le RhunE. BertrandN. DumontA. TreschE. Le DeleyM.C. MailliezA. PreusserM. WellerM. RevillionF. BonneterreJ. Identification of single nucleotide polymorphisms of the PI3K-AKT-mTOR pathway as a risk factor of central nervous system metastasis in metastatic breast cancer.Eur. J. Cancer20178718919810.1016/j.ejca.2017.10.006 29103666
    [Google Scholar]
  70. XuW. YangZ. LuN. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition.Cell Adhes. Migr.20159431732410.1080/19336918.2015.1016686 26241004
    [Google Scholar]
  71. LiB. QinY. YuX. XuX. YuW. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis.Cell Prolif.2022551e1316710.1111/cpr.13167 34939255
    [Google Scholar]
  72. KimK.B.W.R. KimM.J. AhnD.H. Lipase inhibitory activity of chlorophyll a, isofucosterol and saringosterol isolated from chloroform fraction of Sargassum thunbergii.Nat. Prod. Res.201428161310131210.1080/14786419.2014.900769 24684169
    [Google Scholar]
  73. SzakácsG. VáradiA. Özvegy-LaczkaC. SarkadiB. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox).Drug Discov. Today2008139-1037939310.1016/j.drudis.2007.12.010 18468555
    [Google Scholar]
  74. BjeldanesL.F. ChangG.W. Mutagenic activity of quercetin and related compounds.Science1977197430357757810.1126/science.327550 327550
    [Google Scholar]
  75. ZhangX. WuC. In silico, in vitro , and in vivo evaluation of the developmental toxicity, estrogenic activity, and mutagenicity of four natural phenolic flavonoids at low exposure levels.ACS Omega2022764757476810.1021/acsomega.1c04239 35187296
    [Google Scholar]
  76. OkamotoT. Safety of quercetin for clinical application. [Review]Int. J. Mol. Med.200516227527810.3892/ijmm.16.2.275 16012761
    [Google Scholar]
  77. Ghafouri-FardS. ShabestariF.A. VaeziS. AbakA. ShooreiH. KarimiA. TaheriM. BasiriA. Emerging impact of quercetin in the treatment of prostate cancer.Biomed. Pharmacother.202113811154810.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  78. ShafabakhshR. AsemiZ. Quercetin: A natural compound for ovarian cancer treatment.J. Ovarian Res.20191215510.1186/s13048‑019‑0530‑4 31202269
    [Google Scholar]
  79. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms20133177 31261749
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073280183240108113853
Loading
/content/journals/cchts/10.2174/0113862073280183240108113853
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test