Skip to content
2000
image of The Clinicopathological and Prognostic Significance of the Expression of PD-L1 and MET Genes in Breast Cancer: Potential Therapeutic Targets

Abstract

Introduction

The heterogeneity of breast cancer requires exploring novel prognostic biomarkers as well as therapeutic targets for the treatment of the disease.

Methods

The METABRIC dataset was used to describe the gene expression of the programmed death-ligand 1 (PD-L1) and the hepatocyte growth factor receptor (MET) and their association with the tumor clinicopathologic characteristics and overall survival in breast cancer.

Results

The expression of the PD-L1 and MET genes correlated positively with the Nottingham Prognostic Index (NPI) (p=0.003 and 0.001, respectively). The expression of the two genes correlated inversely in patients with luminal A and luminal B tumors (r= – 0.089, p= 0.021 and r= – 0.116, p= 0.013, respectively). The mRNA levels were significantly higher in hormone receptor-negative and HER2-positive tumors. mRNA expression levels were significantly higher in hormone receptor-negative, HER2-enriched, and non-luminal breast cancers. The double-high expression was associated with younger age of patients at diagnosis, higher NPI scores, larger tumors, advanced stage, high-grade, hormone receptor-negativity, HER2-positivity, and non-luminal tumors. None of the genes or their double expression status was significantly associated with overall survival in this analysis.

Conclusion

The expression of the PD-L1 and MET genes is remarkably associated with worse tumor clinicopathologic features and poor prognosis in patients with breast cancer. Further investigations using combination drug regimens targeting PD-L1 and MET are important, particularly in breast tumors expressing high levels of both proteins.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096333231240902070108
2024-06-24
2025-01-18
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Eliyatkin N. Yalçın E. Zengel B. Aktaş S. Vardar E. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way. J. Breast Health 2015 11 2 59 66 10.5152/tjbh.2015.1669 28331693
    [Google Scholar]
  3. Sørlie T. Perou C.M. Tibshirani R. Aas T. Geisler S. Johnsen H. Hastie T. Eisen M.B. van de Rijn M. Jeffrey S.S. Thorsen T. Quist H. Matese J.C. Brown P.O. Botstein D. Lønning P.E. Børresen-Dale A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. 2001 98 19 10869 10874 10.1073/pnas.191367098 11553815
    [Google Scholar]
  4. Perou C.M. Sørlie T. Eisen M.B. van de Rijn M. Jeffrey S.S. Rees C.A. Pollack J.R. Ross D.T. Johnsen H. Akslen L.A. Fluge Ø. Pergamenschikov A. Williams C. Zhu S.X. Lønning P.E. Børresen-Dale A.L. Brown P.O. Botstein D. Molecular portraits of human breast tumours. Nature 2000 406 6797 747 752 10.1038/35021093 10963602
    [Google Scholar]
  5. Hung S.K. Yang H.J. Lee M.S. Liu D.W. Chen L.C. Chew C.H. Lin C.H. Lee C.H. Li S.C. Hong C.L. Yu C.C. Yu B.H. Hsu F.C. Chiou W.Y. Lin H.Y. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: A propensity-score-matched cohort study. Breast Cancer Res. 2023 25 1 149 10.1186/s13058‑023‑01747‑9 38066611
    [Google Scholar]
  6. Kapila K. Francis I.M. Altemaimi R.A. Al-Ayadhy B. Alath P. Jaragh M. Mothafar F.J. Hormone receptors and human epidermal growth factor (HER2) expression in fine-needle aspirates from metastatic breast carcinoma – Role in patient management. J. Cytol. 2019 36 2 94 100 10.4103/JOC.JOC_117_18 30992644
    [Google Scholar]
  7. Parise C.A. Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J. Cancer Epidemiol. 2014 2014 1 11 10.1155/2014/469251 24955090
    [Google Scholar]
  8. Hartkopf A.D. Grischke E.M. Brucker S.Y. Endocrine-resistant breast cancer: Mechanisms and treatment. Breast Care 2020 15 4 347 354 10.1159/000508675 32982644
    [Google Scholar]
  9. Schlam I. Tarantino P. Tolaney S.M. Overcoming resistance to HER2-directed therapies in breast cancer. Cancers 2022 14 16 3996 10.3390/cancers14163996 36010990
    [Google Scholar]
  10. Neves Rebello Alves L. Dummer Meira D. Poppe Merigueti L. Correia Casotti M. do Prado Ventorim D. Ferreira Figueiredo Almeida J. Pereira de Sousa V. Cindra Sant’Ana M. Gonçalves Coutinho da Cruz R. Santos Louro L. Mendonça Santana G. Erik Santos Louro T. Evangelista Salazar R. Ribeiro Campos da Silva D. Stefani Siqueira Zetum A. Silva dos Reis Trabach R. Imbroisi Valle Errera F. de Paula F. de Vargas Wolfgramm dos Santos E. Fagundes de Carvalho E. Drumond Louro I. Biomarkers in breast cancer: An old story with a new end. Genes 2023 14 7 1364 10.3390/genes14071364 37510269
    [Google Scholar]
  11. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  12. Cavallo F. De Giovanni C. Nanni P. Forni G. Lollini P.L. The immune hallmarks of cancer. Cancer Immunol. Immunother. 2011 60 3 319 326 10.1007/s00262‑010‑0968‑0 21267721
    [Google Scholar]
  13. Santa-Maria C.A. Park S.J. Jain S. Gradishar W.J. Breast cancer and immunology: Biomarker and therapeutic developments. Expert Rev. Anticancer Ther. 2015 15 10 1215 1222 10.1586/14737140.2015.1086270 26358181
    [Google Scholar]
  14. Ayoub N.M. Al-Shami K.M. Yaghan R.J. Immunotherapy for HER2-positive breast cancer: Recent advances and combination therapeutic approaches. Breast Cancer 2019 11 53 69 10.2147/BCTT.S175360 30697064
    [Google Scholar]
  15. Fabrizio F.P. Trombetta D. Rossi A. Sparaneo A. Castellana S. Muscarella L.A. Gene code CD274/PD-L1 : From molecular basis toward cancer immunotherapy. Ther. Adv. Med. Oncol. 2018 10 10.1177/1758835918815598 30574211
    [Google Scholar]
  16. Parvez A. Choudhary F. Mudgal P. Khan R. Qureshi K.A. Farooqi H. Aspatwar A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023 14 1296341 10.3389/fimmu.2023.1296341 38106415
    [Google Scholar]
  17. Ullah A. Pulliam S. Karki N.R. Khan J. Jogezai S. Sultan S. Muhammad L. Khan M. Jamil N. Waheed A. Belakhlef S. Ghleilib I. Vail E. Heneidi S. Karim N.A. PD-L1 over-expression varies in different subtypes of lung cancer: Will This Affect Future therapies? Clin. Pract. 2022 12 5 653 671 10.3390/clinpract12050068 36136862
    [Google Scholar]
  18. Möller K. Fraune C. Blessin N.C. Lennartz M. Kluth M. Hube-Magg C. Lindhorst L. Dahlem R. Fisch M. Eichenauer T. Riechardt S. Simon R. Sauter G. Büscheck F. Höppner W. Matthies C. Doh O. Krech T. Marx A.H. Zecha H. Rink M. Steurer S. Clauditz T.S. Tumor cell PD-L1 expression is a strong predictor of unfavorable prognosis in immune checkpoint therapy-naive clear cell renal cell cancer. Int. Urol. Nephrol. 2021 53 12 2493 2503 10.1007/s11255‑021‑02841‑7 33797012
    [Google Scholar]
  19. Huang Y. Zhang S.D. McCRUDDEN C.I. Chan K.W. Lin Y. Kwok H.F. The prognostic significance of PD-L1 in bladder cancer. Oncol. Rep. 2015 33 6 3075 3084 10.3892/or.2015.3933 25963805
    [Google Scholar]
  20. Enkhbat T. Nishi M. Takasu C. Yoshikawa K. Jun H. Tokunaga T. Kashihara H. Ishikawa D. Shimada M. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer. Anticancer Res. 2018 38 6 3367 3373 10.21873/anticanres.12603 29848685
    [Google Scholar]
  21. Ayoub N.M. Fares M. Marji R. Al Bashir S.M. Yaghan R.J. programmed death-ligand 1 expression in breast cancer patients: Clinicopathological associations from a single-institution study. Breast Cancer 2021 13 603 615 10.2147/BCTT.S333123 34803400
    [Google Scholar]
  22. Yi M. Niu M. Xu L. Luo S. Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 2021 14 1 10 10.1186/s13045‑020‑01027‑5 33413496
    [Google Scholar]
  23. Cui J.W. Li Y. Yang Y. Yang H.K. Dong J.M. Xiao Z.H. He X. Guo J.H. Wang R.Q. Dai B. Zhou Z.L. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed. Pharmacother. 2024 171 116203 10.1016/j.biopha.2024.116203 38280330
    [Google Scholar]
  24. Li Y. Liang L. Dai W. Cai G. Xu Y. Li X. Li Q. Cai S. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol. Cancer 2016 15 1 55 10.1186/s12943‑016‑0539‑x 27552968
    [Google Scholar]
  25. Darb-Esfahani S. Kunze C.A. Kulbe H. Sehouli J. Wienert S. Lindner J. Budczies J. Bockmayr M. Dietel M. Denkert C. Braicu I. Jöhrens K. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma. Oncotarget 2016 7 2 1486 1499 10.18632/oncotarget.6429 26625204
    [Google Scholar]
  26. Ayoub N.M. Ibrahim D.R. Alkhalifa A.E. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies. Med. Oncol. 2021 38 12 143 10.1007/s12032‑021‑01596‑6 34665336
    [Google Scholar]
  27. Duh F.M. Scherer S.W. Tsui L.C. Lerman M.I. Zbar B. Schmidt L. Gene structure of the human MET proto-oncogene. Oncogene 1997 15 13 1583 1586 10.1038/sj.onc.1201338 9380410
    [Google Scholar]
  28. Comoglio P.M. Giordano S. Trusolino L. Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 2008 7 6 504 516 10.1038/nrd2530 18511928
    [Google Scholar]
  29. Organ S.L. Tsao M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011 3 1 S7 S19 10.1177/1758834011422556 22128289
    [Google Scholar]
  30. Zhang Y. Du Z. Zhang M. Biomarker development in MET-targeted therapy. Oncotarget 2016 7 24 37370 37389 10.18632/oncotarget.8276 27013592
    [Google Scholar]
  31. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  32. Chun H.W. Hong R. Significance of PD‑L1 clones and C‑MET expression in hepatocellular carcinoma. Oncol. Lett. 2019 17 6 5487 5498 10.3892/ol.2019.10222 31186768
    [Google Scholar]
  33. Xu R. Liu X. Li A. Song L. Liang J. Gao J. Tang X. c-Met up-regulates the expression of PD-L1 through MAPK/NF-κBp65 pathway. J. Mol. Med. 2022 100 4 585 598 10.1007/s00109‑022‑02179‑2 35122106
    [Google Scholar]
  34. Li E. Huang X. Zhang G. Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J. Exp. Clin. Cancer Res. 2021 40 1 279 10.1186/s13046‑021‑02055‑w 34479614
    [Google Scholar]
  35. Domènech M. Muñoz Marmol A.M. Mate J.L. Estival A. Moran T. Cucurull M. Saigi M. Hernandez A. Sanz C. Hernandez-Gallego A. Urbizu A. Martinez-Cardus A. Bernat A. Carcereny E. Correlation between PD-L1 expression and MET gene amplification in patients with advanced non-small-cell lung cancer and no other actionable oncogenic driver. Oncotarget 2021 12 18 1802 1810 10.18632/oncotarget.28045 34504652
    [Google Scholar]
  36. Leoncikas V. Wu H. Ward L.T. Kierzek A.M. Plant N.J. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production. Sci. Rep. 2016 6 1 19771 10.1038/srep19771 26813959
    [Google Scholar]
  37. Curtis C. Shah S.P. Chin S.F. Turashvili G. Rueda O.M. Dunning M.J. Speed D. Lynch A.G. Samarajiwa S. Yuan Y. Gräf S. Ha G. Haffari G. Bashashati A. Russell R. McKinney S. Langerød A. Green A. Provenzano E. Wishart G. Pinder S. Watson P. Markowetz F. Murphy L. Ellis I. Purushotham A. Børresen-Dale A.L. Brenton J.D. Tavaré S. Caldas C. Aparicio S. Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012 486 7403 346 352 10.1038/nature10983 22522925
    [Google Scholar]
  38. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  39. Gao J. Aksoy B.A. Dogrusoz U. Dresdner G. Gross B. Sumer S.O. Sun Y. Jacobsen A. Sinha R. Larsson E. Cerami E. Sander C. Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013 6 269 l1 10.1126/scisignal.2004088 23550210
    [Google Scholar]
  40. Jiang G. Zhang S. Yazdanparast A Li M. Pawar A.V. Liu Y. Inavolu S.M. Cheng L. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genomics 2016 17 7 525 10.1186/s12864‑016‑2911‑z
    [Google Scholar]
  41. Shatnawi A. Ayoub N.M. Alkhalifa A.E. ING4 Expression landscape and association with clinicopathologic characteristics in breast cancer. Clin. Breast Cancer 2021 21 4 e319 e331 10.1016/j.clbc.2020.11.011 33334698
    [Google Scholar]
  42. Alhamdan Y.R. Ayoub N.M. Jaradat S.K. Shatnawi A. Yaghan R.J. BRAF expression and copy number alterations predict unfavorable tumor features and adverse outcomes in patients with breast cancer. Int. J. Breast Cancer 2024 2024 1 11 10.1155/2024/6373900 38919805
    [Google Scholar]
  43. Lüönd F. Tiede S. Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer 2021 125 2 164 175 10.1038/s41416‑021‑01328‑7 33824479
    [Google Scholar]
  44. Cloud A.S. Vargheese A.M. Gunewardena S. Shimak R.M. Ganeshkumar S. Kumaraswamy E. Jensen R.A. Chennathukuzhi V.M. Loss of REST in breast cancer promotes tumor progression through estrogen sensitization, MMP24 and CEMIP overexpression. BMC Cancer 2022 22 1 180 10.1186/s12885‑022‑09280‑2 35177031
    [Google Scholar]
  45. Caputo R. Buono G. Piezzo M. Martinelli C. Cianniello D. Rizzo A. Pantano F. Staropoli N. Cangiano R. Turano S. Paris I. Nuzzo F. Fabi A. De Laurentiis M. Sacituzumab Govitecan for the treatment of advanced triple negative breast cancer patients: A multi-center real-world analysis. Front. Oncol. 2024 14 1362641 10.3389/fonc.2024.1362641 38595817
    [Google Scholar]
  46. Lopez-Gonzalez L. Sanchez Cendra A. Sanchez Cendra C. Roberts Cervantes E.D. Espinosa J.C. Pekarek T. Fraile-Martinez O. García-Montero C. Rodriguez-Slocker A.M. Jiménez-Álvarez L. Guijarro L.G. Aguado-Henche S. Monserrat J. Alvarez-Mon M. Pekarek L. Ortega M.A. Diaz-Pedrero R. Exploring biomarkers in breast cancer: Hallmarks of Diagnosis, treatment, and follow-up in clinical practice. Medicina 2024 60 1 168 10.3390/medicina60010168 38256428
    [Google Scholar]
  47. Ju X. Zhang H. Zhou Z. Wang Q. Regulation of PD-L1 expression in cancer and clinical implications in immunotherapy. Am. J. Cancer Res. 2020 10 1 1 11 32064150
    [Google Scholar]
  48. Coelho M.A. de Carné Trécesson S. Rana S. Zecchin D. Moore C. Molina-Arcas M. East P. Spencer-Dene B. Nye E. Barnouin K. Snijders A.P. Lai W.S. Blackshear P.J. Downward J. Oncogenic ras signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 2017 47 6 1083 1099.e6 10.1016/j.immuni.2017.11.016 29246442
    [Google Scholar]
  49. Cianfrocca M. Goldstein L.J. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004 9 6 606 616 10.1634/theoncologist.9‑6‑606 15561805
    [Google Scholar]
  50. Zhou L. Rueda M. Alkhateeb A. Classification of breast cancer nottingham prognostic index using high-dimensional embedding and residual neural network. Cancers 2022 14 4 934 10.3390/cancers14040934 35205681
    [Google Scholar]
  51. Zhang M. Sun H. Zhao S. Wang Y. Pu H. Wang Y. Zhang Q. Expression of PD-L1 and prognosis in breast cancer: A meta-analysis. Oncotarget 2017 8 19 31347 31354 10.18632/oncotarget.15532 28430626
    [Google Scholar]
  52. Guo Y. Yu P. Liu Z. Maimaiti Y. Wang S. Yin X. Liu C. Huang T. Prognostic and clinicopathological value of programmed death ligand-1 in breast cancer: A meta-analysis. PLoS One 2016 11 5 e0156323 10.1371/journal.pone.0156323 27227453
    [Google Scholar]
  53. Muenst S. Schaerli A.R. Gao F. Däster S. Trella E. Droeser R.A. Muraro M.G. Zajac P. Zanetti R. Gillanders W.E. Weber W.P. Soysal S.D. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2014 146 1 15 24 10.1007/s10549‑014‑2988‑5 24842267
    [Google Scholar]
  54. Murazawa C. Hashimoto N. Kuraishi K. Motoyama M. Hashimoto S.I. Ikeuchi M. Norimura S. Matsunaga T. Teramoto K. Haba R. Abe N. Yajima T. Kontani K. Status and prognostic value of immunological biomarkers of breast cancer. Oncol. Lett. 2023 25 4 164 10.3892/ol.2023.13750 36960188
    [Google Scholar]
  55. Gatalica Z. Snyder C. Maney T. Ghazalpour A. Holterman D.A. Xiao N. Overberg P. Rose I. Basu G.D. Vranic S. Lynch H.T. Von Hoff D.D. Hamid O. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomarkers Prev. 2014 23 12 2965 2970 10.1158/1055‑9965.EPI‑14‑0654 25392179
    [Google Scholar]
  56. Kim H.M. Lee J. Koo J.S. Clinicopathological and prognostic significance of programmed death ligand-1 expression in breast cancer: A meta-analysis. BMC Cancer 2017 17 1 690 10.1186/s12885‑017‑3670‑1 29041905
    [Google Scholar]
  57. Jia L. Yang X. Tian W. Guo S. Huang W. Zhao W. Increased expression of C-MET is associated with chemotherapy-resistant breast cancer and poor clinical outcome. Med. Sci. Monit. 2018 24 8239 8249 10.12659/MSM.913514 30444219
    [Google Scholar]
  58. Ho-Yen C.M. Green A.R. Rakha E.A. Brentnall A.R. Ellis I.O. Kermorgant S. Jones J.L. C‐Met in invasive breast cancer. Cancer 2014 120 2 163 171 10.1002/cncr.28386 24150964
    [Google Scholar]
  59. Tong G. Cheng B. Li J. Wu X. Nong Q. He L. Li X. Li L. Wang S. MACC1 regulates PDL1 expression and tumor immunity through the c‐Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med. 2019 8 16 7044 7054 10.1002/cam4.2542 31557409
    [Google Scholar]
  60. Song K.Y. Desar S. Pengo T. Shanley R. Giubellino A. Correlation of MET and PD-L1 expression in malignant melanoma. Cancers 2020 12 7 1847 10.3390/cancers12071847 32659961
    [Google Scholar]
  61. Kerr K.M. Thunnissen E. Dafni U. Finn S.P. Bubendorf L. Soltermann A. Verbeken E. Biernat W. Warth A. Marchetti A. Speel E.J.M. Pokharel S. Quinn A.M. Monkhorst K. Navarro A. Madsen L.B. Radonic T. Wilson J. De Luca G. Gray S.G. Cheney R. Savic S. Martorell M. Muley T. Baas P. Meldgaard P. Blackhall F. Dingemans A.M. Dziadziuszko R. Vansteenkiste J. Weder W. Polydoropoulou V. Geiger T. Kammler R. Peters S. Stahel R. Lungscape C. A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: Results from the european thoracic oncology platform (etop) lungscape project. Lung Cancer 2019 131 95 103 10.1016/j.lungcan.2019.03.012 31027705
    [Google Scholar]
  62. Wang Q.W. Sun L.H. Zhang Y. Wang Z. Zhao Z. Wang Z.L. Wang K.Y. Li G.Z. Xu J.B. Ren C.Y. Ma W.P. Wang H.J. Li S.W. Zhu Y.J. Jiang T. Bao Z.S. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. J. Immunother. Cancer 2021 9 10 e002451 10.1136/jitc‑2021‑002451 34667077
    [Google Scholar]
  63. Cirqueira M.B. Mendonça C.R. Noll M. Soares L.R. de Paula Carneiro Cysneiros M.A. Paulinelli R.R. Moreira M.A. Freitas-Junior R. Prognostic role of PD-l1 expression in invasive breast cancer: A systematic review and meta-analysis. Cancers 2021 13 23 6090 10.3390/cancers13236090 34885199
    [Google Scholar]
  64. Sabatier R. Finetti P. Mamessier E. Adelaide J. Chaffanet M. Ali H.R. Viens P. Caldas C. Birnbaum D. Bertucci F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015 6 7 5449 5464 10.18632/oncotarget.3216 25669979
    [Google Scholar]
  65. Chen L. Huang S. Liu Q. Kong X. Su Z. Zhu M. Fang Y. Zhang L. Li X. Wang J. PD-L1 protein expression is associated with good clinical outcomes and nomogram for prediction of disease free survival and overall survival in breast cancer patients received neoadjuvant chemotherapy. Front. Immunol. 2022 13 849468 10.3389/fimmu.2022.849468 35669769
    [Google Scholar]
  66. Yan S. Jiao X. Zou H. Li K. Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases. Diagn. Pathol. 2015 10 1 62 10.1186/s13000‑015‑0296‑y 26047809
    [Google Scholar]
  67. Raghav K.P. Wang W. Liu S. Chavez-MacGregor M. Meng X. Hortobagyi G.N. Mills G.B. Meric-Bernstam F. Blumenschein G.R. Gonzalez-Angulo A.M. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin. Cancer Res. 2012 18 8 2269 2277 10.1158/1078‑0432.CCR‑11‑2830 22374333
    [Google Scholar]
  68. Miao L. Lu Y. Xu Y. Zhang G. Huang Z. Gong L. Fan Y. PD-L1 and c-MET expression and survival in patients with small cell lung cancer. Oncotarget 2017 8 33 53978 53988 10.18632/oncotarget.9765 28903317
    [Google Scholar]
  69. Debien V. De Caluwé A. Wang X. Piccart-Gebhart M. Tuohy V.K. Romano E. Buisseret L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer 2023 9 1 7 10.1038/s41523‑023‑00508‑3 36781869
    [Google Scholar]
  70. Rizzo A. Cusmai A. Acquafredda S. Rinaldi L. Palmiotti G. Ladiratuzumab vedotin for metastatic triple negative cancer: Preliminary results, key challenges, and clinical potential. Expert Opin. Investig. Drugs 2022 31 6 495 498 10.1080/13543784.2022.2042252 35171746
    [Google Scholar]
  71. Rosellini M. Marchetti A. Mollica V. Rizzo A. Santoni M. Massari F. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 2023 20 3 133 157 10.1038/s41585‑022‑00676‑0 36414800
    [Google Scholar]
  72. Sun X. Li C.W. Wang W.J. Chen M.K. Li H. Lai Y.J. Hsu J.L. Koller P.B. Chan L.C. Lee P.C. Cheng F.J. Yam C. Chen G.Y. Hung M.C. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. Am. J. Cancer Res. 2020 10 2 564 571 32195027
    [Google Scholar]
  73. Lu S. Sun Z. Hu W. Yin S. Zhao C. Hu H. PD‐L1 positively regulates MET phosphorylation through inhibiting PTP1B. Cancer Sci. 2021 112 5 1878 1887 10.1111/cas.14844 33583114
    [Google Scholar]
  74. Rizzo A. Mollica V. Tateo V. Tassinari E. Marchetti A. Rosellini M. De Luca R. Santoni M. Massari F. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 2023 72 6 1381 1394 10.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  75. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096333231240902070108
Loading
/content/journals/ccdt/10.2174/0115680096333231240902070108
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: PD-L1 ; MET ; clinicopathologic ; gene expression ; prognosis ; Breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test