- Home
- A-Z Publications
- Current Cancer Drug Targets
- Fast Track Listing
Current Cancer Drug Targets - Online First
Description text for Online First listing goes here...
21 - 23 of 23 results
-
-
Disulfiram-Copper Potentiates Anticancer Efficacy of Standard Chemotherapy Drugs in Bladder Cancer Animal Model through ROS-Autophagy-Ferroptosis Signalling Cascade
Available online: 25 September 2024More LessBackgroundCost-effective management of Urinary Bladder Cancer (UBC) is an unmet need.
AimsOur study aims to demonstrate the efficacy of a drug repurposing strategy by using disulfiram (DSF) and copper gluconate (Cu) as an add-on treatment combination to traditional GC-based chemotherapy against N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced UBC mice (C57J) model.
MethodsMale C57BL/6J mice were given 0.05% BBN in drinking water ad libitum, and tumour formation was verified by histological and physical evaluation. Animals were subsequently divided into eight groups and received treatment with different drug combinations. Control animals received only vehicle (DMSO). At the end of the treatment schedule, the bladder tumour was excised and further used to check the expression (mRNA and protein) of ALDH1 isoenzymes using qRT-PCR, western blot, and IHC methods. Autophagy induction was assessed by quantifying the expression of LC3B and SQSTM1/p62 proteins through IHC. Biochemical analysis of superoxide dismutase (SOD), reduced glutathione (GSH), and lipid peroxidation levels in the freshly isolated tumours was performed to check the alterations in the antioxidant system caused by combination treatment.
ResultsWe observed significant induction of an invasive form of bladder cancer in the mice after nineteen weeks of BBN exposure. The animals began exhibiting early indications of inflammatory alterations as early as the sixth week following BBN treatment. Furthermore, the wet bladder weight and overall tumour burden were significantly decreased (p< 0.0001) by DSF-Cu co-treatment in addition to the GC-based chemotherapy. Real-time PCR analysis revealed that treatment with disulfiram and copper gluconate significantly decreased (p<0.0001) the mRNA expression of ALDH1 isoenzymes. Comparing the triple drug combination group (GC+DSF-Cu) to the untreated mice, a significant rise in LC3B puncta (p<0.0001) and a decrease in P62/SQSTM1 (p=0.0002) were noted, indicating the induction of autophagy flux in the add-on group. When GC+DSF-Cu treated mice were compared to the untreated tumour group, a substantial decrease in ALDH1/2 protein expression was observed (p= 0.0029 in IHC and p<0.0001 in western blot). Lipid peroxidation was significantly higher (p<0.0001) in the triple drug combination group than in untreated mice. There was a simultaneous decrease in reduced glutathione (GSH) and enzyme superoxide dismutase (SOD) levels (p<0.0001), which strongly suggests the generation of reactive oxygen species and induction of ferroptotic cell death in the add-on therapy group. Additionally, in both IHC and western blot assays, ALDH1A3 expression was found to be significantly increased (p=0.0033, <0.0001 respectively) in GC+DSF-Cu treated mice relative to the untreated group, suggesting a potential connection between the ferroptosis pathway and ALDH1A3 overexpression.
ConclusionIt was found that disulfiram with copper treatment inhibits bladder tumour growth through ferroptosis-mediated ROS induction, which further activates the process of autophagy. Our results prove that DSF-Cu can be an effective add-on therapy along with the standard chemotherapy drugs for the treatment of UBC.
-
-
-
Regulation and Crosstalk of Cells and Factors in the Pancreatic Cancer Microenvironment
Authors: Jia Xu, Songmei Lou, Hui Huang, Jian Xu and Feng LuoAvailable online: 02 September 2024More LessPancreatic cancer is a highly malignant form of cancer that distinguishes itself from other gastrointestinal tumors through significant fibrosis and unique perineural invasion. These characteristics underscore the complexity of neural regulation within the pancreatic cancer Tumor Microenvironment (TME). This review aimed to explore the regulatory mechanisms and crosstalk among stromal cells and their factors within the pancreatic cancer microenvironment. We begin by reviewing the major components of the pancreatic cancer microenvironment, analyzing interactions among crucial cell types, such as Cancer-associated Fibroblasts (CAFs) and immune cells, and revealing the dynamic changes between tumor cells and surrounding nerves, immune, and stromal cells. We discuss the role of neural factors, including the Nerve Growth Factor (NGF) and Brain-derived Neurotrophic Factor (BDNF), in the progression of pancreatic cancer and the mechanisms by which the sympathetic and parasympathetic nervous systems regulate tumor cell growth, migration, and invasion. Interactions among stromal cells, cytokines, and neural factors in the pancreatic cancer microenvironment promote fibrosis and perineural invasion. A deeper understanding of the regulation and crosstalk among components in the pancreatic cancer microenvironment offers new perspectives for inhibiting fibrosis and perineural invasion in pancreatic cancer.
-
-
-
The Clinicopathological and Prognostic Significance of the Expression of PD-L1 and MET Genes in Breast Cancer: Potential Therapeutic Targets
Authors: Muhsen Al-Diabat, Nehad M. Ayoub, Laith AL Eitan, Moath Alshorman and Aymen ShatnawiAvailable online: 24 June 2024More LessIntroductionThe heterogeneity of breast cancer requires exploring novel prognostic biomarkers as well as therapeutic targets for the treatment of the disease.
MethodsThe METABRIC dataset was used to describe the gene expression of the programmed death-ligand 1 (PD-L1) and the hepatocyte growth factor receptor (MET) and their association with the tumor clinicopathologic characteristics and overall survival in breast cancer.
ResultsThe expression of the PD-L1 and MET genes correlated positively with the Nottingham Prognostic Index (NPI) (p=0.003 and p < 0.001, respectively). The expression of the two genes correlated inversely in patients with luminal A and luminal B tumors (r= – 0.089, p= 0.021 and r= – 0.116, p= 0.013, respectively). The PD-L1 mRNA levels were significantly higher in hormone receptor-negative and HER2-positive tumors. MET mRNA expression levels were significantly higher in hormone receptor-negative, HER2-enriched, and non-luminal breast cancers. The PD-L1/MET double-high expression was associated with younger age of patients at diagnosis, higher NPI scores, larger tumors, advanced stage, high-grade, hormone receptor-negativity, HER2-positivity, and non-luminal tumors. None of the genes or their double expression status was significantly associated with overall survival in this analysis.
ConclusionThe expression of the PD-L1 and MET genes is remarkably associated with worse tumor clinicopathologic features and poor prognosis in patients with breast cancer. Further investigations using combination drug regimens targeting PD-L1 and MET are important, particularly in breast tumors expressing high levels of both proteins.
-