Skip to content
2000
image of Exosomal circRNAs: The Key Role and Potential Therapeutic Target in Gastric Cancer

Abstract

A ring-stabilized endogenous non-coding RNA is called circular RNA (circRNA). Intercellular communication is mediated by exosomes, and circRNA is enriched and stabilized in exosomes. It has recently been demonstrated that cancer cells and tissues exhibit abnormal expression of exosomal circRNAs. By controlling angiogenesis, metabolism, metastasis, epithelial mesenchymal transition (EMT), tumor chemoresistance, immune evasion, and cell proliferation, it may also have an impact on the development of different malignancies. Furthermore, exosomal circRNAs have strong tissue selectivity, stability, and other qualities that make them useful for diagnostic purposes. Consequently, exosomal circRNAs offer a wide range of potential applications in the therapy of cancer and can be utilized as biomarkers and anti-tumor targets. The features and purposes of circRNAs and exosomes are briefly discussed in this review, which also methodically explains the function and possible mechanism of the function of exosomal circRNA in the onset of gastric cancer (GC). Furthermore, their clinical uses as targets and biomarkers for gastric cancers are also summarized and discussed in this work.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096318527240909082011
2024-10-17
2025-01-29
Loading full text...

Full text loading...

References

  1. Smyth E.C. Nilsson M. Grabsch H.I. van Grieken N.C.T. Lordick F. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  2. Eusebi L.H. Telese A. Marasco G. Bazzoli F. Zagari R.M. Gastric cancer prevention strategies: A global perspective. J. Gastroenterol. Hepatol. 2020 35 9 1495 1502 10.1111/jgh.15037 32181516
    [Google Scholar]
  3. Piscione M. Mazzone M. Di Marcantonio M.C. Muraro R. Mincione G. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship. Front. Microbiol. 2021 12 630852 10.3389/fmicb.2021.630852 33613500
    [Google Scholar]
  4. Arnold M. Abnet C.C. Neale R.E. Vignat J. Giovannucci E.L. McGlynn K.A. Bray F. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020 159 1 335 349.e15 10.1053/j.gastro.2020.02.068 32247694
    [Google Scholar]
  5. Sexton R.E. Al Hallak M.N. Diab M. Azmi A.S. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020 39 4 1179 1203 10.1007/s10555‑020‑09925‑3 32894370
    [Google Scholar]
  6. Machlowska J. Baj J. Sitarz M. Maciejewski R. Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 2020 21 11 4012 10.3390/ijms21114012 32512697
    [Google Scholar]
  7. Conti C.B. Agnesi S. Scaravaglio M. Masseria P. Dinelli M.E. Oldani M. Uggeri F. Early gastric cancer: Update on prevention, diagnosis and treatment. Int. J. Environ. Res. Public Health 2023 20 3 2149 10.3390/ijerph20032149 36767516
    [Google Scholar]
  8. Johnston F.M. Beckman M. Updates on management of gastric cancer. Curr. Oncol. Rep. 2019 21 8 67 10.1007/s11912‑019‑0820‑4 31236716
    [Google Scholar]
  9. Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit. 2019 25 3537 3541 10.12659/MSM.916475 31080234
    [Google Scholar]
  10. Necula L. Matei L. Dragu D. Neagu A.I. Mambet C. Nedeianu S. Bleotu C. Diaconu C.C. Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J. Gastroenterol. 2019 25 17 2029 2044 10.3748/wjg.v25.i17.2029 31114131
    [Google Scholar]
  11. Jiang L. Gong X. Liao W. Lv N. Yan R. Molecular targeted treatment and drug delivery system for gastric cancer. J. Cancer Res. Clin. Oncol. 2021 147 4 973 986 10.1007/s00432‑021‑03520‑x 33550445
    [Google Scholar]
  12. Yano T. Wang K.K. Photodynamic therapy for gastrointestinal cancer. Photochem. Photobiol. 2020 96 3 517 523 10.1111/php.13206 31886891
    [Google Scholar]
  13. Caba L. Florea L. Gug C. Dimitriu D.C. Gorduza E.V. Circular RNA—Is the Circle Perfect? Biomolecules 2021 11 12 1755 10.3390/biom11121755 34944400
    [Google Scholar]
  14. Lei B. Tian Z. Fan W. Ni B. Circular RNA: A novel biomarker and therapeutic target for human cancers. Int. J. Med. Sci. 2019 16 2 292 301 10.7150/ijms.28047 30745810
    [Google Scholar]
  15. Wang H.Y. Wang Y.P. Zeng X. Zheng Y. Guo Q.H. Ji R. Zhou Y.N. Circular RNA is a popular molecule in tumors of the digestive system (Review). Int. J. Oncol. 2020 57 1 21 42 10.3892/ijo.2020.5054 32377736
    [Google Scholar]
  16. Zhou W.Y. Cai Z.R. Liu J. Wang D.S. Ju H.Q. Xu R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 2020 19 1 172 10.1186/s12943‑020‑01286‑3 33317550
    [Google Scholar]
  17. Zhang Z. Yang T. Xiao J. Circular RNAs: Promising biomarkers for human diseases. EBioMedicine 2018 34 267 274 10.1016/j.ebiom.2018.07.036 30078734
    [Google Scholar]
  18. Li Y. Zheng Q. Bao C. Li S. Guo W. Zhao J. Chen D. Gu J. He X. Huang S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015 25 8 981 984 10.1038/cr.2015.82 26138677
    [Google Scholar]
  19. Han M. Zhang M. Qi M. Zhou Y. Li F. Fang S. Regulatory mechanism and promising clinical application of exosomal circular RNA in gastric cancer. Front. Oncol. 2023 13 1236679 10.3389/fonc.2023.1236679 38094607
    [Google Scholar]
  20. Liu H. Chen L. Peng Y. Yu S. Liu J. Wu L. Zhang L. Wu Q. Chang X. Yu X. Liu T. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget 2018 9 2 2887 2894 10.18632/oncotarget.20812 29416821
    [Google Scholar]
  21. Sanger H.L. Klotz G. Riesner D. Gross H.J. Kleinschmidt A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976 73 11 3852 3856 10.1073/pnas.73.11.3852 1069269
    [Google Scholar]
  22. Huang A. Zheng H. Wu Z. Chen M. Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020 10 8 3503 3517 10.7150/thno.42174 32206104
    [Google Scholar]
  23. Chen L.L. Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015 12 4 381 388 10.1080/15476286.2015.1020271 25746834
    [Google Scholar]
  24. Qu S. Zhong Y. Shang R. Zhang X. Song W. Kjems J. Li H. The emerging landscape of circular RNA in life processes. RNA Biol. 2017 14 8 992 999 10.1080/15476286.2016.1220473 27617908
    [Google Scholar]
  25. Eger N. Schoppe L. Schuster S. Laufs U. Boeckel J. N. Circular RNA splicing. Adv Exp Med Biol. 2018 1087 41 52
    [Google Scholar]
  26. Meng S. Zhou H. Feng Z. Xu Z. Tang Y. Li P. Wu M. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol. Cancer 2017 16 1 94 10.1186/s12943‑017‑0663‑2 28535767
    [Google Scholar]
  27. Qu S. Yang X. Li X. Wang J. Gao Y. Shang R. Sun W. Dou K. Li H. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 2015 365 2 141 148 10.1016/j.canlet.2015.06.003 26052092
    [Google Scholar]
  28. Altesha M.A. Ni T. Khan A. Liu K. Zheng X. Circular RNA in cardiovascular disease. J. Cell. Physiol. 2019 234 5 5588 5600 10.1002/jcp.27384 30341894
    [Google Scholar]
  29. Meng X. Li X. Zhang P. Wang J. Zhou Y. Chen M. Circular RNA: An emerging key player in RNA world. Brief. Bioinform. 2017 18 4 547 557 27255916
    [Google Scholar]
  30. He J. Xie Q. Xu H. Li J. Li Y. Circular RNAs and cancer. Cancer Lett. 2017 396 138 144 10.1016/j.canlet.2017.03.027 28342987
    [Google Scholar]
  31. Jeck W.R. Sharpless N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014 32 5 453 461 10.1038/nbt.2890 24811520
    [Google Scholar]
  32. Memczak S. Jens M. Elefsinioti A. Torti F. Krueger J. Rybak A. Maier L. Mackowiak S.D. Gregersen L.H. Munschauer M. Loewer A. Ziebold U. Landthaler M. Kocks C. le Noble F. Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013 495 7441 333 338 10.1038/nature11928 23446348
    [Google Scholar]
  33. Chen L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 2020 21 8 475 490 10.1038/s41580‑020‑0243‑y 32366901
    [Google Scholar]
  34. Wang M. Xie F. Lin J. Zhao Y. Zhang Q. Liao Z. Wei P. Diagnostic and prognostic value of circulating CircRNAs in cancer. Front. Med. (Lausanne) 2021 8 649383 10.3389/fmed.2021.649383 33816529
    [Google Scholar]
  35. Suzuki H. Zuo Y. Wang J. Zhang M.Q. Malhotra A. Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006 34 8 e63 e63 10.1093/nar/gkl151 16682442
    [Google Scholar]
  36. Salzman J. Chen R.E. Olsen M.N. Wang P.L. Brown P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013 9 9 e1003777 10.1371/journal.pgen.1003777 24039610
    [Google Scholar]
  37. Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013 19 2 141 157 10.1261/rna.035667.112 23249747
    [Google Scholar]
  38. Glažar P. Papavasileiou P. Rajewsky N. circBase: A database for circular RNAs. RNA 2014 20 11 1666 1670 10.1261/rna.043687.113 25234927
    [Google Scholar]
  39. Li R. Jiang J. Shi H. Qian H. Zhang X. Xu W. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci. 2020 77 9 1661 1680 10.1007/s00018‑019‑03345‑5 31659415
    [Google Scholar]
  40. Shi Y. Jia X. Xu J. The new function of circRNA: Translation. Clin. Transl. Oncol. 2020 22 12 2162 2169 10.1007/s12094‑020‑02371‑1 32449127
    [Google Scholar]
  41. Li J. Sun D. Pu W. Wang J. Peng Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer 2020 6 4 319 336 10.1016/j.trecan.2020.01.012 32209446
    [Google Scholar]
  42. Wang K. Gao X.Q. Wang T. Zhou L.Y. The function and therapeutic potential of circular RNA in cardiovascular diseases. Cardiovasc. Drugs Ther. 2021 2021 1 18 34269929
    [Google Scholar]
  43. Fan W. Pang H. Xie Z. Huang G. Zhou Z. Circular RNAs in diabetes mellitus and its complications. Front. Endocrinol. (Lausanne) 2022 13 885650 10.3389/fendo.2022.885650 35979435
    [Google Scholar]
  44. Wang Y. Mo Y. Peng M. Zhang S. Gong Z. Yan Q. Tang Y. He Y. Liao Q. Li X. Wu X. Xiang B. Zhou M. Li Y. Li G. Li X. Zeng Z. Guo C. Xiong W. The influence of circular RNAs on autophagy and disease progression. Autophagy 2022 18 2 240 253 10.1080/15548627.2021.1917131 33904341
    [Google Scholar]
  45. Chen Y. Li C. Tan C. Mai G. Liu X. [Circular RNA in human disease and their potential clinic significance] Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2017 34 1 133 137 28186613
    [Google Scholar]
  46. Li W. Liu J.Q. Chen M. Xu J. Zhu D. Circular RNA in cancer development and immune regulation. J. Cell. Mol. Med. 2022 26 6 1785 1798 10.1111/jcmm.16102 33277969
    [Google Scholar]
  47. Huang J. Sun H. Chen Z. Shao Y. Gu W. Mechanism and Function of Circular RNA in Regulating Solid Tumor Radiosensitivity. Int. J. Mol. Sci. 2022 23 18 10444 10.3390/ijms231810444 36142355
    [Google Scholar]
  48. Chen L. Shan G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 2021 505 49 57 10.1016/j.canlet.2021.02.004 33609610
    [Google Scholar]
  49. Akram F. Haq I. Nasir N. Shah F.I. Circular RNAs: Insights into Clinical and Therapeutic Approaches for Various Cancers. Curr. Protein Pept. Sci. 2023 24 2 130 142 10.2174/1389203724666230111113715 36635927
    [Google Scholar]
  50. Shan C. Zhang Y. Hao X. Gao J. Chen X. Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol. Cancer 2019 18 1 136 10.1186/s12943‑019‑1069‑0 31519189
    [Google Scholar]
  51. Lu Y. Li K. Gao Y. Liang W. Wang X. Chen L. CircRNAs in gastric cancer: Current research and potential clinical implications. FEBS Lett. 2021 595 21 2644 2654 10.1002/1873‑3468.14196 34561854
    [Google Scholar]
  52. Lässer C. Eldh M. Lötvall J. Isolation and characterization of RNA-containing exosomes. J. Vis. Exp. 2012 59 e3037 22257828
    [Google Scholar]
  53. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 1 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  54. Kupcova Skalnikova H. Bohuslavova B. Turnovcova K. Juhasova J. Juhas S. Rodinova M. Vodicka P. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes 2019 7 2 17 10.3390/proteomes7020017 31027284
    [Google Scholar]
  55. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  56. Zheng D. Huo M. Li B. Wang W. Piao H. Wang Y. Zhu Z. Li D. Wang T. Liu K. The role of exosomes and exosomal microRNA in cardiovascular disease. Front. Cell Dev. Biol. 2021 8 616161 10.3389/fcell.2020.616161 33511124
    [Google Scholar]
  57. Guo Z.Y. Tang Y. Cheng Y.C. Exosomes as targeted delivery drug system: Advances in exosome loading, surface functionalization and potential for clinical application. Curr. Drug Deliv. 2024 21 4 473 487 10.2174/1567201819666220613150814 35702803
    [Google Scholar]
  58. Arenaccio C. Federico M. The multifaceted functions of exosomes in health and disease: An overview. Adv Exp Med Biol. 2017 998 3 19
    [Google Scholar]
  59. He C. Zheng S. Luo Y. Wang B. Exosome theranostics: Biology and translational medicine. Theranostics 2018 8 1 237 255 10.7150/thno.21945 29290805
    [Google Scholar]
  60. Barile L. Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther. 2017 174 63 78 10.1016/j.pharmthera.2017.02.020 28202367
    [Google Scholar]
  61. Zhou Y. Zhang Y. Gong H. Luo S. Cui Y. The role of exosomes and their applications in cancer. Int. J. Mol. Sci. 2021 22 22 12204 10.3390/ijms222212204 34830085
    [Google Scholar]
  62. Li C. Hou X. Zhang P. Li J. Liu X. Wang Y. Guan Q. Zhou Y. Exosome-based tumor therapy: Opportunities and challenges. Curr. Drug Metab. 2020 21 5 339 351 10.2174/1389200221666200515103354 32410558
    [Google Scholar]
  63. Mashouri L. Yousefi H. Aref A.R. Ahadi A. Molaei F. Alahari S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019 18 1 75 10.1186/s12943‑019‑0991‑5 30940145
    [Google Scholar]
  64. Zhao X. Wu D. Ma X. Wang J. Hou W. Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed. Pharmacother. 2020 128 110237 10.1016/j.biopha.2020.110237 32470747
    [Google Scholar]
  65. Kahroba H. Hejazi M.S. Samadi N. Exosomes: From carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell. Mol. Life Sci. 2019 76 9 1747 1758 10.1007/s00018‑019‑03035‑2 30734835
    [Google Scholar]
  66. Chen T. Shao S. Li W. Liu Y. Cao Y. RETRACTED ARTICLE: The circular RNA hsa-circ-0072309 plays anti-tumour roles by sponging miR-100 through the deactivation of PI3K/AKT and mTOR pathways in the renal carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3638 3648 10.1080/21691401.2019.1657873 31456425
    [Google Scholar]
  67. He Y. Zheng L. Yuan M. Fan J. Rong L. Zhan T. Zhang J. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein. Anticancer Drugs 2022 33 10 1114 1125 10.1097/CAD.0000000000001358 36206097
    [Google Scholar]
  68. Zhou T. Zhao S. Tang S. Wang Y. Wu R. Zeng X. Yang P. Zhang X. Tian X. Guggulsterone promotes nasopharyngeal carcinoma cells exosomal Circfip1L1 to mediate miR-125a-5p/VEGFA affecting tumor angiogenesis. Curr. Mol. Pharmacol. 2023 16 8 870 880 36635928
    [Google Scholar]
  69. Hosseini M. Khatamianfar S. Hassanian S.M. Nedaeinia R. Shafiee M. Maftouh M. Ghayour-Mobarhan M. ShahidSales S. Avan A. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer. Curr. Pharm. Des. 2017 23 11 1705 1709 10.2174/1381612822666161201144634 27908272
    [Google Scholar]
  70. Thakur P. Dahiya H. Kaushal A. Gupta V.K. Saini A.K. Saini R.V. Exosomal miRNAs as next-generation therapy vehicles in breast cancer. Curr. Gene Ther. 2023 23 5 330 342 10.2174/1566523223666230215103524 37728084
    [Google Scholar]
  71. Xu Y. Han J. Zhang X. Zhang X. Song J. Gao Z. Qian H. Jin J. Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol. Rep. 2024 51 2 1 14 38099408
    [Google Scholar]
  72. Lu L. Fang S. Zhang Y. Jin L. Xu W. Liang Z. Exosomes and exosomal circRNAs: The rising stars in the progression, diagnosis and prognosis of gastric cancer. Cancer Manag. Res. 2021 13 8121 8129 10.2147/CMAR.S331221 34737640
    [Google Scholar]
  73. Molina-Castro S. Pereira-Marques J. Figueiredo C. Machado J.C. Varon C. Gastric cancer: Basic aspects. Helicobacter 2017 22 S1 Suppl. 1 e12412 10.1111/hel.12412 28891129
    [Google Scholar]
  74. Wortzel I. Dror S. Kenific C.M. Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019 49 3 347 360 10.1016/j.devcel.2019.04.011 31063754
    [Google Scholar]
  75. Yu L. Xie J. Liu X. Yu Y. Wang S. Plasma exosomal CircNEK9 accelerates the progression of gastric cancer via miR-409-3p/MAP7 axis. Dig. Dis. Sci. 2021 66 12 4274 4289 10.1007/s10620‑020‑06816‑z 33449227
    [Google Scholar]
  76. Hui C. Tian L. He X. Circular RNA circNHSL1 contributes to gastric cancer progression through the miR-149-5p/YWHAZ axis. Cancer Manag. Res. 2020 12 7117 7130 10.2147/CMAR.S253152 32848466
    [Google Scholar]
  77. Yang L. Venneti S. Nagrath D. Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 2017 19 1 163 194 10.1146/annurev‑bioeng‑071516‑044546 28301735
    [Google Scholar]
  78. Zhu Z. Rong Z. Luo Z. Yu Z. Zhang J. Qiu Z. Huang C. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis. Mol. Cancer 2019 18 1 126 10.1186/s12943‑019‑1054‑7 31438963
    [Google Scholar]
  79. Wang Y. Wang H. Zheng R. Wu P. Sun Z. Chen J. Zhang L. Zhang C. Qian H. Jiang J. Xu W. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. Cell Cycle 2021 20 5-6 522 536 10.1080/15384101.2021.1878327 33499704
    [Google Scholar]
  80. Li Q. Tian Y. Liang Y. Li C. CircHIPK3/miR-876-5p/PIK3R1 axis regulates regulation proliferation, migration, invasion, and glutaminolysis in gastric cancer cells. Cancer Cell Int. 2020 20 1 391 10.1186/s12935‑020‑01455‑w 32817745
    [Google Scholar]
  81. Lu J. Wang Y. Yoon C. Huang X. Xu Y. Xie J. Wang J. Lin J. Chen Q. Cao L. Zheng C. Li P. Huang C. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020 471 38 48 10.1016/j.canlet.2019.11.038 31811909
    [Google Scholar]
  82. Sang H. Zhang W. Peng L. Wei S. Zhu X. Huang K. Yang J. Chen M. Dang Y. Zhang G. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation. Cell Death Dis. 2022 13 1 56 10.1038/s41419‑021‑04364‑6 35027539
    [Google Scholar]
  83. Sherwood L.M. Parris E.E. Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971 285 21 1182 1186 10.1056/NEJM197111182852108 4938153
    [Google Scholar]
  84. Bhat S.M. Badiger V.A. Vasishta S. Chakraborty J. Prasad S. Ghosh S. Joshi M.B. 3D tumor angiogenesis models: Recent advances and challenges. J. Cancer Res. Clin. Oncol. 2021 147 12 3477 3494 10.1007/s00432‑021‑03814‑0 34613483
    [Google Scholar]
  85. Qi S. Deng S. Lian Z. Yu K. Novel drugs with high efficacy against tumor angiogenesis. Int. J. Mol. Sci. 2022 23 13 6934 10.3390/ijms23136934 35805939
    [Google Scholar]
  86. Mitchell D.C. Bryan B.A. Anti‐angiogenic therapy: Adapting strategies to overcome resistant tumors. J. Cell. Biochem. 2010 111 3 543 553 10.1002/jcb.22764 20626031
    [Google Scholar]
  87. Zhang X.P. Pei J.P. Zhang C.D. Yusupu M. Han M.H. Dai D.Q. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomed. Pharmacother. 2022 156 113921 10.1016/j.biopha.2022.113921 36411614
    [Google Scholar]
  88. Siveen K.S. Prabhu K. Krishnankutty R. Kuttikrishnan S. Tsakou M. Alali F.Q. Dermime S. Mohammad R.M. Uddin S. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: Potential and challenges. Curr. Vasc. Pharmacol. 2017 15 4 339 351 28056756
    [Google Scholar]
  89. Xie M. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol. Cancer 2020 19 1 22
    [Google Scholar]
  90. Li S. Li J. Zhang H. Zhang Y. Wang X. Yang H. Zhou Z. Hao X. Ying G. Ba Y. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem. Biophys. Res. Commun. 2021 560 37 44 10.1016/j.bbrc.2021.04.099 33965787
    [Google Scholar]
  91. Liu C. Yang J. Zhu F. Zhao Z. Gao L. Exosomal circ_0001190 regulates the progression of gastric cancer via miR-586/SOSTDC1 axis. Biochem. Genet. 2022 60 6 1895 1913 10.1007/s10528‑021‑10180‑6 35138469
    [Google Scholar]
  92. Vasan N. Baselga J. Hyman D.M. A view on drug resistance in cancer. Nature 2019 575 7782 299 309 10.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  93. Wang J. Zhang Y. Liu L. Yang T. Song J. Circular RNAs: New biomarkers of chemoresistance in cancer. Cancer Biol. Med. 2021 18 2 421 436 10.20892/j.issn.2095‑3941.2020.0312 33738995
    [Google Scholar]
  94. Lin Z. Ji Y. Zhou J. Li G. Wu Y. Liu W. Li Z. Liu T. Exosomal circRNAs in cancer: Implications for therapy resistance and biomarkers. Cancer Lett. 2023 566 216245 10.1016/j.canlet.2023.216245 37247772
    [Google Scholar]
  95. Yao W. Guo P. Mu Q. Wang Y. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother. Radiopharm. 2021 36 4 347 359 10.1089/cbr.2020.3578 32799541
    [Google Scholar]
  96. Liu S. Wu M. Peng M. Circ_0000260 regulates the development and deterioration of gastric adenocarcinoma with cisplatin resistance by upregulating MMP11 via targeting MiR-129-5p. Cancer Manag. Res. 2020 12 10505 10519 10.2147/CMAR.S272324 33122949
    [Google Scholar]
  97. Yang G. Tan J. Guo J. Wu Z. Zhan Q. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis. Anticancer Drugs 2022 33 10 1047 1057 10.1097/CAD.0000000000001386 36206102
    [Google Scholar]
  98. Zhong Y. Wang D. Ding Y. Tian G. Jiang B. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p. Biotechnol. Lett. 2021 43 2 339 351 10.1007/s10529‑020‑03036‑3 33123829
    [Google Scholar]
  99. Liang Q. Chu F. Zhang L. Jiang Y. Li L. Wu H. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition. Gut Liver 2023 17 3 389 403 10.5009/gnl210195 35975639
    [Google Scholar]
  100. Chen Y. Liu H. Zou J. Cao G. Li Y. Xing C. Wu J. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis. Hum. Cell 2022 36 1 258 275 10.1007/s13577‑022‑00790‑6 36323918
    [Google Scholar]
  101. Pastushenko I. Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019 29 3 212 226 10.1016/j.tcb.2018.12.001 30594349
    [Google Scholar]
  102. Singh M. Yelle N. Venugopal C. Singh S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther. 2018 182 80 94 10.1016/j.pharmthera.2017.08.009 28834698
    [Google Scholar]
  103. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  104. Zhang X. Wang S. Wang H. Cao J. Huang X. Chen Z. Xu P. Sun G. Xu J. Lv J. Xu Z. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019 18 1 20 10.1186/s12943‑018‑0935‑5 30717751
    [Google Scholar]
  105. Yang J. Zhang X. Cao J. Xu P. Chen Z. Wang S. Li B. Zhang L. Xie L. Fang L. Xu Z. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis. 2021 12 10 910 10.1038/s41419‑021‑04216‑3 34611143
    [Google Scholar]
  106. Jiang J. Li R. Wang J. Hou J. Qian H. Xu W. Circular RNA cdr1as inhibits the metastasis of gastric cancer through targeting miR-876-5p/GNG7 axis. Gastroenterol. Res. Pract. 2021 2021 1 13 10.1155/2021/5583029 34221006
    [Google Scholar]
  107. Lei X. Lei Y. Li J.K. Du W.X. Li R.G. Yang J. Li J. Li F. Tan H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020 470 126 133 10.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  108. Chen X. Yang T. Wang W. Xi W. Zhang T. Li Q. Yang A. Wang T. Circular RNAs in immune responses and immune diseases. Theranostics 2019 9 2 588 607 10.7150/thno.29678 30809295
    [Google Scholar]
  109. Mantovani A. Marchesi F. Malesci A. Laghi L. Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017 14 7 399 416 10.1038/nrclinonc.2016.217 28117416
    [Google Scholar]
  110. Pan Y. Yu Y. Wang X. Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020 11 583084 10.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  111. Song J. Xu X. He S. Wang N. Bai Y. Li B. Zhang S. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization. Hum. Cell 2022 35 5 1499 1511 10.1007/s13577‑022‑00739‑9 35796939
    [Google Scholar]
  112. Matsuoka T. Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J. Gastroenterol. 2018 24 26 2818 2832 10.3748/wjg.v24.i26.2818 30018477
    [Google Scholar]
  113. Wang Y. Liu J. Ma J. Sun T. Zhou Q. Wang W. Wang G. Wu P. Wang H. Jiang L. Yuan W. Sun Z. Ming L. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol. Cancer 2019 18 1 116 10.1186/s12943‑019‑1041‑z 31277663
    [Google Scholar]
  114. Zhong D. Wang Z. Ye Z. Wang Y. Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol. Cancer 2024 23 1 67 10.1186/s12943‑024‑01948‑6 38561768
    [Google Scholar]
  115. Xu L. Wu L.F. Deng F.Y. Exosome: An emerging source of biomarkers for human diseases. Curr. Mol. Med. 2019 19 6 387 394 10.2174/1566524019666190429144310 31288712
    [Google Scholar]
  116. Tang W. Fu K. Sun H. Rong D. Wang H. Cao H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer 2018 17 1 137 10.1186/s12943‑018‑0888‑8 30236115
    [Google Scholar]
  117. Li X. Lin Y.L. Shao J.K. Wu X.J. Li X. Yao H. Shi F.L. Li L.S. Zhang W.G. Chang Z.Y. Chai N.L. Wang Y.L. Linghu E.Q. Plasma exosomal hsa_circ_0079439 as a novel biomarker for early detection of gastric cancer. World J. Gastroenterol. 2023 29 22 3482 3496 10.3748/wjg.v29.i22.3482 37389236
    [Google Scholar]
  118. Sun H. Tang W. Rong D. Jin H. Fu K. Zhang W. Liu Z. Cao H. Cao X. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark. 2018 21 2 299 306 10.3233/CBM‑170379 29103021
    [Google Scholar]
  119. Shao Y. Tao X. Lu R. Zhang H. Ge J. Xiao B. Ye G. Guo J. Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol. Oncol. Res. 2020 26 3 1475 1482 10.1007/s12253‑019‑00716‑y 31432324
    [Google Scholar]
  120. Andre M. Caobi A. Miles J.S. Vashist A. Ruiz M.A. Raymond A.D. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024 24 1 322 10.1186/s12885‑024‑11819‑4 38454346
    [Google Scholar]
  121. Gan W. Song W. Gao Y. Zheng X. Wang F. Zhang Z. Zen K. Liang H. Yan X. Exosomal circRNAs in the plasma serve as novel biomarkers for IPF diagnosis and progression prediction. J. Transl. Med. 2024 22 1 264 10.1186/s12967‑024‑05034‑9 38462601
    [Google Scholar]
  122. Song Z. Wu Y. Yang J. Yang D. Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017 39 7 14626 10.1177/1010428317714626 28671042
    [Google Scholar]
  123. Tao X. Shao Y. Lu R. Ye Q. Xiao B. Ye G. Guo J. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol. Res. Pract. 2020 216 1 152763 10.1016/j.prp.2019.152763 31810586
    [Google Scholar]
  124. Zhang H. Zhu L. Bai M. Liu Y. Zhan Y. Deng T. Yang H. Sun W. Wang X. Zhu K. Fan Q. Li J. Ying G. Ba Y. Retracted: Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR‐133/PRDM16 pathway. Int. J. Cancer 2019 144 10 2501 2515 10.1002/ijc.31977 30412280
    [Google Scholar]
  125. Zheng P. Gao H. Xie X. Lu P. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathol. Oncol. Res. 2022 28 1610446 10.3389/pore.2022.1610446 35755416
    [Google Scholar]
  126. You J. Chen Y. Chen D. Li Y. Wang T. Zhu J. Hong Q. Li Q. Circular RNA 0001789 sponges miR-140-3p and regulates PAK2 to promote the progression of gastric cancer. J. Transl. Med. 2023 21 1 83 10.1186/s12967‑022‑03853‑2 36740679
    [Google Scholar]
  127. Wang Y. Li Z. Xu S. Guo J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J. Clin. Lab. Anal. 2020 34 7 e23359 10.1002/jcla.23359 32419229
    [Google Scholar]
  128. Kristensen L.S. Hansen T.B. Venø M.T. Kjems J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene 2018 37 5 555 565 10.1038/onc.2017.361 28991235
    [Google Scholar]
  129. Pofali P. Mondal A. Londhe V. Exosome as a natural gene delivery vector for cancer treatment. Curr. Cancer Drug Targets 2020 20 11 821 830 10.2174/1568009620666200924154149 32972340
    [Google Scholar]
  130. Syeda S. Rawat K. Shrivastava A. Pharmacological inhibition of exosome machinery: An emerging prospect in cancer therapeutics. Curr. Cancer Drug Targets 2022 22 7 560 576 10.2174/1568009622666220401093316 35366773
    [Google Scholar]
  131. Wang X. Zhang H. Yang H. Bai M. Ning T. Li S. Li J. Deng T. Ying G. Ba Y. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy. Curr. Cancer Drug Targets 2018 18 4 347 354 10.2174/1568009617666170710120311 28699500
    [Google Scholar]
  132. Yang Q. Li S. Ou H. Zhang Y. Zhu G. Li S. Lei L. Exosome-based delivery strategies for tumor therapy: An update on modification, loading, and clinical application. J. Nanobiotechnology 2024 22 1 41 10.1186/s12951‑024‑02298‑7 38281957
    [Google Scholar]
  133. Han Q. Chao J. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol. Therapeutics 2018 187 31 44 10.1186/s12951‑024‑02298‑7 38281957
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096318527240909082011
Loading
/content/journals/ccdt/10.2174/0115680096318527240909082011
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gastric cancer ; tumor targets ; diagnosis ; circRNA ; Exosomes ; biomarkers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test