Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Pyrazolyl-pyrimidinone derivatives are important heterocyclic compounds. A novel HIV-1 (human immunodeficiency virus type 1) inhibitors based on these components were designed as potential drug candidates for AIDS (acquired immunodeficiency syndrome) therapy.

Objective

This research aims to develop a predictive mathematical model linking the biological activity and physicochemical properties of pyrazolyl-pyrimidinones derivatives and to identify the interactions between the most active compound and the HIV-1 active site.

Methods

A QSAR-2D study was conducted on 40 pyrazolyl-pyrimidinone derivatives, followed by molecular docking of the most active compounds.

Results

Principal Component Analysis (PCA) was used to select the best descriptors for building QSAR models using Multiple Linear Regression (MLR), Multiple Nonlinear Regression (MNLR), and Artificial Neural Networks (ANN). The MLR model achieved R2 = 0.70, Q2Cv = 0.54, and successful Y-randomization (R = 0.83). The MNLR model had an R2 of 0.81 and low mean square error RMSE = 0.17, while the ANN model showed ρ = 1.5 and RMSE = 0.15. Docking studies confirmed key interactions between compounds 1 and 11 with the HIV-1 active site. The results of molecular packaging Substances 11 and 1 have the lowest energy levels of -13.26 kcal/mol and -12.5 kcal/mol, respectively, and have more than one hydrogen bond. The molecular docking validation finds RMSD = 0.821.

Conclusion

This study allowed the establishment of robust QSAR models with a good predictive capacity, confirmed by several statistical indicators, with the aim of inhibiting HIV-1. The models showed satisfactory reliability and docking studies identified key interactions between the compounds and the active sites of HIV-1, thus reinforcing their profile as promising candidates for the development of new antiviral treatments.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968317638241014090751
2024-10-30
2025-04-12
Loading full text...

Full text loading...

References

  1. AndersenJ.L. Le RouzicE. PlanellesV. HIV-1 Vpr: Mechanisms of G2 arrest and apoptosis.Exp. Mol. Pathol.200885121010.1016/j.yexmp.2008.03.01518514189
    [Google Scholar]
  2. GottliebM.S. SchroffR. SchankerH.M. WeismanJ.D. FanP.T. WolfR.A. SaxonA. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency.N. Engl. J. Med.1981305241425143110.1056/NEJM1981121030524016272109
    [Google Scholar]
  3. JegedeO. BabuJ. Di SantoR. McCollD.J. WeberJ. Quiñones-MateuM. HIV type 1 integrase inhibitors: from basic research to clinical implications.AIDS Rev.200810317218918820719
    [Google Scholar]
  4. WainbergM.A. JeangK.T. 25 years of HIV-1 research – progress and perspectives.BMC Med.2008613110.1186/1741‑7015‑6‑3118976462
    [Google Scholar]
  5. SweilehW.M. Global research output on HIV/AIDS–related medication adherence from 1980 to 2017.BMC Health Serv. Res.201818176510.1186/s12913‑018‑3568‑x30305093
    [Google Scholar]
  6. SchneiderE. WhitmoreS. GlynnK.M. DominguezK. MitschA. McKennaM.T. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years--United States, 2008.MMWR Recomm. Rep.200857RR-1011219052530
    [Google Scholar]
  7. BainL.E. DobermannD. Malaria, HIV and TB in the Democratic Republic of the Congo: Epidemiology, Disease Control Challenges and Interventions. The Institute of Development Studies and partner organisations.2022Available from: https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/17290
    [Google Scholar]
  8. SarafianosS.G. MarchandB. DasK. HimmelD.M. ParniakM.A. HughesS.H. ArnoldE. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.J. Mol. Biol.2009385369371310.1016/j.jmb.2008.10.07119022262
    [Google Scholar]
  9. LewdenC. BouteloupV. De WitS. SabinC. MocroftA. WasmuthJ.C. van SighemA. KirkO. ObelN. PanosG. GhosnJ. DabisF. Mary-KrauseM. LeportC. Perez-HoyosS. Sobrino-VegasP. StephanC. CastagnaA. AntinoriA. d’Arminio MonforteA. TortiC. MussiniC. IsernV. CalmyA. TeiraR. EggerM. GrarupJ. ChêneG. All-cause mortality in treated HIV-infected adults with CD4 >=500/mm3 compared with the general population: evidence from a large European observational cohort collaboration.Int. J. Epidemiol.201241243344510.1093/ije/dyr16422493325
    [Google Scholar]
  10. WuY. TangC. RuiR. YangL. DingW. WangJ. LiY. LaiC.C. WangY. LuoR. XiaoW. ZhangH. ZhengY. HeY. Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones as potential HIV-1 inhibitors.Acta Pharm. Sin. B202010351252810.1016/j.apsb.2019.08.00932140396
    [Google Scholar]
  11. ZhuM. ShanQ. MaL. DongB. WangJ. ZhangG. WangM. ZhouJ. CenS. WangY. Structure based design and evaluation of benzoheterocycle derivatives as potential dual HIV-1 protease and reverse transcriptase inhibitors.Eur. J. Med. Chem.202324611498110.1016/j.ejmech.2022.11498136481598
    [Google Scholar]
  12. BroderS. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic.Antiviral Res.201085111810.1016/j.antiviral.2009.10.00220018391
    [Google Scholar]
  13. WangZ. ZhangH. GaoZ. SangZ. De ClercqE. PannecouqueC. KangD. ZhanP. LiuX. Structure-based design and optimization lead to the identification of novel dihydrothiopyrano[3,2-d]pyrimidine derivatives as potent HIV-1 inhibitors against drug-resistant variants.Acta Pharm. Sin. B20241431257128210.1016/j.apsb.2023.11.02338486991
    [Google Scholar]
  14. GhoshA.K. MarkadS.B. A convenient synthesis of (3S,3aR,5R,7aS,8S)-Hexahydro-4H-3,5-methanofuro[2,3-b]pyran-8-ol, a high-affinity nonpeptidyl ligand for highly potent HIV-1 protease inhibitors.Tetrahedron Lett.202210915416110.1016/j.tetlet.2022.154161
    [Google Scholar]
  15. TalbiS. DibM. BouissaneL. AbderrafiaH. RabiS. KhouiliM. Recent Progress in the Synthesis of Heterocycles based on 1,3-diketones.Curr. Org. Synth.202219222024510.2174/157017941866621101114142834635043
    [Google Scholar]
  16. BouhaouiA. EddahmiM. DibM. KhouiliM. AiresA. CattoM. BouissaneL. Synthesis and Biological Properties of Coumarin Derivatives. A Review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  17. DibM. KacemM. TalbiS. OuchettoH. OuchettoK. EssoumhiA. HafidA. KhouiliM. MgO-MgAl2O4: An Efficient Catalyst for Multicomponent Synthesis of Substituted 4H-pyran.Curr. Chem. Biol.202317316016910.2174/2212796817666230626120825
    [Google Scholar]
  18. IbrahimT.S. HawwasM.M. TaherE.S. AlhakamyN.A. AlfalehM.A. ElagawanyM. ElgendyB. ZayedG.M. MohamedM.F.A. Abdel-SamiiZ.K. ElshaierY.A.M.M. Design and synthesis of novel pyrazolo[3,4-d]pyrimidin-4-one bearing quinoline scaffold as potent dual PDE5 inhibitors and apoptotic inducers for cancer therapy.Bioorg. Chem.202010510435210.1016/j.bioorg.2020.10435233080494
    [Google Scholar]
  19. XieF. ZhouL. GeC. SongX. YanH. Development of pyrazolo[3,4-d]pyrimidin-4-one scaffold as novel CDK2 inhibitors: Design, synthesis, and biological evaluation.Bioorg. Med. Chem. Lett.20227012880310.1016/j.bmcl.2022.12880335598793
    [Google Scholar]
  20. BadaweyE.S.A.M. El-AshmaweyI.M. Nonsteroidal antiinflammatory agents - Part 1: Antiinflammatory, analgesic and antipyretic activity of some new 1-(pyrimidin-2-yl)-3-pyrazolin-5-ones and 2-(pyrimidin-2-yl)-1,2,4,5,6,7-hexahydro-3H-indazol-3-ones.Eur. J. Med. Chem.199833534936110.1016/S0223‑5234(98)80002‑0
    [Google Scholar]
  21. HossanA. AljohaniM. AlrefaeiA.F. AlthumayriK. BayazeedA. SaadF.A. AbumelhaH.M. El-MetwalyN.M. Synthesis of functionalized aminopyrazole and pyrazolopyrimidine derivatives: Molecular modeling and docking as anticancer agents.Arab. J. Chem.202316410464510.1016/j.arabjc.2023.104645
    [Google Scholar]
  22. AbdallahA.E.M. ElgemeieG.H. New Route to the Synthesis of Novel Pyrazolo[1,5-a]pyrimidines and Evaluation of their Antimicrobial Activity as RNA Polymerase Inhibitors.Med. Chem.202218992694810.2174/157340641866622030209241435236270
    [Google Scholar]
  23. AkhramezS. AchourY. DibM. BahsisL. OuchettoH. HafidA. KhouiliM. El HaddadM. DFT Study and Synthesis of Novel Bioactive Bispyrazole using Mg/Al-LDH as a Solid Base Catalyst.Curr. Chem. Biol.202114424024910.2174/2212796814999200918175018
    [Google Scholar]
  24. FaroukiK.E. KacemM. DibM. OuchettoH. HafidA. KhouiliM. A Review on the Recent Progress of Layered Double Hydroxides (LDHs)-based Catalysts for Heterocyclic Synthesis.Curr. Organocatal.202411215417410.2174/0122133372264682231019101634
    [Google Scholar]
  25. KamraN. RaniS. Design, synthesis and biological evaluation of novel furan & thiophene containing pyrazolyl pyrazolines as antimalarial agents.Polycyclic Aromatic Compounds20234251959197110.1080/10406638.2020.1821231
    [Google Scholar]
  26. DibM. OuchettoH. AkhramezS. FadiliH. EssoumhiA. OuchettoK. HafidA. SajieddineM. KhouiliM. Preparation of Mg/Al-LDH nanomaterials and its application in the condensation of 3-amino-1-phenyl-2-pyrazolin-5-one with aromatic aldehyde.Mater. Today Proc.202022Part 110410710.1016/j.matpr.2019.08.106
    [Google Scholar]
  27. HammoudaM.M. GafferH.E. ElattarK.M. Insights into the medicinal chemistry of heterocycles integrated with a pyrazolo[1,5- a]pyrimidine scaffold.RSC Med. Chem.202213101150119610.1039/D2MD00192F36325400
    [Google Scholar]
  28. ZhangB. HuangY. ZhangS.R. HuangM.X. ZhangC. LuoH.B. Design, synthesis and biological evaluation of novel pyrazolopyrimidone derivatives as potent PDE1 inhibitors.Bioorg. Chem.202111410510410.1016/j.bioorg.2021.10510434186466
    [Google Scholar]
  29. DibM. OuchettoH. OuchettoK. HafidA. KhouiliM. Recent Developments of Quinoline Derivatives and their Potential Biological Activities.Curr. Org. Synth.202118324826910.2174/157017941766620121616205533327918
    [Google Scholar]
  30. KumarS. GuptaS. RaniV. Sharma, P Pyrazole Containing Anti-HIV Agents: An Update.Med. Chem.202218883184610.2174/1573406418666220106163846
    [Google Scholar]
  31. FariaJ.V. VegiP.F. MiguitaA.G.C. dos SantosM.S. BoechatN. BernardinoA.M.R. Recently reported biological activities of pyrazole compounds.Bioorg. Med. Chem.201725215891590310.1016/j.bmc.2017.09.03528988624
    [Google Scholar]
  32. NaimMJ. AlamO. NawazF. Alam MdJ. AlamP. Current status of pyrazole and its biological activities.J. Pharm. Bioallied Sci.20168217
    [Google Scholar]
  33. RaniR. TasmeemS. MalikA. GargV.K. SinghL. DhullS. B Optimization of Swiss blue dye removal by cotton boll activated carbon: response surface methodological approach.Toxin Reviews.202241129831410.1080/15569543.2021.1873386
    [Google Scholar]
  34. Soares de MeloC. SinghV. MyrickA. SimelaneS.B. TaylorD. BrunschwigC. LawrenceN. SchnappingerD. EngelhartC.A. KumarA. ParishT. SuQ. MyersT.G. BoshoffH.I.M. BarryC.E.III SirgelF.A. van HeldenP.D. BuchananK.I. BaylissT. GreenS.R. RayP.C. WyattP.G. BasarabG.S. EyermannC.J. ChibaleK. GhorpadeS.R. Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies.J. Med. Chem.202164171974010.1021/acs.jmedchem.0c0172733395287
    [Google Scholar]
  35. RamadanM. AlyA.A. El-HaleemL.E.A. AlshammariM.B. BräseS. Substituted Pyrazoles and Their Heteroannulated Analogs—Recent Syntheses and Biological Activities.Molecules20212616499510.3390/molecules2616499534443583
    [Google Scholar]
  36. ImaniA. SoleymaniS. VahabpourR. HajimahdiZ. ZarghiA. Design, Synthesis, Docking Study and Biological Evaluation of 4-Hydroxy-2H-benzo[e][1,2]thiazine-3-carboxamide 1,1-dioxide Derivatives as Anti-HIV Agents.Iran. J. Pharm. Res.202120311210.22037/ijpr.2020.114153.1469534903964
    [Google Scholar]
  37. SepehriS. SoleymaniS. ZabihollahiR. AghasadeghiM.R. SadatM. SaghaieL. MemarianH.R. FassihiA. Design, Synthesis, and Anti‐ HIV ‐1 Evaluation of a Novel Series of 1,2,3,4‐Tetrahydropyrimidine‐5‐Carboxylic Acid Derivatives.Chem. Biodivers.2018154170050210.1002/cbdv.20170050229411517
    [Google Scholar]
  38. LiD. ZhangC. DingW. HuangS. YuL. LuN. PanW. LiY. De ClercqE. PannecouqueC. ZhangH. WangY. HeY. ChenF. Structure-based linker optimization of 6-(2-cyclohexyl-1-alkyl)-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors.Chin. Chem. Lett.20213231020102410.1016/j.cclet.2020.09.035
    [Google Scholar]
  39. MuzomweM. MaesG. KasendeO.E. Theoretical DFT(B3LYP)/6-31+G(d) study on the prediction of the preferred interaction site of 3-methyl-4-pyrimidone with different proton donors.Nat. Sci. (Irvine Calif.)20124528629710.4236/ns.2012.45041
    [Google Scholar]
  40. EsmeA. SagdincS.G. Theoretical studies of molecular structures, infrared spectra, NBO and NLO properties of some novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone dyes.Acta Phys. Pol. A201613061273128710.12693/APhysPolA.130.1273
    [Google Scholar]
  41. PilkingtonL.I. A Chemometric Analysis of Deep-Sea Natural Products.Molecules20192421394210.3390/molecules2421394231683674
    [Google Scholar]
  42. TabtiK. El mchichi L, Sbai A, Maghat H, Bouachrine M, Lakhlifi T. 2D and 3D-QSAR/CoMSIA comparative study on a series of thiazole derivatives as SDHI inhibitors.Maghrebian J. Pure Appl. Sci202010.48383/IMIST.PRSM/mjpas‑v6i2.23108
    [Google Scholar]
  43. SjölanderM. LinderholmJ. GeladiP. BucklandP.I. Quartzite complexities: Non-destructive analysis of bifacial points from Västerbotten, Sweden.J. Archaeol. Sci. Rep.20245310438110.1016/j.jasrep.2024.104381
    [Google Scholar]
  44. GrotzingerA.D. RhemtullaM. de VlamingR. RitchieS.J. MallardT.T. HillW.D. IpH.F. MarioniR.E. McIntoshA.M. DearyI.J. KoellingerP.D. HardenK.P. NivardM.G. Tucker-DrobE.M. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits.Nat. Hum. Behav.20193551352510.1038/s41562‑019‑0566‑x30962613
    [Google Scholar]
  45. ZhangS. GolbraikhA. OloffS. KohnH. TropshaA. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models.J. Chem. Inf. Model.20064651984199510.1021/ci060132x16995729
    [Google Scholar]
  46. El MasaoudyY. TabtiK. KoubiY. MaghatH. LakhlifiT. BouachrineM. In silico design of new pyrimidine-2,4-dione derivatives as promising inhibitors for HIV Reverse Transcriptase-associated RNase H using 2D-QSAR modeling and (ADME/Tox) properties.Mor. J. Chem.202311111210.48317/IMIST.PRSM/morjchem‑v11i2.35455
    [Google Scholar]
  47. ErtürkM.D. SaçanM.T. NovicM. MinovskiN. Quantitative structure–activity relationships (QSARs) using the novel marine algal toxicity data of phenols.J. Mol. Graph. Model.2012389010010.1016/j.jmgm.2012.06.00223085159
    [Google Scholar]
  48. PapaE. DeardenJ.C. GramaticaP. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.Chemosphere2007
    [Google Scholar]
  49. TabtiK. El MchichiL. MoukhlissY. SinghG. SbaiA. maghat H, bouachrine M, Lakhlifi T. CoMFA Topomer, CoMFA, CoMSIA, HQSAR, docking molecular, dynamique study and ADMET study on phenyloxylpropyl isoxazole derivatives for coxsackie virus B3 virus inhibitors activity.Mor. J. Chem20221070372510.48317/IMIST.PRSM/morjchem‑v10i4.34319
    [Google Scholar]
  50. AdamowskiJ. Fung ChanH. PrasherS.O. Ozga-ZielinskiB. SliusarievaA. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res., 20124812010WR00994510.1029/2010WR009945
    [Google Scholar]
  51. TabtiK. HajjiH. SbaiA. MaghatH. BouachrineM. lakhlifi T. Identification of a Potential Thiazole Inhibitor Against Biofilms by 3D QSAR, Molecular Docking, DFT Analysis, MM-PBSA Binding Energy Calculations, and Molecular Dynamics Simulation.Phys. Chem. Res.20231136938910.22036/pcr.2022.335657.2068
    [Google Scholar]
  52. GardnerM.W. DorlingS.R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences.Atmos. Environ.19983214-152627263610.1016/S1352‑2310(97)00447‑0
    [Google Scholar]
  53. Prado-PradoF.J. García-MeraX. González-DíazH. Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.Bioorg. Med. Chem.20101862225223110.1016/j.bmc.2010.01.06820185316
    [Google Scholar]
  54. Ortiz-RodriguezJ.M. Martinez-BlancoM.R. Vega-CarrilloH.R. Robust Design of Artificial Neural Networks Applying the Taguchi methodology and DoE.Electronics Robotics and Automotive Mechanics Conference (CERMA’06)Cuernavaca, Mexico,200613113610.1109/CERMA.2006.83
    [Google Scholar]
  55. TropshaA. GramaticaP. GombarV.K. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models.QSAR Comb. Sci.2003221697710.1002/qsar.200390007
    [Google Scholar]
  56. ShenM. XiaoY. GolbraikhA. GombarV.K. TropshaA. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates.J. Med. Chem.200346143013302010.1021/jm020491t12825940
    [Google Scholar]
  57. ChiricoN. GramaticaP. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient.J. Chem. Inf. Model.20115192320233510.1021/ci200211n21800825
    [Google Scholar]
  58. ZhangL. ZhuH. OpreaT.I. GolbraikhA. TropshaA. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.Pharm. Res.20082581902191410.1007/s11095‑008‑9609‑018553217
    [Google Scholar]
  59. Pratim RoyP. PaulS. MitraI. RoyK. On two novel parameters for validation of predictive QSAR models.Molecules20091451660170110.3390/molecules1405166019471190
    [Google Scholar]
  60. RezendeK.B.C. CunhaA.J.L.A. AmimJunior J. BorniaR.G. External validation of the Fetal Medicine Foundation algorithm for the prediction of preeclampsia in a Brazilian population.Pregnancy Hypertens.201917646810.1016/j.preghy.2019.05.00631487659
    [Google Scholar]
  61. SahlinU. FilipssonM. ÖbergT. A Risk Assessment Perspective of Current Practice in Characterizing Uncertainties in QSAR Regression Predictions.Mol. Inform.2011306-755156410.1002/minf.201000177
    [Google Scholar]
  62. GolbraikhA. ShenM. XiaoZ. XiaoY.D. LeeK.H. TropshaA. Rational selection of training and test sets for the development of validated QSAR models.J. Comput. Aided Mol. Des.2003172/424125310.1023/A:102538632694613677490
    [Google Scholar]
  63. RoyK. KarS. AmbureP. On a simple approach for determining applicability domain of QSAR models.Chemom. Intell. Lab. Syst.2015145222910.1016/j.chemolab.2015.04.013
    [Google Scholar]
  64. GramaticaP. Principles of QSAR models validation: internal and external.QSAR Comb. Sci.200726569470110.1002/qsar.200610151
    [Google Scholar]
  65. BurleyS.K. BermanH.M. BhikadiyaC. BiC. ChenL. Di CostanzoL. ChristieC. DalenbergK. DuarteJ.M. DuttaS. FengZ. GhoshS. GoodsellD.S. GreenR.K. GuranovićV. GuzenkoD. HudsonB.P. KalroT. LiangY. LoweR. NamkoongH. PeisachE. PeriskovaI. PrlićA. RandleC. RoseA. RoseP. SalaR. SekharanM. ShaoC. TanL. TaoY.P. ValasatavaY. VoigtM. WestbrookJ. WooJ. YangH. YoungJ. ZhuravlevaM. ZardeckiC. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy.Nucleic Acids Res.201947D1D464D47410.1093/nar/gky100430357411
    [Google Scholar]
  66. ZhouX. LingM. LinQ. TangS. WuJ. HuH. Effectiveness Analysis of Multiple Initial States Simulated Annealing Algorithm, a Case Study on the Molecular Docking Tool AutoDock Vina.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232063830384110.1109/TCBB.2023.332355237831573
    [Google Scholar]
  67. Callil-SoaresP.H. BiasiL.C.K. Pessoa FilhoP.A. Effect of preprocessing and simulation parameters on the performance of molecular docking studies.J. Mol. Model.202329825110.1007/s00894‑023‑05637‑x37452150
    [Google Scholar]
  68. KuzmanicA. ZagrovicB. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.Biophys. J.201098586187110.1016/j.bpj.2009.11.01120197040
    [Google Scholar]
  69. TabtiK. SbaiA. MaghatH. LakhlifiT. BouachrineM. Computational assessment of the reactivity and pharmaceutical potential of novel triazole derivatives: An approach combining DFT calculations, molecular dynamics simulations, and molecular docking.Arab. J. Chem.202417110537610.1016/j.arabjc.2023.105376
    [Google Scholar]
  70. VidalR. MaY. SastryS.S. Principal Component Analysis. In: Generalized Principal Component Analysis. Interdisciplinary Applied Mathematics.New YorkSpringer201610.1007/978‑0‑387‑87811‑9_2
    [Google Scholar]
  71. KravićN. SavosinaJ. Agafonova-MorozM. BabainV. LeginA. KirsanovD. Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions.Chemosensors (Basel)20221039010.3390/chemosensors10030090
    [Google Scholar]
  72. CawleyG.C. TalbotN.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines.Neural Netw.200417101467147510.1016/j.neunet.2004.07.00215541948
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968317638241014090751
Loading
/content/journals/ccb/10.2174/0122127968317638241014090751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test