Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated.

Methods

In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different subtypes by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Furthermore, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified the area under the curve and validated on an external dataset.

Results

LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outperformed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the external validation set were 0.55, 0.59, and 0.60, respectively.

Conclusion

We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor microenvironment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096322045240902103219
2024-10-14
2026-02-19
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  2. KordiakJ. BielecF. JabłońskiS. Pastuszak-LewandoskaD. Role of Beta-Carotene in Lung Cancer Primary Chemoprevention: A Systematic Review with Meta-Analysis and Meta-Regression.Nutrients2022147136110.3390/nu14071361 35405977
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  4. ShuklaS. EvansJ.R. MalikR. FengF.Y. DhanasekaranS.M. CaoX. ChenG. BeerD.G. JiangH. ChinnaiyanA.M. Development of a RNA-Seq Based Prognostic Signature in Lung Adenocarcinoma.J. Natl. Cancer Inst.20171091djw20010.1093/jnci/djw200 27707839
    [Google Scholar]
  5. RizzoA. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: a matter of debate.Br. J. Cancer202212781381138210.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  6. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  7. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑0179 33225800
    [Google Scholar]
  8. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  9. YangZ. KaoX. HuangN. YuanK. ChenJ. HeM. Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification.J. Inflamm. Res.2024171941195610.2147/JIR.S452608 38562657
    [Google Scholar]
  10. WangY. KannegantiT.D. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways.Comput. Struct. Biotechnol. J.2021194641465710.1016/j.csbj.2021.07.038 34504660
    [Google Scholar]
  11. HuangJ. JiangS. LiangL. HeH. LiuY. CongL. JiangY. Analysis of PANoptosis-Related LncRNA-miRNA-mRNA Network Reveals LncRNA SNHG7 Involved in Chemo-Resistance in Colon Adenocarcinoma.Front. Oncol.20221288810510.3389/fonc.2022.888105 35646635
    [Google Scholar]
  12. ZhangZ. ZhangF. PangP. LiY. ChenX. SunS. BianY. Identification of PANoptosis-relevant subgroups to evaluate the prognosis and immune landscape of patients with liver hepatocellular carcinoma.Front. Cell Dev. Biol.202311121045610.3389/fcell.2023.1210456 37325556
    [Google Scholar]
  13. YangP. HuangG. LiY. YuL. YinZ. LiQ. Identification of PANoptosis-related biomarkers and analysis of prognostic values in head and neck squamous cell carcinoma.Sci. Rep.2024141982410.1038/s41598‑024‑60441‑8 38684755
    [Google Scholar]
  14. WangJ.M. YangJ. XiaW.Y. WangY.M. ZhuY.B. HuangQ. FengT. XieL.S. LiS.H. LiuS.Q. YuS.G. WuQ.F. Comprehensive Analysis of PANoptosis-Related Gene Signature of Ulcerative Colitis.Int. J. Mol. Sci.202325134810.3390/ijms25010348 38203518
    [Google Scholar]
  15. AndreassonJ. BodénE. FakhroM. von WachterC. OlmF. MalmsjöM. HallgrenO. LindstedtS. Exhaled phospholipid transfer protein and hepatocyte growth factor receptor in lung adenocarcinoma.Respir. Res.202223136910.1186/s12931‑022‑02302‑4 36544145
    [Google Scholar]
  16. ZhongH. WangJ. ZhuY. ShenY. Comprehensive Analysis of a Nine-Gene Signature Related to Tumor Microenvironment in Lung Adenocarcinoma.Front. Cell Dev. Biol.2021970060710.3389/fcell.2021.700607 34540825
    [Google Scholar]
  17. ZhuH. YueH. XieY. ChenB. ZhouY. LiuW. Bioinformatics and integrated analyses of prognosis-associated key genes in lung adenocarcinoma.J. Thorac. Dis.20211321172118610.21037/jtd‑21‑49 33717590
    [Google Scholar]
  18. ZhouC. WangY. LeiL. JiM.H. YangJ.J. XiaH. Identifying Common Genes Related to Platelet and Immunity for Lung Adenocarcinoma Prognosis Prediction.Front. Mol. Biosci.2020756314210.3389/fmolb.2020.563142 33195410
    [Google Scholar]
  19. HuangJ. ZhangJ. ZhangF. LuS. GuoS. ShiR. ZhaiY. GaoY. TaoX. JinZ. YouL. WuJ. Identification of a disulfidptosis-related genes signature for prognostic implication in lung adenocarcinoma.Comput. Biol. Med.202316510740210.1016/j.compbiomed.2023.107402 37657358
    [Google Scholar]
  20. HeR. ZuoS. A Robust 8-Gene Prognostic Signature for Early-Stage Non-small Cell Lung Cancer.Front. Oncol.2019969310.3389/fonc.2019.00693 31417870
    [Google Scholar]
  21. RosamariaP. DanielaP. RosannaL. MicheleM. AnnamariaC. PamelaP. AntoniettaB.M. AlfredoZ.F. GabriellaD.B. AntoniaZ. StefaniaT. SimonaD.S. KRAS-Driven Lung Adenocarcinoma and B Cell Infiltration: Novel Insights for Immunotherapy.Cancers (Basel)2019118114510.3390/cancers11081145 31405063
    [Google Scholar]
  22. HeD. TangH. YangX. LiuX. ZhangY. ShiJ. Elaboration and validation of a prognostic signature associated with disulfidoptosis in lung adenocarcinoma, consolidated with integration of single-cell RNA sequencing and bulk RNA sequencing techniques.Front. Immunol.202314127849610.3389/fimmu.2023.1278496 37965333
    [Google Scholar]
  23. MaeserD. GruenerR.F. HuangR.S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.Brief. Bioinform.2021226bbab26010.1093/bib/bbab260 34260682
    [Google Scholar]
  24. JiangM. QiL. LiL. WuY. SongD. LiY. Caspase‐8: A key protein of cross‐talk signal way in “ PANOPTOSIS ” in cancer.Int. J. Cancer202114971408142010.1002/ijc.33698 34028029
    [Google Scholar]
  25. MalireddiR.K.S. KarkiR. SundaramB. KancharanaB. LeeS. SamirP. KannegantiT.D. Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth.Immunohorizons20215756858010.4049/immunohorizons.210005934290111
    [Google Scholar]
  26. KarkiR. LeeS. MallR. PandianN. WangY. SharmaB.R. MalireddiR.K.S. YangD. TrifkovicS. SteeleJ.A. ConnellyJ.P. VishwanathG. SasikalaM. ReddyD.N. VogelP. Pruett-MillerS.M. WebbyR. JonssonC.B. KannegantiT.D. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection.Sci. Immunol.2022774eabo629410.1126/sciimmunol.abo6294 35587515
    [Google Scholar]
  27. XiongY. The emerging role of PANoptosis in cancer treatment.Biomed. Pharmacother.202316811569610.1016/j.biopha.2023.115696 37837884
    [Google Scholar]
  28. WeiS. ChenZ. LingX. ZhangW. JiangL. Comprehensive analysis illustrating the role of PANoptosis-related genes in lung cancer based on bioinformatic algorithms and experiments.Front. Pharmacol.202314111522110.3389/fphar.2023.1115221 36874021
    [Google Scholar]
  29. YatimN. Jusforgues-SaklaniH. OrozcoS. SchulzO. Barreira da SilvaR. Reis e SousaC. GreenD.R. OberstA. AlbertM.L. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8 + T cells.Science2015350625832833410.1126/science.aad0395 26405229
    [Google Scholar]
  30. HodgeG. BarnawiJ. JurisevicC. MoffatD. HolmesM. ReynoldsP.N. JersmannH. HodgeS. Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells.Clin. Exp. Immunol.20141781798510.1111/cei.12392 24894428
    [Google Scholar]
  31. NwosuZ.C. EbertM.P. DooleyS. MeyerC. Caveolin-1 in the regulation of cell metabolism: a cancer perspective.Mol. Cancer20161517110.1186/s12943‑016‑0558‑7 27852311
    [Google Scholar]
  32. BurgermeisterE. LiscovitchM. RöckenC. SchmidR.M. EbertM.P.A. Caveats of caveolin-1 in cancer progression.Cancer Lett.2008268218720110.1016/j.canlet.2008.03.055 18482795
    [Google Scholar]
  33. GuptaR. ToufailyC. AnnabiB. Caveolin and cavin family members: dual roles in cancer.Biochimie201410718820210.1016/j.biochi.2014.09.010
    [Google Scholar]
  34. WangZ. WangN. LiuP. PengF. TangH. ChenQ. XuR. DaiY. LinY. XieX. PengC. SituH. Caveolin-1, a stress-related oncotarget, in drug resistance.Oncotarget2015635371353715010.18632/oncotarget.5789 26431273
    [Google Scholar]
  35. ZhanP. ShenX.K. QianQ. WangQ. ZhuJ.P. ZhangY. XieH.Y. XuC.H. HaoK.K. HuW. XiaN. LuG.J. YuL.K. Expression of caveolin-1 is correlated with disease stage and survival in lung adenocarcinomas.Oncol. Rep.20122741072107810.3892/or.2011.1605 22200856
    [Google Scholar]
  36. GrünwaldB. SchoepsB. KrügerA. Recognizing the Molecular Multifunctionality and Interactome of TIMP-1.Trends Cell Biol.201929161910.1016/j.tcb.2018.08.006 30243515
    [Google Scholar]
  37. JacksonH.W. DefamieV. WaterhouseP. KhokhaR. TIMPs: versatile extracellular regulators in cancer.Nat. Rev. Cancer2017171385310.1038/nrc.2016.115 27932800
    [Google Scholar]
  38. ChangY.H. ChiuY.J. ChengH.C. LiuF.J. LaiW.W. ChangH.J. LiaoP.C. Down-regulation of TIMP-1 inhibits cell migration, invasion, and metastatic colonization in lung adenocarcinoma.Tumour Biol.20153653957396710.1007/s13277‑015‑3039‑5 25578494
    [Google Scholar]
  39. MauryE. BrichardS.M. PatakyZ. CarpentierA. GolayA. Bobbioni-HarschE. Effect of obesity on growth-related oncogene factor-alpha, thrombopoietin, and tissue inhibitor metalloproteinase-1 serum levels.Obesity (Silver Spring)20101881503150910.1038/oby.2009.464 20035279
    [Google Scholar]
  40. PapazoglouD. PapatheodorouK. PapanasN. PapadopoulosT. GiokaT. KabouromitiG. KotsiouS. MaltezosE. Matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 levels in severely obese patients: what is the effect of weight loss?Exp. Clin. Endocrinol. Diabetes20101181073073410.1055/s‑0030‑1249671 20361393
    [Google Scholar]
  41. DantasE. MurthyA. AhmedT. AhmedM. RamsamoojS. HurdM.A. LamT. MalbariM. AgrusaC. ElementoO. ZhangC. PappinD.J. McGrawT.E. StilesB.M. AltorkiN.K. GoncalvesM.D. TIMP1 is an early biomarker for detection and prognosis of lung cancer.Clin. Transl. Med.20231310e139110.1002/ctm2.1391 37759102
    [Google Scholar]
  42. KristA.H. DavidsonK.W. MangioneC.M. BarryM.J. CabanaM. CaugheyA.B. DavisE.M. DonahueK.E. DoubeniC.A. KubikM. LandefeldC.S. LiL. OgedegbeG. OwensD.K. PbertL. SilversteinM. StevermerJ. TsengC.W. WongJ.B. Screening for lung cancer.JAMA20213251096297010.1001/jama.2021.1117 33687470
    [Google Scholar]
  43. ZhouX. ZhangP. LuoW. ZhangL. HuR. SunY. JiangH. Ketamine induces apoptosis in lung adenocarcinoma cells by regulating the expression of CD 69.Cancer Med.20187378879510.1002/cam4.1288 29453833
    [Google Scholar]
  44. PajustoM. IhalainenN. PelkonenJ. TarkkanenJ. MattilaP.S. Human in vivo ‐activated CD45R0 + CD4 + T cells are susceptible to spontaneous apoptosis that can be inhibited by the chemokine CXCL12 and IL‐2, ‐6, ‐7, and ‐15.Eur. J. Immunol.200434102771278010.1002/eji.200324761 15368293
    [Google Scholar]
  45. FoersterM. HaefnerD. KroegelC. Bcl-2-mediated regulation of CD69-induced apoptosis of human eosinophils: identification and characterization of a novel receptor-induced mechanism and relationship to CD95-transduced signalling.Scand. J. Immunol.200256441742810.1046/j.1365‑3083.2002.01111.x 12234263
    [Google Scholar]
  46. GorabiA.M. HajighasemiS. KiaieN. Gheibi HayatS.M. JamialahmadiT. JohnstonT.P. SahebkarA. The pivotal role of CD69 in autoimmunity.J. Autoimmun.202011110245310.1016/j.jaut.2020.102453 32291138
    [Google Scholar]
  47. HuZ.W. SunW. WenY.H. MaR.Q. ChenL. ChenW.Q. LeiW.B. WenW.P. CD69 and SBK1 as potential predictors of responses to PD-1/PD-L1 blockade cancer immunotherapy in lung cancer and melanoma.Front. Immunol.20221395205910.3389/fimmu.2022.952059 36045683
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096322045240902103219
Loading
/content/journals/ccdt/10.2174/0115680096322045240902103219
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioinformatics; LUAD; Lung adenocarcinoma; machine learning; PANoptosis; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test