Skip to content
2000
Volume 28, Issue 3
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Lung adenocarcinoma (LUAD) is a common malignant tumor with no obvious clinical symptoms in its early stages. Patients can be divided into radiotherapy-sensitive groups (RS) and radiotherapy-resistant groups (RR) due to their varying conditions. The therapeutic effect of radiotherapy is quite different between the two groups. Therefore, this paper explores the role of radiation-related lung function genes in LUAD and its immune landscape.

Methods

Firstly, we divided LUAD samples from the TCGA cohort into RS and RR groups and analyzed differential expression to obtain differentially expressed genes (DEGs). Then, DEGs and patients' grouping information were input into the weighted co-expression network, and the genes in the radiotherapy-related modules were identified. Furthermore, after the intersection of DEGs and lung function-related genes, the prognosis-related genes were obtained through univariate Cox and Lasso-Cox analyses, respectively, and the risk model was constructed. Finally, the differences in prognosis and immunity of the samples in the risk model were explored. Additionally, we also performed a qPCR experiment on lung function-related genes.

Results

In this paper, radiation-related genes of LUAD were identified through a series of bioinformatics analyses. By conducting enrichment analysis on these genes, several pathways related to LUAD radiation were identified, and DEGs associated with significant prognosis were determined. Furthermore, a radiation-related risk model of LUAD was developed. All samples were divided into high-risk and low-risk groups based on the risk score, and the differences in immune cell infiltration abundance and immune function between these groups were evaluated. The qPCR experimental results demonstrated a significant difference in the expression of genes related to lung function.

Conclusion

The prognosis-related genes identified in this paper and the risk model created can serve as a reference for diagnosing and treating LUAD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073275640231228124547
2024-04-04
2025-04-02
Loading full text...

Full text loading...

References

  1. LeeJ.J.K. ParkS. ParkH. KimS. LeeJ. LeeJ. YoukJ. YiK. AnY. ParkI.K. KangC.H. ChungD.H. KimT.M. JeonY.K. HongD. ParkP.J. JuY.S. KimY.T. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma.Cell2019177718421857.e2110.1016/j.cell.2019.05.013 31155235
    [Google Scholar]
  2. SunZ. ChenX. HuangX. WuY. ShaoL. ZhouS. ZhengZ. LinY. ChenS. Cuproptosis and immune-related gene signature predicts immunotherapy response and prognosis in lung adenocarcinoma.Life2023137158310.3390/life13071583 37511958
    [Google Scholar]
  3. LiH. ShaX. WangW. HuangZ. ZhangP. LiuL. WangS. ZhouY. HeS. ShiJ. Identification of lysosomal genes associated with prognosis in lung adenocarcinoma.Transl. Lung Cancer Res.20231271477149510.21037/tlcr‑23‑14 37577321
    [Google Scholar]
  4. DubeyP. GopinathP. Enhanced targeted anticancer potential of AKT-1 siRNA, an inhibitor of Protein Kinase B, in combination with silver nanoparticle against non-small cell lung adenocarcinoma. Nano-Struct.Nano-Obj.20181410610910.1016/j.nanoso.2018.01.011
    [Google Scholar]
  5. Mary DeenaD. PrabhuS. VilwanathanR. PhilominalA. Anticancer activity of manganese dioxide/reduced graphene oxide nanocomposites against A549 human lung adenocarcinoma cell line. Nano-Struct.Nano-Obj.20233510103210.1016/j.nanoso.2023.101032
    [Google Scholar]
  6. LiangH. DengL. HouY. MengX. HuangX. RaoE. ZhengW. MauceriH. MackM. XuM. FuY.X. WeichselbaumR.R. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance.Nat. Commun.201781173610.1038/s41467‑017‑01566‑5 29170400
    [Google Scholar]
  7. WillersH. AzzoliC.G. SantivasiW.L. XiaF. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer.Cancer J.201319320020710.1097/PPO.0b013e318292e4e3 23708066
    [Google Scholar]
  8. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  9. LangfelderP. HorvathS. WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  10. KanehisaM. SatoY. KawashimaM. FurumichiM. TanabeM. KEGG as a reference resource for gene and protein annotation.Nucleic Acids Res.201644D1D457D46210.1093/nar/gkv1070 26476454
    [Google Scholar]
  11. FriedmanJ. HastieT. TibshiraniR. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.201033112210.18637/jss.v033.i01 20808728
    [Google Scholar]
  12. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. 200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  13. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformat.2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  14. ZongS. JiaoY. LiuX. MuW. YuanX. QuY. XiaY. LiuS. SunH. WangL. CuiB. LiuX. LiP. ZhaoY. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling.Cell Death Dis.202112660210.1038/s41419‑021‑03857‑8 34112753
    [Google Scholar]
  15. CreightonC. HanashS. BeerD. Gene expression patterns define pathways correlated with loss of differentiation in lung adenocarcinomas.FEBS Lett.20035401-316717010.1016/S0014‑5793(03)00259‑X 12681502
    [Google Scholar]
  16. HuangQ. Duan; Qian, X.; Fan, J.; Lv, Z.; Zhang, X.; Han, J.; Wu, F.; Guo, M.; Hu, G.; Du, J.; Chen, C.; Jin, Y. IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma.Sci. Rep.2016613655110.1038/srep36551 27819281
    [Google Scholar]
  17. LiY.W. BaiL. DaiL.X. HeX. ZhouX.P. Chromosomal and genetic analysis of a human lung adenocarcinoma cell line OM.Chin. Med. J. 2016129440540910.4103/0366‑6999.176066 26879013
    [Google Scholar]
  18. SundararajK.P. WoodR.E. PonnusamyS. SalasA.M. SzulcZ. BielawskaA. ObeidL.M. HannunY.A. OgretmenB. Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase.J. Biol. Chem.200427976152616210.1074/jbc.M310549200 14630908
    [Google Scholar]
  19. LiuY. MaG. LiuJ. ZhengH. HuangG. SongQ. PangZ. DuJ. SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment.Heliyon2022810e1086610.1016/j.heliyon.2022.e10866 36217463
    [Google Scholar]
  20. ZhangT. SuF. LuY. LingX. DaiH. YangT. ZhangB. ZhaoD. HouX. MYC/MAX-activated LINC00958 promotes lung adenocarcinoma by oncogenic transcriptional reprogramming through HOXA1 activation.Front. Oncol.20221280750710.3389/fonc.2022.807507 35223488
    [Google Scholar]
  21. XiaoL. LiQ. HuangY. FanZ. QinW. LiuB. YuanX. Integrative analysis constructs an extracellular matrix-associated gene signature for the prediction of survival and tumor immunity in lung adenocarcinoma.Front. Cell Dev. Biol.20221083504310.3389/fcell.2022.835043 35557945
    [Google Scholar]
  22. LiH. ZhangH. HuangG. BingZ. XuD. LiuJ. LuoH. AnX. Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells.J. Exp. Clin. Cancer Res.20224113310.1186/s13046‑021‑02230‑z 35073964
    [Google Scholar]
  23. YouJ. WangX. WangJ. YuanB. ZhangY. DDX59 promotes DNA replication in lung adenocarcinoma.Cell Death Discov.2017311609510.1038/cddiscovery.2016.95 28090355
    [Google Scholar]
  24. ChenJ. YuB. LiT. WangF.Q. FuJ.H. LiuS.M. WangY. ZhangX. YangH.T. Identification of activated pathways in lung adenocarcinoma based on network strategy.J. Cancer Res. Ther.202016479379910.4103/0973‑1482.199458 32930120
    [Google Scholar]
  25. VilayurE. de MalmancheJ. TrevillianP. FerreiraD. Metastatic lung adenocarcinoma- associated thrombotic microangiopathy in a renal transplant recipient.BMJ Case Rep.2018111e22670710.1136/bcr‑2018‑226707 30567242
    [Google Scholar]
  26. ZhangL. LiJ. LvX. GuoT. LiW. ZhangJ. MID1–PP2A complex functions as new insights in human lung adenocarcinoma.J. Cancer Res. Clin. Oncol.2018144585586410.1007/s00432‑018‑2601‑0 29450633
    [Google Scholar]
  27. BelliniM.J. PoloM.P. de AlanizM.J.T. de BravoM.G. Effect of simvastatin on the uptake and metabolic conversion of palmitic, dihomo-γ-linoleic and α-linolenic acids in A549 cells.Prostaglandins Leukot. Essent. Fatty Acids200369535135710.1016/S0952‑3278(03)00149‑2 14580370
    [Google Scholar]
  28. ZhangZ. XiahouZ. WuW. SongY. Nitrogen metabolism disorder accelerates occurrence and development of lung adenocarcinoma: A bioinformatic analysis and in vitro experiments.Front. Oncol.20221291677710.3389/fonc.2022.916777 35903696
    [Google Scholar]
  29. ZhangA. YangJ. MaC. LiF. LuoH. Development and validation of a robust ferroptosis-related prognostic signature in lung adenocarcinoma.Front. Cell Dev. Biol.2021961627110.3389/fcell.2021.616271 34249899
    [Google Scholar]
  30. PengW. ShengY. XiaoH. YeY. KwantwiL.B. ChengL. WangY. XuJ. WuQ. Lung adenocarcinoma cells promote self-migration and self-invasion by activating neutrophils to upregulate notch3 expression of cancer cells.Front. Mol. Biosci.2022876272910.3389/fmolb.2021.762729 35118116
    [Google Scholar]
  31. SongZ. LuoW. ZhengH. ZengY. WangJ. ChenT. Translational nanotherapeutics reprograms immune microenvironment in malignant pleural effusion of lung adenocarcinoma.Adv. Healthc. Mater.20211012210014910.1002/adhm.202100149 33870649
    [Google Scholar]
  32. ChenK. BaiJ. ReubenA. ZhaoH. KangG. ZhangC. QiQ. XuY. HubertS. ChangL. GuanY. FengL. ZhangK. ZhangK. YiX. XiaX. ChengS. YangF. ZhangJ. WangJ. Multiomics analysis reveals distinct immunogenomic features of lung cancer with ground-glass opacity.Am. J. Respir. Crit. Care Med.2021204101180119210.1164/rccm.202101‑0119OC 34473939
    [Google Scholar]
  33. YougbareI. BelemnabaL. MorinC. AbusninaA. SenouvoY.F. KeravisT. LugnierC. RousseauE. NCS 613, a potent PDE4 inhibitor, displays anti-inflammatory and anti-proliferative properties on A549 lung epithelial cells and human lung adenocarcinoma explants.Front. Pharmacol.202011126610.3389/fphar.2020.01266 32973507
    [Google Scholar]
  34. CalhounR.F.II NaziruddinB. Enriquez-RinconF. DuffyB.F. RitterJ.M. SundaresanS. PattersonG.A. CooperJ.D. MohanakumarT. Evidence for cytotoxic T lymphocyte response against human lung cancer: Reconstitution of antigenic epitope with peptide eluted from lung adenocarcinoma MHC class I.Surgery20001281768510.1067/msy.2000.106639 10876189
    [Google Scholar]
  35. WuG. WangY. WanY. Establishing an 8‐gene immune prognostic model based on TP53 status for lung adenocarcinoma.J. Clin. Lab. Anal.2022367e2453810.1002/jcla.24538 35689561
    [Google Scholar]
  36. LiY. ChenY. MiaoL. WangY. YuM. YanX. ZhaoQ. CaiH. XiaoY. HuangG. Stress-induced upregulation of TNFSF4 in cancer-associated fibroblast facilitates chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells.Cancer Lett.202149721222010.1016/j.canlet.2020.10.032 33132120
    [Google Scholar]
  37. ChenY. HuR. LiX. ShiZ. TianH. FengJ. YuS. B7-H4 and HHLA2, members of B7 family, are aberrantly expressed in EGFR mutated lung adenocarcinoma.Pathol. Res. Pract.20202161015313410.1016/j.prp.2020.153134 32853956
    [Google Scholar]
  38. ZhangJ. ChenY. ChenK. HuangY. XuX. ChenQ. HuangC. LuoJ. LinX. IL-33 drives the antitumour effects of dendritic cells via upregulating CYLD expression in pulmonary adenocarcinoma.Artif. Cells Nanomed. Biotechnol.20194711335134110.1080/21691401.2019.1596926 30964341
    [Google Scholar]
  39. WangS. LiangX. GuoR. GongJ. ZhongX. LiuY. WangD. HaoY. HuB. Identification of molecular subtypes in lung adenocarcinoma based on DNA methylation and gene expression profiling—a bioinformatic analysis.Ann. Transl. Med.2022101688210.21037/atm‑22‑3340 36111050
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073275640231228124547
Loading
/content/journals/cchts/10.2174/0113862073275640231228124547
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): bioinformatics; Lung adenocarcinoma; lung function; qPCR; radiotherapy; risk model
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test